
Carnegie Mellon

Lecture 13:

Memory Consistency

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2018

CMU 15-418/618, Spring 2018 1

Carnegie Mellon

What is Correct Behavior for a Parallel Memory Hierarchy?

• Note: side-effects of writes are only observable when reads occur
– so we will focus on the values returned by reads

• Intuitive answer:
– reading a location should return the latest value written (by any thread)

• Hmm… what does “latest” mean exactly?
– within a thread, it can be defined by program order
– but what about across threads?

• the most recent write in physical time?
– hopefully not, because there is no way that the hardware can pull that off

» e.g., if it takes >10 cycles to communicate between processors, there is
no way that processor 0 can know what processor 1 did 2 clock ticks ago

• most recent based upon something else?
– Hmm…

CMU 15-418/618, Spring 2018 2

Carnegie Mellon

Refining Our Intuition

• What would be some clearly illegal combinations of (A,B,C)?
• How about:

• What can we generalize from this?
– writes from any particular thread must be consistent with program order

• in this example, observed even numbers must be increasing (ditto for odds)
– across threads: writes must be consistent with a valid interleaving of threads

• not physical time! (programmer cannot rely upon that)

CMU 15-418/618, Spring 2018 3

// write evens to X
for (i=0; i<N; i+=2) {

X = i;
…

}

Thread 0
// write odds to X
for (j=1; j<N; j+=2) {

X = j;
…

}

Thread 1
…
A = X;
…
B = X;
…
C = X;
…

Thread 2

(Assume: X=0 initially, and these are the only writes to X.)

(4,8,1)? (9,12,3)? (7,19,31)?

Carnegie Mellon

Visualizing Our Intuition

• Each thread proceeds in program order
• Memory accesses interleaved (one at a time) to a single-ported memory

– rate of progress of each thread is unpredictable

CMU 15-418/618, Spring 2018 4

// write evens to X
for (i=0; i<N; i+=2) {

X = i;
…

}

Thread 0
// write odds to X
for (j=1; j<N; j+=2) {

X = j;
…

}

Thread 1
…
A = X;
…
B = X;
…
C = X;
…

Thread 2

CPU 0 CPU 1 CPU 2

Memory

Single port to memory

Carnegie Mellon

Correctness Revisited

Recall: “reading a location should return the latest value written (by any thread)”
à “latest” means consistent with some interleaving that matches this model
– this is a hypothetical interleaving; the machine didn’t necessarily do this!

CMU 15-418/618, Spring 2018 5

// write evens to X
for (i=0; i<N; i+=2) {

X = i;
…

}

Thread 0
// write odds to X
for (j=1; j<N; j+=2) {

X = j;
…

}

Thread 1
…
A = X;
…
B = X;
…
C = X;
…

Thread 2

CPU 0 CPU 1 CPU 2

Memory

Single port to memory

Carnegie Mellon

Part 2 of Memory Correctness: Memory Consistency Model

1. “Cache Coherence”

– do all loads and stores to a given cache block behave correctly?

2. “Memory Consistency Model” (sometimes called “Memory Ordering”)

– do all loads and stores, even to separate cache blocks, behave correctly?

Recall: our intuition

CMU 15-418/618, Spring 2018 6

CPU 0 CPU 1 CPU 2

Memory

Single port to memory

Carnegie Mellon

Why is this so complicated?

• Fundamental issue:
– loads and stores are very expensive, even on a uniprocessor

• can easily take 10’s to 100’s of cycles

• What programmers intuitively expect:
– processor atomically performs one instruction at a time, in program order

• In reality:
– if the processor actually operated this way, it would be painfully slow
– instead, the processor aggressively reorders instructions to hide memory latency

• Upshot:
– within a given thread, the processor preserves the program order illusion
– but this illusion has nothing to do with what happens in physical time!
– from the perspective of other threads, all bets are off!

