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What is Correct Behavior for a Parallel Memory Hierarchy?

• Note: side-effects of writes are only observable when reads occur
– so we will focus on the values returned by reads

• Intuitive answer:
– reading a location should return the latest value written (by any thread)

• Hmm…  what does “latest” mean exactly?
– within a thread, it can be defined by program order
– but what about across threads?

• the most recent write in physical time?
– hopefully not, because there is no way that the hardware can pull that off

» e.g., if it takes >10 cycles to communicate between processors, there is 
no way that processor 0 can know what processor 1 did 2 clock ticks ago

• most recent based upon something else? 
– Hmm…
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Refining Our Intuition

• What would be some clearly illegal combinations of (A,B,C)?
• How about:

• What can we generalize from this?
– writes from any particular thread must be consistent with program order

• in this example, observed even numbers must be increasing (ditto for odds)
– across threads: writes must be consistent with a valid interleaving of threads

• not physical time! (programmer cannot rely upon that)
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// write evens to X
for (i=0; i<N; i+=2) {

X = i;
…

}

Thread 0
// write odds to X
for (j=1; j<N; j+=2) {

X = j;
…

}

Thread 1
…
A = X;
…
B = X;
…
C = X;
…

Thread 2

(Assume: X=0 initially, and these are the only writes to X.)

(4,8,1)? (9,12,3)? (7,19,31)?
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Visualizing Our Intuition

• Each thread proceeds in program order
• Memory accesses interleaved (one at a time) to a single-ported memory

– rate of progress of each thread is unpredictable
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// write evens to X
for (i=0; i<N; i+=2) {

X = i;
…

}

Thread 0
// write odds to X
for (j=1; j<N; j+=2) {

X = j;
…

}

Thread 1
…
A = X;
…
B = X;
…
C = X;
…

Thread 2

CPU 0 CPU 1 CPU 2

Memory

Single port to memory
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Correctness Revisited

Recall: “reading a location should return the latest value written (by any thread)”
à “latest” means consistent with some interleaving that matches this model
– this is a hypothetical interleaving; the machine didn’t necessarily do this!
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// write evens to X
for (i=0; i<N; i+=2) {

X = i;
…

}

Thread 0
// write odds to X
for (j=1; j<N; j+=2) {

X = j;
…

}

Thread 1
…
A = X;
…
B = X;
…
C = X;
…

Thread 2

CPU 0 CPU 1 CPU 2

Memory

Single port to memory
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Part 2 of Memory Correctness: Memory Consistency Model

1. “Cache Coherence”

– do all loads and stores to a given cache block behave correctly?

2. “Memory Consistency Model” (sometimes called “Memory Ordering”)

– do all loads and stores, even to separate cache blocks, behave correctly?

Recall: our intuition
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CPU 0 CPU 1 CPU 2

Memory

Single port to memory
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Why is this so complicated?

• Fundamental issue:
– loads and stores are very expensive, even on a uniprocessor

• can easily take 10’s to 100’s of cycles 

• What programmers intuitively expect:
– processor atomically performs one instruction at a time, in program order

• In reality:
– if the processor actually operated this way, it would be painfully slow
– instead, the processor aggressively reorders instructions to hide memory latency

• Upshot:
– within a given thread, the processor preserves the program order illusion
– but this illusion has nothing to do with what happens in physical time!
– from the perspective of other threads, all bets are off!
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Hiding Memory Latency is Important for Performance

• Idea: overlap memory accesses with other accesses and computation

• Hiding write latency is simple in uniprocessors:

– add a write buffer 

– (more on this later)

• (But this affects correctness in multiprocessors)
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write A

read B

write A
read B

Processor

Cache

READS WRITES

write
buffer
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How Can We Hide the Latency of Memory Reads?

“Out of order” pipelining:
– when an instruction is stuck, perhaps there are subsequent instructions that 

can be executed

• Implication: memory accesses may be performed out-of-order!!!
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stuck waiting on true dependencestuck waiting on true dependence
suffers expensive cache misssuffers expensive cache missx = *p;

y = x + 1;
z = a + 2;
b = c / 3; } these do not need to wait
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What About Conditional Branches?

• Do we need to wait for a conditional branch to be resolved before proceeding?
– No!  Just predict the branch outcome and continue executing speculatively.

