
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Spring 2018

Lecture 10:

Snooping-Based
Cache Coherence

1

CMU 15-418/618,
Spring 2018

Cache design review

▪ Review:
- What is the difference between a write back and a write-

through cache?
- What about a allocate vs. write-no-allocate cache?

Data (64 bytes on modern Intel processors)

TagLine state

Dirty bit

Let’s say your code executes volatile int x = 1;
(Assume for simplicity x corresponds to the address 0x12345604 in memory—it’s not stored in a register)

1 0 0 0

One cache line:

. . .

Byte 0 of line Byte 63 of line

2

CMU 15-418/618,
Spring 2018

Review: behavior of write-allocate, write-back
cache on a write miss (uniprocessor case)
Example: processor executes volatile int x = 1;

1. Processor performs write to address that is not resident in cache
2. Cache selects location to place line in cache, if there is a dirty line currently in

this location, the dirty line is written out to memory
3. Cache loads line from memory (“allocates line in cache”)
4. 32 bits of cache line are updated
5. Cache line is marked as dirty

Data (64 bytes on modern Intel processors)TagLine state

Dirty bit

3

CMU 15-418/618,
Spring 2018

A shared memory multi-processor
▪ Processors read and write to shared variables

- More precisely: processors issue load and store instructions
▪ A reasonable expectation of memory is:

- Reading a value at address X should return the last value written to
address X by any processor

Processor Processor Processor Processor

Interconnect

Memory I/O

(A simple view of four processors and their shared address space)

4

CMU 15-418/618,
Spring 2018

The cache coherence problem
Modern processors replicate contents of memory in local caches
Problem: processors can observe different values for the same memory location

Processor Processor Processor Processor

Interconnect

Memory

Cache Cache Cache Cache

P1 $ P2 $ P3 $ P4 $ mem[X]Action

0

int foo; (stored at address X)

P1 store X 1 0 0

P1 load Y
(assume this load causes
eviction of X)

10 2

The chart at right shows the value of variable
foo (stored at address X) in main memory and in
each processor’s cache

Assume the initial value stored at address X is 0

Assume write-back cache behavior
P3 load X 01 0 0 miss

01 0 2P3 store X

P2 load X 01 0 2hit

P2 load X 0 0 0miss

P1 load X 0 0miss

5

CMU 15-418/618,
Spring 2018

The cache coherence problem
Is this a mutual exclusion problem?

Can you fix the problem by adding locks
to your program?

Processor Processor Processor Processor

Interconnect

Memory

Cache Cache Cache Cache

P1 $ P2 $ P3 $ P4 $ mem[X]Action

0

int foo; (stored at address X)

P1 store X 1 0 0

P1 load Y
(assume this load causes
eviction of X)

10 2

0P3 load X 1 0 0 miss

P3 store X 01 0 2

P2 load X 01 0 2hit

P2 load X 0 0 0miss

P1 load X 0 0miss

The chart at right shows the value of variable
foo (stored at address X) in main memory and in
each processor’s cache

Assume the initial value stored at address X is 0

Assume write-back cache behavior

NO!
This is a problem created by replicating the
data stored at address X in local caches (a
hardware implementation detail)

6

CMU 15-418/618,
Spring 2018

The memory coherence problem
▪ Intuitive behavior for memory system: reading value at

address X should return the last value written to address X by
any processor.

▪ Memory coherence problem exists because there is both global
storage (main memory) and per-processor local storage
(processor caches) implementing the abstraction of a single
shared address space.

7

CMU 15-418/618,
Spring 2018

Cache hierarchy of Intel Haswell CPU (2013)

Core

L1 Data Cache

L2 Cache

Shared L3 Cache
(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

L1: (private per core)
32 KB
8-way set associative, write back
2 x 16B loads + 1 x 16B store per clock
4-6 cycle latency
Up to 10 outstanding misses

L2: (private per core)
256 KB
8-way set associative, write back
32B / clock, 12 cycle latency
Up to 16 outstanding misses

L3: (per chip)
8 MB, inclusive
16-way set associative
32B / clock per bank
26-31 cycle latency

64 byte cache line size

8

CMU 15-418/618,
Spring 2018

Intuitive expectation of shared memory
▪ Intuitive behavior for memory system: reading value at

address X should return the last value written to address X
by any processor.

