Lecture 10:

Snooping-Based
Cache Coherence

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2018

Cache design review

Let’s say your code executes volatile int x = 1;
(Assume for simplicity x corresponds to the address 0x12345604 in memory—it’s not stored in a register)

One cache line:;

: Linesstate Tag '\ B N TN EE FEE N N /

\ /
\, i \ Data (64 bytes on modern Intel processors) /
Dirty bit .
Byte 0 of line Byte 63 of line

= Review:

- What is the difference between a write back and a write-
through cache?

- What about a allocate vs. write-no-allocate cache?

CMU 15-418/618,
Spring 2018

Review: behavior of write-allocate, write-back
cache on a write miss (uniprocessor case)

Example: processor executes volatile int x = 1;

1. Processor performs write to address that is not resident in cache

2. (ache selects location to place line in cache, if there is a dirty line currently in
this location, the dirty line is written out to memory

3. (ache loads line from memory (“allocates line in cache”)
4. 32 bits of cache line are updated
5. (acheline is marked as dirty

Line state Tag Data (64 bytes on modern Intel processors)

\

Dirty bit

CMU 15-418/618,
Spring 2018

A shared memory multi-processor

= Processors read and write to shared variables

- More precisely: processors issue load and store instructions
= Areasonable expectation of memory is:
- Reading a value at address X should return the last value written to
address X by any processor

Processor Processor Processor Processor

P
Interconnect J

Memory 1/0

(A simple view of four processors and their shared address space)

4

CMU 15-418/618,
Spring 2018

The cache coherence problem

Modern processors replicate contents of memory in local caches

Problem: processors can observe different values for the same memory location

Processor Processor Processor Processor
Cache Cache Cache Cache
(Interconnect
Memory

int foo; (stored at address X)

The chart at right shows the value of variable
foo (stored at address X) in main memory and in
each processor’s cache

Assume the initial value stored at address X is 0

Assume write-back cache behavior

Action

P1$

P2$

P3$

P4$

mem[X]

P1

load X

miss

P2

load X

miss

P1

store X

P3

load X

miss

P3

store X

P2

load X

Rlkr|[rR|rR|o |

hit

O ||| ||

P1

(assume this load causes
eviction of X)

load Y

O ||l | |0 |®

N |IN| DN O

1

(MU 15-418/618,

Spring 2018

The cache coherence problem

Processor Processor Processor Processor
Cache Cache Cache Cache
(Interconnect
Memory

int foo; (stored at address X)

The chart at right shows the value of variable
foo (stored at address X) in main memory and in
each processor’s cache

Assume the initial value stored at address X is 0

Assume write-

back cache behavior

Action

P1$

Is this a mutual exclusion problem?

Can you fix the problem by adding locks
to your program?

NO!

This is a problem created by replicating the
data stored at address X in local caches (a
hardware implementation detail)

P2$

P3$

P4$

mem[X]

(%)

P1

load X

miss

P2

load X

miss

P1

store X

P3

load X

miss

P3

store X

P2

load X

Rlkr|[rR|rR|o |

hit

O ||| ||

P1

(assume this load causes
eviction of X)

load Y

O |Io)]lo|® | ||®

N |N|DN||®

1

(MU 15-418/618,

Spring 2018

The memory coherence problem

= |ntuitive behavior for memory system: reading value at
address X should return the last value written to address X by
any processor.

= Memory coherence problem exists because there is both global
storage (main memory) and per-processor local storage
(processor caches) implementing the abstraction of a single
shared address space.

CMU 15-418/618,
Spring 2018

Cache hierarchy of Intel Haswell CPU (2013)

64 byte cache line size

Shared L3 Cache

(One bankf per core)

l

l

Ring Interconnect

l

I

L2 Cache

L2 Cache

L2 Cache

L2 Cache

L1 Data Cache

L1 Data Cache

L1 Data Cache

L1 Data Cache

Core

Core

Core

Core

L3: (per chip)

8 MB, inclusive
16-way set associative
32B/ clock per bank
26-31 cycle latency

L2: (private per core)

256 KB

8-way set associative, write back
32B / clock, 12 cycle latency

Up to 16 outstanding misses

L1: (private per core)

32KB

8-way set associative, write back

2x 16B loads + 1 x 16B store per clock
4-6 cycle latency

Up to 10 outstanding misses

8 CMU 15-418/618,
Spring 2018

Intuitive expectation of shared memory

= |ntuitive behavior for memory system: reading value at
address X should return the last value written to address X
by any processor.