CMU 15-418/618, Spring 2018 7

Carnegie Mellon

Hiding Memory Latency is Important for Performance

• Idea: overlap memory accesses with other accesses and computation

• Hiding write latency is simple in uniprocessors:

– add a write buffer

– (more on this later)

• (But this affects correctness in multiprocessors)

CMU 15-418/618, Spring 2018 8

write A

read B

write A
read B

Processor

Cache

READS WRITES

write
buffer

Carnegie Mellon

How Can We Hide the Latency of Memory Reads?

“Out of order” pipelining:
– when an instruction is stuck, perhaps there are subsequent instructions that

can be executed

• Implication: memory accesses may be performed out-of-order!!!

CMU 15-418/618, Spring 2018 9

stuck waiting on true dependencestuck waiting on true dependence
suffers expensive cache misssuffers expensive cache missx = *p;

y = x + 1;
z = a + 2;
b = c / 3; } these do not need to wait

Carnegie Mellon

What About Conditional Branches?

• Do we need to wait for a conditional branch to be resolved before proceeding?
– No! Just predict the branch outcome and continue executing speculatively.

• if prediction is wrong, squash any side-effects and restart down correct path

CMU 15-418/618, Spring 2018 10

x = *p;
y = x + 1;
z = a + 2;
b = c / 3;
if (x != z)

d = e – 7;
else d = e + 5;
…

if hardware guesses that this is true
then execute “then” part (speculatively)
(without waiting for x or z)

Carnegie Mellon

How Out-of-Order Pipelining Works in Modern Processors

• Fetch and graduate instructions in-order, but issue out-of-order

• Intra-thread dependences are preserved, but memory accesses get reordered!

CMU 15-418/618, Spring 2018 11

issue (cache miss)

0x1c: b = c / 3;

0x18: z = a + 2;

0x14: y = x + 1;

0x10: x = *p;

PC: 0x10
Inst.

Cache

Branch
Predictor

0x140x180x1c

0x1c: b = c / 3;

0x18: z = a + 2;

0x14: y = x + 1;

0x10: x = *p;

Re
or

de
r B

uf
fe

r

issue (cache miss)

issue (out-of-order)
issue (out-of-order)

can’t issuecan’t issue
issue (out-of-order)
issue (out-of-order)

Carnegie Mellon

Analogy: Gas Particles in Balloons

• Imagine that each instruction within a thread is a gas particle inside a twisty balloon
• They were numbered originally, but then they start to move and bounce around
• When a given thread observes memory accesses from a different thread:

– those memory accesses can be (almost) arbitrarily jumbled around
• like trying to locate the position of a particular gas particle in a balloon

• As we’ll see later, the only thing that we can do is to put twists in the balloon

CMU 15-418/618, Spring 2018 12

(wikiHow)

14

13

12

15

11

15

11

14

13

12

12

13

15

11

14

11

12

13

14

15

Thread 0 Thread 1 Thread 2 Thread 3

Time

Carnegie Mellon

Uniprocessor Memory Model

• Memory model specifies ordering constraints among accesses

• Uniprocessor model: memory accesses atomic and in program order

• Not necessary to maintain sequential order for correctness
– hardware: buffering, pipelining
– compiler: register allocation, code motion

• Simple for programmers

• Allows for high performance

CMU 15-418/618, Spring 2018 13

write A
write B
read A
read B

Processor

Cache

READS WRITES

write
buffer

Reads check for
matching addresses
in write buffer

Carnegie Mellon

In Parallel Machines (with a Shared Address Space)

• Order between accesses to different locations becomes important

CMU 15-418/618, Spring 2018 14

A = 1;
Ready = 1;

while (Ready != 1);
… = A;

P1 P2

(Initially A and Ready = 0)

Carnegie Mellon

How Unsafe Reordering Can Happen

• Distribution of memory resources
– accesses issued in order may be observed out of order

CMU 15-418/618, Spring 2018 15

Processor

Memory

Processor

Memory

Processor

Memory

Interconnection Network

…
A = 1;
Ready = 1;