▪ On a uniprocessor, providing this behavior is fairly simple,
since writes typically come from one client: the processor
- Load operation must examine all pending stores in store

buffer
- Exception: device I/O via direct memory access (DMA)

9

CMU 15-418/618,
Spring 2018

Coherence is an issue in a single CPU system

▪ Common solutions:
- CPU writes to shared buffers using uncached stores (e.g., driver code)
- OS support:

- Mark virtual memory pages containing shared buffers as not-cachable
- Explicitly flush pages from cache when I/O completes

▪ In practice, DMA transfers are infrequent compared to CPU loads and stores
(so these heavyweight software solutions are acceptable)

Processor

Network
Card

Interconnect

Memory

Cache

Case 1:
Processor writes to buffer in main memory
Processor tells network card to async send buffer
Problem: network card many transfer stale data if
processor’s writes (reflected in cached copy of data) are
not flushed to memory

Case 2:
Network card receives message
Network card copies message in buffer in main memory
using DMA transfer
Card notifies CPU msg was received, buffer ready to read
Problem: CPU may read stale data if addresses updated
by network card happen to be in cache

Message
Buffer

Consider I/O device performing DMA data transfer

10

CMU 15-418/618,
Spring 2018

Problems with the intuition
▪ Intuitive behavior: reading value at address X should return the last value

written to address X by any processor.
▪ What does “last” mean?

- What if two processors write at the same time?

- What if a write by P1 is followed by a read from P2 so close in time that it is
impossible to communicate the occurrence of the write to P2 in time?

▪ In a sequential program, “last” is determined by program order (not time)
- Holds true within one thread of a parallel program
- But we need to come up with a meaningful way to describe order across

threads in a parallel program

11

CMU 15-418/618,
Spring 2018

Definition: coherence
A memory system is coherent if:

The results of a parallel program’s execution are such that for
each memory location, there is a hypothetical serial order of all
program operations (executed by all processors) to the location
that is consistent with the results of execution, and:

1. Memory operations issued by any one processor occur in
the order issued by the processor

2. The value returned by a read is the value written by the
last write to the location… as given by the serial order

Chronology of
operations on

address X

P0 write: 5

P1 read (5)

P2 read (5)

P0 read (5)

P1 write: 25

P0 read (25)

12

Also known as sequential consistency

CMU 15-418/618,
Spring 2018

Definition: coherence (said differently)
A memory system is coherent if:

1. A read by processor P to address X that follows a write by P to address X,
should return the value of the write by P (assuming no other processor wrote to X in between)

2. A read by processor P1 to address X that follows a write by processor P2 to
X returns the written value... if the read and write are “sufficiently
separated” in time (assuming no other write to X occurs in between)

3. Writes to the same address are serialized: two writes to address X by any
two processors are observed in the same order by all processors.
(Example: if values 1 and then 2 are written to address X, no processor observes X having value 2 before value 1)

Condition 1: obeys program order (as expected of a uniprocessor system)
Condition 2: “write propagation”: Notification of a write must eventually get to the other processors. Note that

precisely when information about the write is propagated is not specified in the definition of coherence.

Condition 3: “write serialization”
13

CMU 15-418/618,
Spring 2018

Write serialization
Writes to the same location are serialized: two writes to address X by any two
processors are observed in the same order by all processors.
(Example: if a processor observes X having value 1 and then 2, then no processor observes X having value 2 before it has value 1)

Example: P1 writes value a to X. Then P2 writes value b to X.
Consider situation where processors P3 and P4 observe different order of writes:

Order observed by P3
ld X →load returns “a”

ld X →load returns “b”

... ...
Order observed by P4
ld X →load returns “b”

ld X →load returns “a”

In terms of the first coherence definition: there is no global ordering of loads and
stores to X that is in agreement with results of this parallel program.
(you cannot put the two memory operations involving X on a single timeline and
have both processor’s observations agree with the timeline)

14

CMU 15-418/618,
Spring 2018

Implementing coherence
▪ Software-based solutions

- OS uses page-fault mechanism to propagate writes
- Can be used to implement memory coherence over clusters of workstations
- We won’t discuss these solutions