= On a uniprocessor, providing this behavior is fairly simple,
since writes typically come from one client: the processor

- Load operation must examine all pending stores in store
buffer

- Exception: device I/0 via direct memory access (DMA)

CMU 15-418/618,
Spring 2018

Coherence is anissue in a single CPU system
Consider I/0 device performing DMA data transfer

Case 1:

Processor writes to buffer in main memory

Processor Processor tells network card to async send buffer
Problem: network card many transfer stale data if
processor’s writes (reflected in cached copy of data) are
not flushed to memory

Cache

(Interconnect)

Case 2:
Network card receives message
Memory : Iessge T Network card copies message in buffer in main memory
"""""""" Card using DMA transfer
Card notifies CPU msg was received, buffer ready to read
Problem: CPU may read stale data if addresses updated
by network card happen to be in cache

= Common solutions:
- CPU writes to shared buffers using uncached stores (e.g., driver code)
- 0S support:
- Mark virtual memory pages containing shared buffers as not-cachable
- Explicitly flush pages from cache when I/0 completes
= |npractice, DMA transfers are infrequent compared to CPU loads and stores
(so these heavyweight software solutions are acceptable)

(MU 15-418/618,

10 Spring 2018

Problems with the intuition

= |ntuitive behavior: reading value at address X should return the last value
written to address X by any processor.

= What does “last” mean?
- What if two processors write at the same time?

- What if a write by P1 is followed by a read from P2 so close in time that it is
impossible to communicate the occurrence of the write to P2 in time?

= |nasequential program, “last” is determined by program order (not time)
- Holds true within one thread of a parallel program

- But we need to come up with a meaningful way to describe order across
threads in a parallel program

(MU 15-418/618,

L Spring 2018

Definition: coherence

A memory system is coherent if:

The results of a parallel program’s execution are such that for
each memory location, there is a hypothetical serial order of all
program operations (executed by all processors) to the location
that is consistent with the results of execution, and:

1. Memory operations issued by any one processor occur in
the order issued by the processor

2. Thevalue returned by a read is the value written by the
last write to the location... as given by the serial order

Also known as sequential consistency

Chronology of

operations on
address X

® PO write: 5

® Plread(5)

(MU 15-418/618,

12 Spring 2018

Definition: coherence (said differently)

A memory system is coherent if:

1. Aread by processor P to address X that follows a write by P to address X,
should return the value of the write by P (assuming no other processor wrote to X in between)

2. Aread by processor P1 to address X that follows a write by processor P2 to
X returns the written value... if the read and write are “sufficiently
seépa rated” in time (assuming no other write to X occurs in between)

3. Writes to the same address are serialized: two writes to address X by any
two processors are observed in the same order by all processors.

(Example: if values 1 and then 2 are written to address X, no processor observes X having value 2 before value 1)

Condition 1: obeys program order (as expected of a uniprocessor system)
Condition 2: “write propagation”: Notification of a write must eventually get to the other processors. Note that

precisely when information about the write is propagated is not specified in the definition of coherence.

Condition 3: “write serialization”

(MU 15-418/618,

13 Spring 2018

Write serialization

Writes to the same location are serialized: two writes to address X by any two
processors are observed in the same order by all processors.

(Example: if a processor observes X having value 1 and then 2, then no processor observes X having value 2 before it has value 1)

Example: P1 writes value a to X. Then P2 writes value b to X.

Consider situation where processors P3 and P4 observe different order of writes:

Order observed by P3 Order observed by P4
Id X —load returns “a” Id X —load returns “b”
Id X ;>Ioad returns “b” Id X —;Ioad returns “a”

In terms of the first coherence definition: there is no global ordering of loads and
stores to X that is in agreement with results of this parallel program.