A: 0 Ready:0

wait (Ready== 1);
… = A;

A = 1;
Ready = 1;

à1

Carnegie Mellon

Caches Complicate Things More
• Multiple copies of the same location

CMU 15-418/618, Spring 2018 16

Interconnection Network

A = 1; wait (A == 1);
B = 1;

A = 1;

B = 1;

Processor

Memory

Cache
A:0

Processor

Memory

Cache
A:0
B:0

Processor

Memory

Cache
A:0
B:0

wait (B == 1);
… = A;

A = 1;

à1 à1
à1 à1

Oops!

Carnegie Mellon

Our Intuitive Model: “Sequential Consistency” (SC)

• Formalized by Lamport (1979)

– accesses of each processor in program order

– all accesses appear in sequential order

• Any order implicitly assumed by programmer is maintained

CMU 15-418/618, Spring 2018 17

Memory

P0 P1 Pn…

Carnegie Mellon

Example with Sequential Consistency

Simple Synchronization:

P0 P1
A = 1 (a)
Ready = 1 (b) x = Ready (c)

y = A (d)

• all locations are initialized to 0
• possible outcomes for (x,y):

– (0,0), (0,1), (1,1)
• (x,y) = (1,0) is not a possible outcome (i.e. Ready = 1, A = 0):

– we know a->b and c->d by program order
– b->c implies that a->d
– y==0 implies d->a which leads to a contradiction
– but real hardware will do this!

CMU 15-418/618, Spring 2018 18

Carnegie Mellon

Another Example with Sequential Consistency

Stripped-down version of a 2-process mutex (minus the turn-taking):

P0 P1

want[0] = 1 (a) want[1] = 1 (c)

x = want[1] (b) y = want[0] (d)

• all locations are initialized to 0

• possible outcomes for (x,y):

– (0,1), (1,0), (1,1)

• (x,y) = (0,0) is not a possible outcome (i.e. want[0]= 0, want[1]= 0):

– a->b and c->d implied by program order

– x = 0 implies b->c which implies a->d

– a->d says y = 1 which leads to a contradiction

– similarly, y = 0 implies x = 1 which is also a contradiction

– but real hardware will do this!

CMU 15-418/618, Spring 2018 19

Carnegie Mellon

One Approach to Implementing Sequential Consistency

1. Implement cache coherence
à writes to the same location are observed in same order by all processors

2. For each processor, delay start of memory access until previous one completes
à each processor has only one outstanding memory access at a time

• What does it mean for a memory access to complete?

CMU 15-418/618, Spring 2018 20

Carnegie Mellon

When Do Memory Accesses Complete?

• Memory Reads:
– a read completes when its return value is bound

CMU 15-418/618, Spring 2018 21

load r1 ß X X = ???

(Find X in memory system)X = 17

r1 = 17

Carnegie Mellon

When Do Memory Accesses Complete?

• Memory Reads:

– a read completes when its return value is bound

• Memory Writes:

– a write completes when the new value is “visible” to other processors

• What does “visible” mean?

– it does NOT mean that other processors have necessarily seen the value yet

– it means the new value is committed to the hypothetical serializable order (HSO)
• a later read of X in the HSO will see either this value or a later one

– (for simplicity, assume that writes occur atomically)

CMU 15-418/618, Spring 2018 22

store 23 à X X = 23

(Commit to memory order)
(aka “serialize”)

Carnegie Mellon

Summary for Sequential Consistency

• Maintain order between shared accesses in each processor

• Balloon analogy:
– like putting a twist between each individual (ordered) gas particle

• Severely restricts common hardware and compiler optimizations

CMU 15-418/618, Spring 2018 23

READ READ WRITE WRITE

READ WRITE READ WRITE

Don’t start until
previous access
completes

Carnegie Mellon

• Processor issues accesses one-at-a-time and stalls for completion

• Low processor utilization (17% - 42%) even with caching

Performance of Sequential Consistency

CMU 15-418/618, Spring 2018 24

From Gupta et al, “Comparative
evaluation of latency reducing and
tolerating techniques.” In Proceedings of
the 18th annual International Symposium
on Computer Architecture (ISCA '91)