▪ Hardware-based solutions
- “Snooping”-based coherence implementations (today)
- Directory-based coherence implementations (next class)

15

CMU 15-418/618,
Spring 2018

Shared caches: coherence made easy
▪ One single cache shared by all processors

- Eliminates problem of replicating state in multiple caches
▪ Obvious scalability problems (since the point of a cache is to be local and fast)

- Interference / contention due to many clients
▪ But shared caches can have benefits:

- Facilitates fine-grained sharing (overlapping working sets)
- Loads/stores by one processor might pre-fetch lines for another processor

Processor Processor Processor Processor

Memory I/O

Cache

Interconnect

16

CMU 15-418/618,
Spring 2018

Snooping cache-coherence schemes
▪ Main idea: all coherence-related activity is broadcast to all processors

in the system (more specifically: to the processor’s cache controllers)
▪ Cache controllers monitor (“they snoop”) memory operations, and react

accordingly to maintain memory coherence

Processor

Interconnect

Memory

Cache

Processor

Cache

Processor

Cache

. . .
Notice: now cache controller must respond
to actions from “both ends”:

1. LD/ST requests from its local processor

2. Coherence-related activity broadcast
over the chip’s interconnect

17

CMU 15-418/618,
Spring 2018

Very simple coherence implementation
Let’s assume:

1. Write-through caches

2. Granularity of coherence is cache line

Upon write, cache controller broadcasts
invalidation message
As a result, the next read from other
processors will trigger cache miss

(processor retrieves updated value from memory due to
write-through policy)

P0 $ P1 $ mem location XAction

0

P1 load X 0 0 0

P0 load X 0 0

Cache

Processor
P0

Memory

Cache

. . .

Interconnect

Processor
P1

Interconnect activity

cache miss for X

cache miss for X

P0 write 100 to X 100 100invalidation for X

P1 load X 100100 100cache miss for X

18

CMU 15-418/618,
Spring 2018

A clarifying note

▪ The logic we are about to describe is performed by each processor’s
cache controller in response to:
- Loads and stores by the local processor
- Messages it receives from other caches

▪ If all cache controllers operate according to this described protocol,
then coherence will be maintained
- The caches “cooperate” to ensure coherence is maintained

▪ Cache controller tracks the status of each line in its cache

19

CMU 15-418/618,
Spring 2018

Write-through invalidation: state diagram

I
(Invalid)

V
(Valid)

PrRd / --

PrRd / BusRd

PrWr / BusWr **

PrWr / BusWr

BusWr/--

Notation:
A / B: if event A is observed by cache controller, then action B is taken

** Assumes write no-allocate policy (for simplicity)

▪ Two cache line states (same as meaning of
invalid in uniprocessor cache)
- Invalid (I)

- Valid (V)
▪ Two processor operations (triggered by

local processor)
- PrRd (read)

- PrWr (write)
▪ Two bus transactions (from remote caches)

- BusRd (another processor intends to read line)

- BusWr (another processor intends to write to line)

Remote processor (coherence) initiated transaction

Local processor initiated transaction

20

CMU 15-418/618,
Spring 2018

Write-through invalidation: state diagram

I
(Invalid)

V
(Valid)

PrRd / --

PrRd / BusRd

PrWr / BusWr **

PrWr / BusWr

BusWr/--

A / B: if action A is observed by cache controller, action B is taken

** Assumes write no-allocate policy (for simplicity)

Requirements of the interconnect:
1. All write transactions visible to all cache controllers

2. All write transactions visible to all cache controllers in
the same order

Simplifying assumptions here:
1. Interconnect and memory transactions are atomic

2. Processor waits until previous memory operations is
complete before issuing next memory operation

3. Invalidation applied immediately as part of receiving
invalidation broadcast

Remote processor (coherence) initiated transaction

Local processor initiated transaction

21

CMU 15-418/618,
Spring 2018

Write-through policy is inefficient
▪ Every write operation goes out to memory

- Very high bandwidth requirements

▪ Write-back caches absorb most write traffic as cache hits
- Significantly reduces bandwidth requirements
- But how do we ensure write propagation/serialization?
- This requires more sophisticated coherence protocols

22

CMU 15-418/618,
Spring 2018

Recall cache line state bits

Data (64 bytes on modern Intel processors)TagLine state

Dirty bit

23

CMU 15-418/618,
Spring 2018

Cache coherence with write-back caches

▪ Dirty state of cache line now indicates exclusive ownership
- Exclusive: cache is only cache with a valid copy of line (it can safely be written to)
- Owner: cache is responsible for supplying the line to other processors when they

attempt to load it from memory (otherwise a load from another processor will get
stale data from memory)

Cache

Processor
P0

Memory

Cache

. . .