(you cannot put the two memory operations involving X on a single timeline and
have both processor’s observations agree with the timeline) MU T5418/678,

" Spring 2018

Implementing coherence

m Software-based solutions

- 0S uses page-fault mechanism to propagate writes
- (Can be used to implement memory coherence over clusters of workstations
- We won't discuss these solutions

= Hardware-based solutions

- “Snooping”-based coherence implementations (today)
- Directory-based coherence implementations (next class)

(MU 15-418/618,

15 Spring 2018

Shared caches: coherence made easy

= One single cache shared by all processors
- Eliminates problem of replicating state in multiple caches

= Obvious scalability problems (since the point of a cache is to be local and fast)
- Interference / contention due to many clients

= But shared caches can have benefits:
- Facilitates fine-grained sharing (overlapping working sets)
- Loads/stores by one processor might pre-fetch lines for another processor

Processor

Processor

Processor

Processor

Cache

Interconnect

Memory

1/0

16

CMU 15-418/618,
Spring 2018

Snooping cache-coherence schemes

= Main idea: all coherence-related activity is broadcast to all processors

in the system (more specifically: to the processor’s cache controllers)

= (Cache controllers monitor (“they snoop”) memory operations, and react
accordingly to maintain memory coherence

Notice: now cache controller must respond

to actions from “both ends”: Processor Processor v Processor
1. LD/ST requests from its local processor d| | |
Cache Cache Cache
2. Coherence-related activity broadcast | | |
over the chip’s interconnect (Interconnect)
Memory

(MU 15-418/618,

1 Spring 2018

Very simple coherence implementation

Let’s assume:

1. Write-through caches

—2.-Granularity-of coherenceiscachetine

Upon write, cache controller broadcasts
invalidation message

As a result, the next read from other
processors will trigger cache miss

(processor retrieves updated value from memory due to

write-through policy)

Processor
PO

Cache

Processor
P1

Cache

Interconnect

Memory

Action Interconnect activity PO S P1$ mem location X
0
PO load X cache miss for X))
P1 load X cache miss for X)))
PO write 100 to X invalidation for X 100 100
P1 load X cache miss for X 100 100 100

18

CMU 15-418/618,
Spring 2018

A clarifying note

= The logic we are about to describe is performed by each processor’s
cache controller in response to:

— Loads and stores by the local processor
— Maessages it receives from other caches

= |fall cache controllers operate according to this described protocol,
then coherence will be maintained

— The caches “cooperate” to ensure coherence is maintained

= (Cache controller tracks the status of each line in its cache

(MU 15-418/618,

L Spring 2018

Write-through invalidation: state diagram

= Two cache line states (same as meaning of

invalid in uniprocessor cache)
- Invalid (1)

PrRd/--
PrWr/BusWr

- Valid (V)
Two processor operations (triggered by

local processor)
- PrRd (read)

@0

- PrWr (write)

= Two bus transactions (from remote caches)
- BusRd (another processor intends to read line)

- BusWr (another processor intends to write to line)

Notation:
A/B:if event A is observed by cache controller, then action B is taken

..... > o e o .
PrWr / BusWr ** Remote processor (coherence) initiated transaction

— Local processor initiated transaction

** Assumes write no-allocate policy (for simplicity) (MU 15-418/618,
20 Spring 2018

Write-through invalidation: state diagram

PrRd/--
PrWr/BusWr

PrRd / BusRd

@0

PrWr / BusWr **

BusWr/--

** Assumes write no-allocate policy (for simplicity)

Requirements of the interconnect:
1. All write transactions visible to all cache controllers

2. All write transactions visible to all cache controllers in
the same order

Simplifying assumptions here:
1. Interconnect and memory transactions are atomic

2. Processor waits until previous memory operations is
complete before issuing next memory operation

3. Invalidation applied immediately as part of receiving
invalidation broadcast

A/B: if action A is observed by cache controller, action B is taken
""" > Remote processor (coherence) initiated transaction

— Local processor initiated transaction

(MU 15-418/618,

21 Spring 2018

Write-through policy is inefficient

= Every write operation goes out to memory
- Very high bandwidth requirements

= Write-back caches absorb most write traffic as cache hits

- Significantly reduces bandwidth requirements
- But how do we ensure write propagation/serialization?
- This requires more sophisticated coherence protocols