• if prediction is wrong, squash any side-effects and restart down correct path
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x = *p;
y = x + 1;
z = a + 2;
b = c / 3;
if (x != z)

d = e – 7;
else d = e + 5;
…

if hardware guesses that this is true
then execute “then” part (speculatively)
(without waiting for x or z)
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How Out-of-Order Pipelining Works in Modern Processors

• Fetch and graduate instructions in-order, but issue out-of-order

• Intra-thread dependences are preserved, but memory accesses get reordered!
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issue (cache miss)

0x1c: b = c / 3;

0x18: z = a + 2;

0x14: y = x + 1;

0x10: x = *p;

PC: 0x10
Inst.

Cache

Branch
Predictor

0x140x180x1c

0x1c: b = c / 3;

0x18: z = a + 2;

0x14: y = x + 1;

0x10: x = *p;

Re
or

de
r B

uf
fe

r

issue (cache miss)

issue (out-of-order)
issue (out-of-order)

can’t issuecan’t issue
issue (out-of-order)
issue (out-of-order)
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Analogy: Gas Particles in Balloons

• Imagine that each instruction within a thread is a gas particle inside a twisty balloon
• They were numbered originally, but then they start to move and bounce around
• When a given thread observes memory accesses from a different thread:

– those memory accesses can be (almost) arbitrarily jumbled around
• like trying to locate the position of a particular gas particle in a balloon

• As we’ll see later, the only thing that we can do is to put twists in the balloon
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(wikiHow)
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Uniprocessor Memory Model

• Memory model specifies ordering constraints among accesses

• Uniprocessor model: memory accesses atomic and in program order

• Not necessary to maintain sequential order for correctness
– hardware: buffering, pipelining
– compiler: register allocation, code motion

• Simple for programmers

• Allows for high performance
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write A
write B
read A
read B

Processor

Cache

READS WRITES

write
buffer

Reads check for 
matching addresses 
in write buffer
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In Parallel Machines (with a Shared Address Space)

• Order between accesses to different locations becomes important
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A = 1;
Ready = 1;

while (Ready != 1);
… = A;

P1 P2

(Initially A and Ready = 0)
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How Unsafe Reordering Can Happen

• Distribution of memory resources
– accesses issued in order may be observed out of order
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Processor

Memory

Processor

Memory

Processor

Memory

Interconnection Network

…
A = 1;
Ready = 1;

A: 0 Ready:0

wait (Ready== 1);
… = A;

A = 1;
Ready = 1;

à1
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Caches Complicate Things More
• Multiple copies of the same location
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Interconnection Network

A = 1; wait (A == 1);
B = 1;

A = 1;

B = 1;

Processor

Memory

Cache
A:0

Processor

Memory

Cache
A:0
B:0

Processor

Memory

Cache
A:0
B:0

wait (B == 1);
… = A;

A = 1;

à1 à1
à1 à1

Oops!
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Our Intuitive Model: “Sequential Consistency” (SC)

• Formalized by Lamport (1979)

– accesses of each processor in program order

– all accesses appear in sequential order

• Any order implicitly assumed by programmer is maintained
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Memory

P0 P1 Pn…
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Example with Sequential Consistency

Simple Synchronization:

P0 P1
A = 1 (a)
Ready = 1 (b) x = Ready (c)

y = A (d)

• all locations are initialized to 0
• possible outcomes for (x,y): 

– (0,0), (0,1), (1,1)
• (x,y) = (1,0) is not a possible outcome (i.e. Ready = 1, A = 0):

– we know a->b and c->d by program order
– b->c  implies that a->d
– y==0 implies d->a which leads to a contradiction
– but real hardware will do this!
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Another Example with Sequential Consistency

Stripped-down version of a 2-process mutex (minus the turn-taking):

P0 P1

want[0] = 1 (a) want[1] = 1 (c)

x = want[1] (b) y = want[0] (d) 

• all locations are initialized to 0

• possible outcomes for (x,y): 

– (0,1), (1,0), (1,1)

• (x,y) = (0,0) is not a possible outcome (i.e. want[0]= 0, want[1]= 0):

– a->b and c->d implied by program order

– x = 0 implies b->c which implies a->d

– a->d says y = 1 which leads to a contradiction

– similarly, y = 0 implies x = 1 which is also a contradiction

– but real hardware will do this!
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One Approach to Implementing Sequential Consistency

1. Implement cache coherence
à writes to the same location are observed in same order by all processors

2. For each processor, delay start of memory access until previous one completes
à each processor has only one outstanding memory access at a time

• What does it mean for a memory access to complete?
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When Do Memory Accesses Complete?