Carnegie Mellon

Alternatives to Sequential Consistency

• Relax constraints on memory order

CMU 15-418/618, Spring 2018 25

READ READ WRITE WRITE

READ WRITE READ WRITE

Total Store Ordering (TSO) (Similar to Intel)

READ READ WRITE WRITE

READ WRITE READ WRITE

Partial Store Ordering (PSO)

See Section 8.2 of “Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System Programming Guide, Part 1”,
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf

Carnegie Mellon

Performance Impact of TSO vs. SC

• Can use a write buffer
• Write latency is effectively hidden

CMU 15-418/618, Spring 2018 26

“Base” = SC
“WR” = TSO

Processor

Cache

READS WRITES

write
buffer

Carnegie Mellon

But Can Programs Live with Weaker Memory Orders?

• “Correctness”: same results as sequential consistency

• Most programs don’t require strict ordering (all of the time) for “correctness”

• But how do we know when a program will behave correctly?

CMU 15-418/618, Spring 2018 27

Program Order

A = 1;

B = 1;

unlock L; lock L;

… = A;

… = B;

Sufficient Order

A = 1;

B = 1;

unlock L; lock L;

… = A;

… = B;

Carnegie Mellon

Identifying Data Races and Synchronization

• Two accesses conflict if:
– (i) access same location, and (ii) at least one is a write

• Order accesses by:
– program order (po)
– dependence order (do): op1 --> op2 if op2 reads op1

• Data Race:
– two conflicting accesses on different processors
– not ordered by intervening accesses

• Properly Synchronized Programs:
– all synchronizations are explicitly identified
– all data accesses are ordered through synchronization

CMU 15-418/618, Spring 2018 28

P1 P2
Write A

Write Flag Read Flag

Read A

po

po

do

Carnegie Mellon

Optimizations for Synchronized Programs

• Intuition: many parallel programs have mixtures of “private” and “public” parts*

– the “private” parts must be protected by synchronization (e.g., locks)
– can we take advantage of synchronization to improve performance?

CMU 15-418/618, Spring 2018 29

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

SYNCH

SYNCH

Example:

Grab a lock

Release the lock

Insert node into data structure
• Essentially a “private” activity; reordering is ok

• Now we make it “public” to the other nodes

*Caveat: shared data is in fact always visible to other threads.

Carnegie Mellon

Optimizations for Synchronized Programs

• Exploit information about synchronization

• properly synchronized programs should yield the same result as on an SC machine

CMU 15-418/618, Spring 2018 30

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

SYNCH

SYNCH

“Weak Ordering” (WO)

Between synchronization operations:

• we can allow reordering of memory operations

• (as long as intra-thread dependences are preserved)

Just before and just after synchronization operations:

• thread must wait for all prior operations to complete

Carnegie Mellon

Intel’s MFENCE (Memory Fence) Operation

• An MFENCE operation enforces the ordering seen on the previous slide:

– does not begin until all prior reads & writes from that thread have completed

– no subsequent read or write from that thread can start until after it finishes

CMU 15-418/618, Spring 2018 31

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

MFENCE

MFENCE

Balloon analogy: it is a twist in the balloon

• no gas particles can pass through it

(wikiHow)

Good news: xchg does this implicitly!