(MU 15-418/618,

22 Spring 2018

Recall cache line state bits

Line state

Tag

Data (64 bytes on modern Intel processors)

\

Dirty bit

23

CMU 15-418/618,
Spring 2018

Cache coherence with write-back caches

Processor
PO

Write to X

IXl cache

Processor
P1

Cache

)

Interconnect

Memory

Load X

Chronology of
operations on
address X

= Dirty state of cache line now indicates exclusive ownership

- Exclusive: cache is only cache with a valid copy of line (it can safely be written to)

- Owner: cache is responsible for supplying the line to other processors when they
attempt to load it from memory (otherwise a load from another processor will get

stale data from memory)

(MU 15-418/618,

24 Spring 2018

Invalidation-based write-back protocol

Key ideas:

= Alinein the “exclusive” state can be modified without notifying
the other caches

= Processor can only write to lines in the exclusive state

- So they need a way to tell other caches that they want exclusive access to the line
- They will do this by sending all the other caches messages

= When cache controller snoops a request for exclusive access to line
it contains
- It must invalidate the line in its own cache

(MU 15-418/618,

25 Spring 2018

MSI write-back invalidation protocol

= Key tasks of protocol
- Ensuring processor obtains exclusive access for a write

- Locating most recent copy of cache line’s data on cache miss

®= Three cache line states

- Invalid (I): same as meaning of invalid in uniprocessor cache
- Shared (5): line valid in one or more caches
- Modified (M): line valid in exactly one cache (a.k.a. “dirty” or “exclusive” state)

= Two processor operations (triggered by local CPU)
- PrRd (read)
- PrWr (write)
= Three coherence-related bus transactions (from remote caches)
- BusRd: obtain copy of line with no intent to modify
- BusRdX: obtain copy of line with intent to modify

- flush: write dirty line out to memory

(MU 15-418/618,

26 Spring 2018

MSI state transition diagram *

ﬂ

PrWr/BusRdX

PrRd /-
PrWr/ --

v

PrWr/BusRdX

PrRd/BusRd

(Modified)

M

@Cmmmmmmmmman

‘ ;

C

B —

PrRd/--
BusRd/--

BusRd / flush

BusRdX/--

A/ B:if action A is observed by cache controller, action B is taken

""" > Remote processor (coherence) initiated transaction

— Local processor initiated transaction

BusRdX/ flush

flush = flush dirty line to memory

* Remember, all caches are carrying out this logic independently to maintain coherence

27

CMU 15-418/618,
Spring 2018

Example Execution
Xand Y have

value 0 at start
of execution.

Initial I I I I

PO: LD X S/0

P1: LD X

PO: STX — 1

PO: STX 2

P1: STX<3

P1: LD X

PO: LD X

PO: STX—4

P1: LD X

PO: LDY

PO: STY «— 1

P1: STY «— 2 28 CMU 15-418/618,
Spring 2018

Summary: MSI

= Alinein the M state can be modified without notifying other caches
- No other caches have the line resident, so other processors cannot read these values
(without generating a memory read transaction)

= Processor can only write to lines in the M state

- If processor performs a write to a line that is not exclusive in cache, cache controller must
first broadcast a read-exclusive transaction to move the line into that state
- Read-exclusive tells other caches about impending write

(“you can’t read any more, because I'm going to write”)

- Read-exclusive transaction is required even if line is valid (but not exclusive... it'sin the S
state) in processor’s local cache (why?)

- Dirty state implies exclusive
= When cache controller snoops a “read exclusive” for a line it contains

- Mustinvalidate the line in its cache
- Because if it didn’t, then multiple caches will have the line

(and so it wouldn’t be exclusive in the other cache!)

- And supply line value to requesting cache controller

(MU 15-418/618,

29 Spring 2018

Does MSI satisfy coherence?

= Write propagation

- Achieved via combination of invalidation on BusRdX, and flush from M-state on
subsequent BusRd/BusRdX from another processors

= Write serialization

- Writes that appear on interconnect are ordered by the order they appear on
interconnect (BusRdX)

- Reads that appear on interconnect are ordered by order they appear on
interconnect (BusRd)

- Writes that don’t appear on the interconnect (PrWr to line already in M state):

Sequence of writes to line comes between two interconnect transactions for the line

All writes in sequence performed by same processor, P (that processor certainly observes them in
correct sequential order)

All other processors observe notification of these writes only after a interconnect transaction for the
line. So all the writes come before the transaction.