• Memory Reads:
– a read completes when its return value is bound
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load r1 ß X X = ???

(Find X in memory system)X = 17

r1 = 17
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When Do Memory Accesses Complete?

• Memory Reads:

– a read completes when its return value is bound

• Memory Writes:

– a write completes when the new value is “visible” to other processors

• What does “visible” mean?

– it does NOT mean that other processors have necessarily seen the value yet

– it means the new value is committed to the hypothetical serializable order (HSO)
• a later read of X in the HSO will see either this value or a later one

– (for simplicity, assume that writes occur atomically)
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store 23 à X X = 23

(Commit to memory order)
(aka “serialize”)
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Summary for Sequential Consistency

• Maintain order between shared accesses in each processor

• Balloon analogy:
– like putting a twist between each individual (ordered) gas particle

• Severely restricts common hardware and compiler optimizations
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READ READ WRITE WRITE

READ WRITE READ WRITE

Don’t start until
previous access
completes
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• Processor issues accesses one-at-a-time and stalls for completion

• Low processor utilization (17% - 42%) even with caching

Performance of Sequential Consistency
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From Gupta et al, “Comparative 
evaluation of latency reducing and 
tolerating techniques.” In Proceedings of 
the 18th annual International Symposium 
on Computer Architecture (ISCA '91)
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Alternatives to Sequential Consistency

• Relax constraints on memory order
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READ READ WRITE WRITE

READ WRITE READ WRITE

Total Store Ordering (TSO) (Similar to Intel)

READ READ WRITE WRITE

READ WRITE READ WRITE

Partial Store Ordering (PSO)

See Section 8.2 of “Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A: System Programming Guide, Part 1”,
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf
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Performance Impact of TSO vs. SC

• Can use a write buffer
• Write latency is effectively hidden
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“Base” = SC
“WR” = TSO

Processor

Cache

READS WRITES

write
buffer
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But Can Programs Live with Weaker Memory Orders?

• “Correctness”: same results as sequential consistency

• Most programs don’t require strict ordering (all of the time) for “correctness”

• But how do we know when a program will behave correctly?
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Program Order

A = 1;

B = 1;

unlock L; lock L;

… = A;

… = B;

Sufficient Order

A = 1;

B = 1;

unlock L; lock L;

… = A;

… = B;
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Identifying Data Races and Synchronization

• Two accesses conflict if:
– (i) access same location, and (ii) at least one is a write

• Order accesses by:
– program order (po)
– dependence order (do): op1 --> op2 if op2 reads op1

• Data Race:
– two conflicting accesses on different processors
– not ordered by intervening accesses

• Properly Synchronized Programs:
– all synchronizations are explicitly identified
– all data accesses are ordered through synchronization
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P1 P2
Write A

Write Flag Read Flag

Read A

po

po

do
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Optimizations for Synchronized Programs

• Intuition: many parallel programs have mixtures of “private” and “public” parts*

– the “private” parts must be protected by synchronization (e.g., locks)
– can we take advantage of synchronization to improve performance?
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READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

SYNCH

SYNCH

Example:

Grab a lock

Release the lock

Insert node into data structure
• Essentially a “private” activity; reordering is ok

• Now we make it “public” to the other nodes

*Caveat: shared data is in fact always visible to other threads.
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Optimizations for Synchronized Programs

• Exploit information about synchronization

• properly synchronized programs should yield the same result as on an SC machine
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READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

SYNCH

SYNCH

“Weak Ordering” (WO)

Between synchronization operations:

• we can allow reordering of memory operations

• (as long as intra-thread dependences are preserved)

Just before and just after synchronization operations:

• thread must wait for all prior operations to complete



Carnegie Mellon

Intel’s MFENCE (Memory Fence) Operation

• An MFENCE operation enforces the ordering seen on the previous slide:

– does not begin until all prior reads & writes from that thread have completed

– no subsequent read or write from that thread can start until after it finishes
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READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