Carnegie Mellon

ARM Processors

• ARM processors have a very relaxed consistency model

• ARM has some great examples in their programmer’s reference:
– http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Test

s_and_Cookbook_A08.pdf

• A great list regarding relaxed memory consistency in general:
– http://www.cl.cam.ac.uk/~pes20/weakmemory/

CMU 15-418/618, Spring 2018 32

http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf
http://www.cl.cam.ac.uk/~pes20/weakmemory/

Carnegie Mellon

Common Misconception about MFENCE

• MFENCE operation does NOT push values out to other threads
– it is not a magic “make every thread up-to-date” operation

• It simply stalls the thread that performs the MFENCE until write buffer empty

CMU 15-418/618, Spring 2018 33

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

MFENCE

MFENCE 14

13

11

15

12

15

11

14

13

12

13

12

11

11

12

13

14

15

Thread 0 Thread 1 Thread 2 Thread 3

Time

14

15

MFENCE operations create partial orderings
• that are observable across threads

Carnegie Mellon

Earlier (Broken) Example Revisited

Where exactly should we insert MFENCE operations to fix this?

P0 P1

[1: Here?]
A = 1
[2: Here?] [4: Here?]
Ready = 1 x = Ready
[3: Here?] [5: Here?]

y = A
[6: Here?]

CMU 15-418/618, Spring 2018 34

Carnegie Mellon

Earlier (Broken) Example Revisited

Where exactly should we insert MFENCE operations to fix this?

P0 P1

[1: Here?]
A = 1
MFENCE [4: Here?]
Ready = 1 x = Ready
[3: Here?] MFENCE

y = A
[6: Here?]

CMU 15-418/618, Spring 2018 35

Carnegie Mellon

Overly
Conservative

Exploiting Asymmetry in Synchronization: “Release Consistency”

• Lock operation: only gains (“acquires”) permission to access data
• Unlock operation: only gives away (“releases”) permission to access data

CMU 15-418/618, Spring 2018 36

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

LOCK

UNLOCK

Weak Ordering (WO)

1

2

3
Release Consistency (RC)

Make sure writes completed before exit critical section
Make sure don’t read/write shared state until lock acquired

READ/WRITE
…

READ/WRITE

ACQUIRE

RELEASE

READ/WRITE
…

READ/WRITE 1
2

READ/WRITE
…

READ/WRITE
3

Carnegie Mellon

Intel’s Full Set of Fence Operations

• In addition to MFENCE, Intel also supports two other fence operations:

– LFENCE: serializes only with respect to load operations (not stores!)

– SFENCE: serializes only with respect to store operations (not loads!)

• Note: It does slightly more than this; see the spec for details:

– Section 8.2.5 of “Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A: System Programming Guide, Part 1

• In practice, you are most likely to use:

– MFENCE
– xchg

CMU 15-418/618, Spring 2018 37

Carnegie Mellon

Earlier (Broken) Example Revisited

Where exactly should we insert FENCE operations to fix this?

P0 P1

[1: Here?]
A = 1
SFENCE [4: Here?]
Ready = 1 x = Ready
[3: Here?] LFENCE

y = A
[6: Here?]

CMU 15-418/618, Spring 2018 38

Carnegie Mellon

Take-Away Messages on Memory Consistency Models

• DON’T use only normal memory operations for synchronization
– e.g., Peterson’s solution for mutual exclusion

• DO use either explicit synchronization operations (e.g., xchg) or fences

CMU 15-418/618, Spring 2018 39

boolean want[2] = {false, false};
int turn = 0;

want[i] = true;
turn = 1-i;
while (want[1-i] && turn == 1-i)

continue;
… critical section …
want[i] = false;

Exercise for the reader:
Where should we add
fences (and which type)
to fix this?

while (!xchg(&lock_available, 0)
continue;

… critical section …
xchg(&lock_available, 1);

Carnegie Mellon

Summary: Relaxed Consistency

• Motivation:
– obtain higher performance by allowing reordering of memory operations

• (reordering is not allowed by sequential consistency)

• One cost is software complexity:
– the programmer or compiler must insert synchronization

• to ensure certain specific orderings when needed

• In practice:
– complexities often encapsulated in libraries that provide intuitive primitives

• e.g., lock/unlock, barriers (or lower-level primitives like fence)

• Relaxed models differ in which memory ordering constraints they ignore

CMU 15-418/618, Spring 2018 40