So all processors see writes in the same order. MU 15-418/618,

30 Spring 2018

MESI invalidation protocol

= MSI requires two interconnect transactions for
the common case of reading an address, then
writing to it (why is this common?)

- Transaction 1: BusRd to move from | to S state

- Transaction 2: BusRdX to move from S to M state

= This inefficiency exists even if application has no sharing at
all

m Solution: add additional state E (“exclusive clean”)

- Line has not been modified, but only this cache has a copy of the line

- Decouples exclusivity from line ownership (line not dirty, so copy in memory is
valid copy of data)

- Upgrade from E to M does not require an interconnect transaction

(MU 15-418/618,

31 Spring 2018

MESI state transition diagram

PrRd/--
PrWr/--

PrWr/BusRdX

PrWr/BusRdX

PrRd/BusRd

(no other cache
asserts shared)

PrRd /BusRd
(another cache
asserts shared)

M
(Modified)

D

qrems s s s e e ..

""""""" : Buskd/flush !
BusRd /- : 5
BusRdX/~ | BusRdK/- E

32

BusRdX / flush

CMU 15-418/618,
Spring 2018

Example Execution

Initial

PO: LD X

E/0

P1: LD X

PO: STX — 1

PO: STX—2

P1: STX<3

PO: LDY

PO: LD X

PO: STY — 4

P1: LDY

XandY have

value 0 at start

of execution.

(MU
33

15-418/618,
Spring 2018

Lower-level choices

® Who should supply data on a cache miss when lineis in the E
or S state of another cache?

- (Can get cache line data from memory or can get data from another cache
- If source is another cache, which one should provide it?

= (ache-to-cache transfers add complexity, but commonly used
to reduce both latency of data access and reduce memory
bandwidth required by application

(MU 15-418/618,

4 Spring 2018

Increasing efficiency (and complexity)

= MESIF (5-stage invalidation-based protocol)
- Like MESI, but one cache holds shared line in F state rather than S (F="forward”)
- (Cache with line in F state services miss

- Simplifies decision of which cache should service miss (basic MESI: all caches respond)

- Used by Intel processors

= MOESI (5-stage invalidation-based protocol)

In MESI protocol, transition from M to S requires flush to memory

Instead transition from M to 0 (0="owned, but not exclusive”) and do not flush to memory
Other processors maintain shared line in S state, one processor maintains line in 0 state
Data in memory is stale, so cache with line in 0 state must service cache misses

Used in AMD Opteron

(MU 15-418/618,

35 Spring 2018

Invalidation-based vs. Update-based
Protocols

= |nvalidation-based protocol
- To write to a line, cache must obtain exclusive access to it
- All other caches must invalidate their copies
- (All of the examples we have considered so far)

= Update-based protocol

- (Can write to shared copy by broadcasting update to all other copies

® Why is this a useful idea?

(MU 15-418/618,

36 Spring 2018

Dragon write-back update protocol

m States: (noinvalid state, but can think of lines as invalid before loaded for the first time)

Exclusive-clean (E): only one cache has line, memory up-to-date

Shared-clean (SC): multiple caches may have line, and memory may or may not ** be up to date

Shared-modified (SM): multiple caches may have line, memory not up to date

- Only one cache can be in this state for a given line (but others can be in SC)

- (Cache with line in SM state is “owner” of data. Must update memory upon eviction

Modified (M): only one cache has line, it is dirty, memory is not up to date

- (Cache is owner of data. Must update memory upon replacement

= Processor actions:
- PrRd, PrWr, PrRdMiss, PrWrMiss

= Bus transactions:

- Bus read (BusRd), flush [provide entire line to others], bus update (BusUpd) [provide partial line
to others]

** Why “may or may not”? Because memory IS up to date if all processors with line have it in SC state.
But memory is not up to date if some other processor has line in SM state. CMU 15-418/618,
37 .
Spring 2018

Dragon write-back update protocol

L4 .