Interconnect

Processor
P1

X

Write to X Load X

Chronology of
operations on

address X

P0 write

P1 read

24

CMU 15-418/618,
Spring 2018

Invalidation-based write-back protocol
Key ideas:

▪ A line in the “exclusive” state can be modified without notifying
the other caches

▪ Processor can only write to lines in the exclusive state
- So they need a way to tell other caches that they want exclusive access to the line
- They will do this by sending all the other caches messages

▪ When cache controller snoops a request for exclusive access to line
it contains
- It must invalidate the line in its own cache

25

CMU 15-418/618,
Spring 2018

MSI write-back invalidation protocol
▪ Key tasks of protocol

- Ensuring processor obtains exclusive access for a write

- Locating most recent copy of cache line’s data on cache miss

▪ Three cache line states
- Invalid (I): same as meaning of invalid in uniprocessor cache
- Shared (S): line valid in one or more caches
- Modified (M): line valid in exactly one cache (a.k.a. “dirty” or “exclusive” state)

▪ Two processor operations (triggered by local CPU)
- PrRd (read)
- PrWr (write)

▪ Three coherence-related bus transactions (from remote caches)
- BusRd: obtain copy of line with no intent to modify
- BusRdX: obtain copy of line with intent to modify
- flush: write dirty line out to memory

26

CMU 15-418/618,
Spring 2018

MSI state transition diagram *

S
(Shared)

M
(Modified)

PrRd / --
PrWr / --

PrRd / BusRd

BusRd / flush

Remote processor (coherence) initiated transaction

Local processor initiated transaction

A / B: if action A is observed by cache controller, action B is taken

I
(Invalid)

PrWr / BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / flush

BusRd / --

flush = flush dirty line to memory

* Remember, all caches are carrying out this logic independently to maintain coherence 27

CMU 15-418/618,
Spring 2018

Example Execution

28

X and Y have
value 0 at start
of execution.

Action P0 X P0 Y P1 X P1 Y

Initial I I I I

P0: LD X S/0

P1: LD X

P0: ST X ← 1

P0: ST X ← 2

P1: ST X ← 3

P1: LD X

P0: LD X

P0: ST X ← 4

P1: LD X

P0: LD Y

P0: ST Y ← 1

P1: ST Y ← 2

CMU 15-418/618,
Spring 2018

Summary: MSI
▪ A line in the M state can be modified without notifying other caches

- No other caches have the line resident, so other processors cannot read these values
(without generating a memory read transaction)

▪ Processor can only write to lines in the M state
- If processor performs a write to a line that is not exclusive in cache, cache controller must

first broadcast a read-exclusive transaction to move the line into that state
- Read-exclusive tells other caches about impending write
(“you can’t read any more, because I’m going to write”)
- Read-exclusive transaction is required even if line is valid (but not exclusive… it’s in the S

state) in processor’s local cache (why?)
- Dirty state implies exclusive

▪ When cache controller snoops a “read exclusive” for a line it contains
- Must invalidate the line in its cache
- Because if it didn’t, then multiple caches will have the line

(and so it wouldn’t be exclusive in the other cache!)
- And supply line value to requesting cache controller

29

CMU 15-418/618,
Spring 2018

Does MSI satisfy coherence?
▪ Write propagation

- Achieved via combination of invalidation on BusRdX, and flush from M-state on
subsequent BusRd/BusRdX from another processors

▪ Write serialization
- Writes that appear on interconnect are ordered by the order they appear on

interconnect (BusRdX)
- Reads that appear on interconnect are ordered by order they appear on

interconnect (BusRd)
- Writes that don’t appear on the interconnect (PrWr to line already in M state):

- Sequence of writes to line comes between two interconnect transactions for the line

- All writes in sequence performed by same processor, P (that processor certainly observes them in
correct sequential order)

- All other processors observe notification of these writes only after a interconnect transaction for the
line. So all the writes come before the transaction.