MFENCE

MFENCE

Balloon analogy: it is a twist in the balloon

• no gas particles can pass through it

(wikiHow)

Good news: xchg does this implicitly!
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ARM Processors

• ARM processors have a very relaxed consistency model

• ARM has some great examples in their programmer’s reference:
– http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Test

s_and_Cookbook_A08.pdf

• A great list regarding relaxed memory consistency in general:
– http://www.cl.cam.ac.uk/~pes20/weakmemory/
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http://infocenter.arm.com/help/topic/com.arm.doc.genc007826/Barrier_Litmus_Tests_and_Cookbook_A08.pdf
http://www.cl.cam.ac.uk/~pes20/weakmemory/
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Common Misconception about MFENCE

• MFENCE operation does NOT push values out to other threads
– it is not a magic “make every thread up-to-date” operation

• It simply stalls the thread that performs the MFENCE until write buffer empty
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READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

MFENCE

MFENCE 14

13

11

15

12

15

11

14

13

12

13

12

11

11

12

13

14

15

Thread 0 Thread 1 Thread 2 Thread 3

Time

14

15

MFENCE operations create partial orderings
• that are observable across threads
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Earlier (Broken) Example Revisited

Where exactly should we insert MFENCE operations to fix this?

P0 P1

[1: Here?]
A = 1
[2: Here?] [4: Here?]
Ready = 1 x = Ready
[3: Here?] [5: Here?]

y = A
[6: Here?]
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Earlier (Broken) Example Revisited

Where exactly should we insert MFENCE operations to fix this?

P0 P1

[1: Here?]
A = 1
MFENCE [4: Here?]
Ready = 1 x = Ready
[3: Here?] MFENCE

y = A
[6: Here?]
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Overly
Conservative

Exploiting Asymmetry in Synchronization: “Release Consistency”

• Lock operation: only gains (“acquires”) permission to access data
• Unlock operation: only gives away (“releases”) permission to access data
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READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

READ/WRITE
…

READ/WRITE

LOCK

UNLOCK

Weak Ordering (WO)

1

2

3
Release Consistency (RC)

Make sure writes completed before exit critical section
Make sure don’t read/write shared state until lock acquired

READ/WRITE
…

READ/WRITE

ACQUIRE

RELEASE

READ/WRITE
…

READ/WRITE 1
2

READ/WRITE
…

READ/WRITE
3
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Intel’s Full Set of Fence Operations 

• In addition to MFENCE, Intel also supports two other fence operations:

– LFENCE: serializes only with respect to load operations (not stores!)

– SFENCE: serializes only with respect to store operations (not loads!)

• Note: It does slightly more than this; see the spec for details:

– Section 8.2.5 of “Intel® 64 and IA-32 Architectures Software Developer’s 
Manual, Volume 3A: System Programming Guide, Part 1

• In practice, you are most likely to use:

– MFENCE
– xchg
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Earlier (Broken) Example Revisited

Where exactly should we insert FENCE operations to fix this?

P0 P1

[1: Here?]
A = 1
SFENCE [4: Here?]
Ready = 1 x = Ready
[3: Here?] LFENCE

y = A
[6: Here?]
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Take-Away Messages on Memory Consistency Models

• DON’T use only normal memory operations for synchronization
– e.g., Peterson’s solution for mutual exclusion

• DO use either explicit synchronization operations (e.g., xchg) or fences
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boolean want[2] = {false, false};
int turn = 0;

want[i] = true;
turn = 1-i;
while (want[1-i] && turn == 1-i)

continue;
… critical section …
want[i] = false;

Exercise for the reader:
Where should we add 
fences (and which type) 
to fix this?

while (!xchg(&lock_available, 0)
continue;

… critical section …
xchg(&lock_available, 1); 



Carnegie Mellon

Summary: Relaxed Consistency

• Motivation:
– obtain higher performance by allowing reordering of memory operations

• (reordering is not allowed by sequential consistency)

• One cost is software complexity:
– the programmer or compiler must insert synchronization

• to ensure certain specific orderings when needed

• In practice:
– complexities often encapsulated in libraries that provide intuitive primitives

• e.g., lock/unlock, barriers (or lower-level primitives like fence)

• Relaxed models differ in which memory ordering constraints they ignore
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