PrRd/-- (% BusUpd/Update local line

»

- (exclusive- (shared-
PrRdMiss / BusRd clean) clean) PrRdMiss / BusRd
(no other sharing) (with sharing)
PrWr/BusUpd PrWr/BusUpd
(with sharing) (no other sharing)
BusUpd/ Update local line .-
M | - M
> (shared- BusRd / Flush dified :
PrWrMiss / BusRd, BusUpd modified) . (modified) PrWrMiss / BusRd

(with sharing) PrWr/BusUpd (no other sharing)
/! A ther shari
PrRd /- ‘ : (no other sharing) U Ppr‘?vd /-
PrWr/BusUpd \o”.-© BusRd/Flush Wr/--
(with sharing)

Not shown: upon line replacement, cache must flush line to memory if line is in SM or M state

(Note: there’s no invalid state here: why?) . (MU 15-418/618,
Soring 2018

Invalidate vs. update-based protocols

= Whichis better?

= |ntuitively, update would seem preferable if other processors
sharing data continue to access it after a write occurs

= But updates are overhead if:
- Data just sits in caches (and is never read by another processor again)
- Application performs many writes before the next read

(MU 15-418/618,

39 Spring 2018

Invalidate vs. update evaluation: miss rate

Simulated 1 MB cache, 64-byte lines

False Sharing
[T False Shari
. True Sharing
0.5
O Capacity/Conflict 2.0
B
04
—_ —~ 1.5
& S
@ @
w 03 S
e (=5
i (2]
2 2 1.0
= =
0.2
0.5
0.1
0 0
Inv Upd Inv Upd Inv Upd Inv Upd
LU Ocean Sim Ray Trace Radix Sort

So... is update better?
(MU 15-418/618,

Figure credit: Culler, Singh, and Gupta 40 Soring 2018
pring

Invalidate vs. update evaluation: traffic

Simulated 1 MB cache, 64-byte lines

205 ---
<
L)
(=3
N 3
ot e
e S
215 feoree e o
1~ =]
- [~
Q. -
S)
N
= s
m 1.0 """""""""""""""""""" a
b
=) (=9
o =
e}
0.5 -----------------------------
0 [| |

Inv Upd Inv Upd Inv Upd Inv Upd
LU Ocean Sim Ray Trace Radix Sort

= Update can suffer from high traffic due to multiple writes before the next read by another processor
= Current AMD and Intel implementations of cache coherence are invalidation based

** Charts compare frequency of upgrades in invalidation-based protocol to frequency of updates in update-based protocol
Figure credit: Culler, Singh, and Gupta " MU ;5-f118/26()118é
pring

Reality: multi-level cache hierarchies

Recall Intel Core i7 hierarchy

Shared L3 Cache

(One bankfper core)

= (hallenge: changes made to data at first
level cache may not be visible to second level
cache controller than snoops the

I

I

I

interconnect.

Ring Interconnect

)

I

I

I

= How might snooping work for a cache

L2 Cache

L2 Cache

L2 Cache

L2 Cache

hierarchy?

1. All caches snoop interconnect

independently? (inefficient)

2. Maintain “inclusion”

L1 Data Cache

L1 Data Cache

L1 Data Cache

L1 Data Cache

Core

Core

Core

Core

(MU 15-418/618,

K Spring 2018

Inclusion property of caches

= All lines in closer [to processor] cache are also in farther [from processor] cache
- e.g., contents of L1 are a subset of contents of L2

- Thus, all transactions relevant to L1 are also relevant to L2, so it is sufficient
for only the L2 to snoop the interconnect

® |flineisin owned state (M in MSI/MESI) in L1, it must also be in owned state in L2

- Allows L2 to determine if a bus transaction is requesting a modified cache line
in L1 without requiring information from L1

(MU 15-418/618,

4 Spring 2018

Is inclusion maintained automatically if L2 is

larger than L1? No!

= (Consider this example:

- Let L2 cache be twice as large as L1 cache
- LetL1and L2 have the same line size, are 2-way set associative, and use LRU replacement policy
- LetA, B, Cmap to the same set of the L1 cache

Set2

Set3

A L1
B X Cache
Set0 Set 1
A X
SeBtO Set1 I'Z
Cache

Processor accesses A (L1+L2 miss)

Processor accesses B (L1+L2 miss).