- So all processors see writes in the same order.
30

CMU 15-418/618,
Spring 2018

MESI invalidation protocol

▪ This inefficiency exists even if application has no sharing at
all

▪ Solution: add additional state E (“exclusive clean”)
- Line has not been modified, but only this cache has a copy of the line
- Decouples exclusivity from line ownership (line not dirty, so copy in memory is

valid copy of data)
- Upgrade from E to M does not require an interconnect transaction

▪ MSI requires two interconnect transactions for
the common case of reading an address, then
writing to it (why is this common?)
- Transaction 1: BusRd to move from I to S state

- Transaction 2: BusRdX to move from S to M state

31

CMU 15-418/618,
Spring 2018

MESI state transition diagram

E
(Exclusive)

M
(Modified)

PrRd / --
PrWr / --

PrWr / BusRdX BusRd / flush

I
(Invalid)

PrWr / BusRdX

PrWr / --

PrRd / --
BusRdX / --

BusRdX / flush

BusRd / --

S
(Shared)

PrRd / --

PrRd / BusRd
(no other cache
asserts shared)

PrRd / BusRd

BusRd / --

BusRdX / --
(another cache
asserts shared)

32

CMU 15-418/618,
Spring 2018

Example Execution

33

X and Y have
value 0 at start
of execution.

Action P0 X P0 Y P1 X P1 Y

Initial I I I I

P0: LD X E/0

P1: LD X

P0: ST X ← 1

P0: ST X ← 2

P1: ST X ← 3

P0: LD Y

P0: LD X

P0: ST Y ← 4

P1: LD Y

CMU 15-418/618,
Spring 2018

Lower-level choices
▪ Who should supply data on a cache miss when line is in the E

or S state of another cache?
- Can get cache line data from memory or can get data from another cache
- If source is another cache, which one should provide it?

▪ Cache-to-cache transfers add complexity, but commonly used
to reduce both latency of data access and reduce memory
bandwidth required by application

34

CMU 15-418/618,
Spring 2018

Increasing efficiency (and complexity)
▪ MESIF (5-stage invalidation-based protocol)

- Like MESI, but one cache holds shared line in F state rather than S (F=”forward”)
- Cache with line in F state services miss
- Simplifies decision of which cache should service miss (basic MESI: all caches respond)
- Used by Intel processors

▪ MOESI (5-stage invalidation-based protocol)
- In MESI protocol, transition from M to S requires flush to memory
- Instead transition from M to O (O=”owned, but not exclusive”) and do not flush to memory
- Other processors maintain shared line in S state, one processor maintains line in O state
- Data in memory is stale, so cache with line in O state must service cache misses
- Used in AMD Opteron

35

CMU 15-418/618,
Spring 2018

Invalidation-based vs. Update-based
Protocols

▪ Invalidation-based protocol
- To write to a line, cache must obtain exclusive access to it
- All other caches must invalidate their copies
- (All of the examples we have considered so far)

▪ Update-based protocol
- Can write to shared copy by broadcasting update to all other copies

▪ Why is this a useful idea?

36

CMU 15-418/618,
Spring 2018

Dragon write-back update protocol
▪ States: (no invalid state, but can think of lines as invalid before loaded for the first time)

- Exclusive-clean (E): only one cache has line, memory up-to-date
- Shared-clean (SC): multiple caches may have line, and memory may or may not ** be up to date
- Shared-modified (SM): multiple caches may have line, memory not up to date

- Only one cache can be in this state for a given line (but others can be in SC)
- Cache with line in SM state is “owner” of data. Must update memory upon eviction

- Modified (M): only one cache has line, it is dirty, memory is not up to date
- Cache is owner of data. Must update memory upon replacement

▪ Processor actions:
- PrRd, PrWr, PrRdMiss, PrWrMiss

▪ Bus transactions:
- Bus read (BusRd), flush [provide entire line to others], bus update (BusUpd) [provide partial line

to others]

** Why “may or may not”? Because memory IS up to date if all processors with line have it in SC state.
But memory is not up to date if some other processor has line in SM state.