Processor accesses A many times (all L1 hits).

Processor now accesses C, triggering an L1 and L2
miss. L1 and L2 might choose to evict different
lines, because the access histories differ.

As a result, inclusion no longer holds!

(MU 15-418/618,

M Spring 2018

Maintaining inclusion: handling
invalidations

“in L1” bit

Processor

L1

—X—x| Cache

] Invalidate

S~

L2

Y

W, e

4
+ BusRdX/--

Interconnect

When line Xis invalidated in L2 cache due
to BusRdX from another cache.

Must also invalidate line Xin L1

One solution: each L2 line contains an
additional state bit indicating if line also
existsin L1

This bit tells the L2 invalidations of the
cache line due to coherence traffic need to
be propagated to L1.

(MU 15-418/618,

45 Spring 2018

Maintaining inclusion: L1 write hit

Assume L1 is a write-back cache. Processor
Processor writes to line X. (L1 write hit)
L1 Line Xin L2 cache is in modified state in the
X L coherence protocol, but it has stale data!
“modified-
but-stale” bi l Flush X
“inL1”bit ~I> 12 When coherence protocol requires X to be
X Cache flushed from L2 (e.g., another processor
- loads X), L2 cache must request the data
: BusRd/Flush X fromL1.
Interconnect] . .
Add another bit for “modified-but-stale”

(flushing a “modified-but-stale” L2 line
requires getting the real data from L1 first.)

(MU 15-418/618,

4 Spring 2018

HW implications of implementing coherence

= Each cache must listen for and react to all coherence traffic
broadcast on interconnect

= Additional traffic on interconnect
- (Can be significant when scaling to higher core counts

= Most modern multi-core CPUs implement cache coherence
= To date, discrete GPUs do not implement cache coherence

- Thus far, overhead of coherence deemed not worth it for graphics and scientific
computing applications (NVIDIA GPUs provide single shared L2 + atomic
memory operations)

- But the latest Intel Integrated GPUs do implement cache coherence

(MU 15-418/618,

4 Spring 2018

NVIDIA GPUs do not implement cache coherence

= |ncoherent L1 caches (L1 per SMM)

= Single, unified L2 cache

SMM Core SMM Core SMM Core SMM Core
L1 Cache L1 Cache L1 Cache L1 Cache
Shared L2 Cache
Memory (DDR5 DRAM)

If interested in more details, see “Cache Operators” section of NVIDIA PTX Manual

(Section 8.7.6.1 of Parallel Thread Execution ISA Version 4.1)

CUDA global memory atomic operations “bypass” L1 cache, so
an atomic operation will always observe up-to-date data

// this is a read-modify-write performed atomically on the

// contents of a line in the L2 cache
atomicAdd(&x, 1);

L1 caches are write-through to L2 by default

CUDA volatile qualifier will cause compiler to generate a LD
instruction that will bypass the L1 cache. (see Id.cg
instruction)

NVIDIA graphics driver will clear L1 caches between any two
kernel launches (ensures stores from previous kernel are
visible to next kernel. Imagine a case where driver did not
clear the L1 between kernel launches...

Kernel launch 1:
SMM core 0 reads x (so it resides in L1)
SMM core 1 writes x (updated data available in L2)

Kernel launch 2:
SMM core 0 reads x (cache hit! processor observes stale data)

(MU 15-418/618,

48 Spring 2018

Implications of cache coherence
to the programmer

(MU 15-418/618,
49

Artifactual communication via false sharing

What is the potential performance problem with this code?

// allocate per-thread variable for local per-thread accumulation
int myPerThreadCounter[NUM_THREADS];

Why is this better?

// allocate per thread variable for local accumulation
struct PerThreadState {
int myPerThreadCounter;
char padding[CACHE_LINE_SIZE - sizeof(int)];
}s
PerThreadState myPerThreadCounter[NUM_THREADS];

(MU 15-418/618,

50 Spring 2018

Demo: false sharing

void* worker(void*) {

for (int i=0; i<MANY ITERATIONs; i++) | threadsupdate a per-thread counter many times

volatile int* = (int*)arg;
(*counter)++;
return 5 -
}
void testl(int) {
pthread_t [MAX_THREADS] ;
int [MAX_THREADS] ;
for (int 1=@; i<num_threads; i++)
pthread_create(&threads[i], R
&worker, &counter[i]);
for (int 1=0@; i<num_threads; i++)
pthread_join(threads[i],)
}

Execution time with num_ threads=12
on 12 core system: 5.1 sec

struct padded_t {

int H
char [CACHE_LINE_SIZE - sizeof(int)];
}s
void test2(int) {
pthread_t [MAX_THREADS];
padded_t [MAX_THREADS];
for (int 1=@; i<num_threads; i++)
pthread_create(&threads[i], R
&worker, &(counter[i].counter));
for (int 1=0@; i<num_threads; i++)
pthread_join(threads[i],);
}

Execution time with num_ threads=12
on 12 core system: 2.1 sec

(MU 15-418/618,

51 Spring 2018

False sharing

Cache line

= (Condition where two processors write to different
addresses, but addresses map to the same cache line

= (ache line “ping-pongs” between caches of writing
processors, generating significant amounts of
communication due to the coherence protocol

®© 060606000000 0 o0
®© 06000000 00 0 0
00000 00000
o 060 0 0,220 060 0 0 0
N EEEEREIDIEE
o 0606060 0 0 o|/o|e 0o o
®© o006 0 0 0 oloe o

® 00600 0 0 oloe o

® o0 o omye oo 0 oo
o 006 06 oNJe 0 0 0 o

®© 060606000000 0 o0
®© 060606000000 0 0

= No inherent communication, this is entirely
artifactual communication

= False sharing can be a factor in when programming
for cache-coherent architectures

(MU 15-418/618,

52 Spring 2018

Impact of cache line size on miss rate

Results from simulation of a 1 MB cache (four example applications)

0.6 127
O Upgrade O Upgrade
| O False sharing O False sharing
0.5 O True sharing O True sharing
[] Capacity/Conflict 0 Capacity/Conflict
B cold W coud
04 8
NS =S
@ @
wd wd
S S
o e
0.3 v 6
= = B
0.2—] 4 L
0.1 |
. ij L
8 16 32 64 128 256 8 16 32 64 128 256 8 16 32 64 128 256 8 16 32 64 128 256

Barnes-Hut Radiosity Ocean Sim Radix Sort

Cache Line Size Cache Line Size

* Note: | separated the results into two graphs because of different Y-axis scales
Figure credit: Culler, Singh, and Gupta 53 (MU 15-418/618,
Spring 2018

Parallel radix sort of b-bit numbers

Sort array of N, b-bit numbers
For each group of r bits: (serial loop)

Here: radix=2*=16
LSB In parallel, on each processor:
b bits Sort elements by r-bit value
} Compute number of elements in each bin (2" bins)
SRS U SO SN SN SN WU N OO SN SO DU SN SO WY I Aggregate per-processor counts to compute
rbits rbits rbits rbits \CI\(I):?tzuetIZr'::nstt: trtt)sa ropriate position
(sort key in iter [b/r]-1) (sort key initer 0) PpropriateP
PO P1 P2 P3
ot | g

Output: “] [~ v/

Potential for lots of false sharing

False sharing decreases with increasing array size 54 CMU 15-418/618,
Spring 2018

Summary: snooping-based coherence

= The cache coherence problem exists because the abstraction of a single
shared address space is not implemented by a single storage unit

- Storage is distributed among main memory and local processor caches
- Datais replicated in local caches for performance

= Main idea of snooping-based cache coherence: whenever a cache operation
occurs that could affect coherence, the cache controller broadcasts a
notification to all other cache controllers

- Challenge for HW architects: minimizing overhead of coherence implementation

- Challenge for SW developers: be wary of artifactual communication due to coherence
protocol (e.qg., false sharing)

= Scalability of snooping implementations is limited by ability to broadcast
coherence messages to all caches!

- Next time: scaling cache coherence via directory-based approaches

(MU 15-418/618,

55 Spring 2018