37

CMU 15-418/618,
Spring 2018

Dragon write-back update protocol

SC
(shared-

clean)

E
(exclusive-

clean)

M
(modified)

PrRd / --

SM
(shared-

modified)

BusRd / --PrRdMiss / BusRd
(no other sharing)

PrRd / -- BusUpd / Update local line

PrWr / --

PrRd / --
PrWr / --

PrWrMiss / BusRd
(no other sharing)

PrRdMiss / BusRd
(with sharing)

BusRd / Flush

PrWr / BusUpd
(no other sharing)

PrWr / BusUpd
(with sharing)

PrWr / BusUpd
(no other sharing)

PrRd / --
PrWr / BusUpd
(with sharing)

BusRd / Flush

BusUpd / Update local line

PrWrMiss / BusRd, BusUpd
(with sharing)

Not shown: upon line replacement, cache must flush line to memory if line is in SM or M state
(Note: there’s no invalid state here: why?)

38

CMU 15-418/618,
Spring 2018

Invalidate vs. update-based protocols

▪ Which is better?

▪ Intuitively, update would seem preferable if other processors
sharing data continue to access it after a write occurs

▪ But updates are overhead if:
- Data just sits in caches (and is never read by another processor again)
- Application performs many writes before the next read

39

CMU 15-418/618,
Spring 2018

Invalidate vs. update evaluation: miss rate

False Sharing

True Sharing

Capacity/Conflict

Cold

Inv Upd Inv Upd Inv Upd Inv Upd
Ray Trace Radix SortLU Ocean Sim

0.5

0.4

0.3

0.2

0.1

0

2.0

1.5

1.0

0.5

0

M
iss

 Ra
te

 (%
)

M
iss

 Ra
te

 (%
)

Simulated 1 MB cache, 64-byte lines

So... is update better?
Figure credit: Culler, Singh, and Gupta 40

CMU 15-418/618,
Spring 2018

Invalidate vs. update evaluation: traffic

▪ Update can suffer from high traffic due to multiple writes before the next read by another processor
▪ Current AMD and Intel implementations of cache coherence are invalidation based

Inv Upd Inv Upd Inv Upd Inv Upd
Ray Trace Radix SortLU Ocean Sim

2.5

2.0

1.5

1.0

0.5

0

8

7

6

5

4

3

2

1

0

Up
gr

ad
e/

up
da

te
 ra

te
 (%

)
Simulated 1 MB cache, 64-byte lines

Up
gr

ad
e/

up
da

te
 ra

te
 (%

)
** Charts compare frequency of upgrades in invalidation-based protocol to frequency of updates in update-based protocol

Figure credit: Culler, Singh, and Gupta 41

CMU 15-418/618,
Spring 2018

Reality: multi-level cache hierarchies

▪ Challenge: changes made to data at first
level cache may not be visible to second level
cache controller than snoops the
interconnect.

▪ How might snooping work for a cache
hierarchy?

1. All caches snoop interconnect
independently? (inefficient)

2. Maintain “inclusion”

Core

L1 Data Cache

L2 Cache

Shared L3 Cache
(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Recall Intel Core i7 hierarchy

42

CMU 15-418/618,
Spring 2018

Inclusion property of caches
▪ All lines in closer [to processor] cache are also in farther [from processor] cache

- e.g., contents of L1 are a subset of contents of L2
- Thus, all transactions relevant to L1 are also relevant to L2, so it is sufficient

for only the L2 to snoop the interconnect

▪ If line is in owned state (M in MSI/MESI) in L1, it must also be in owned state in L2
- Allows L2 to determine if a bus transaction is requesting a modified cache line

in L1 without requiring information from L1

43

CMU 15-418/618,
Spring 2018

Is inclusion maintained automatically if L2 is
larger than L1?
▪ Consider this example:

- Let L2 cache be twice as large as L1 cache
- Let L1 and L2 have the same line size, are 2-way set associative, and use LRU replacement policy
- Let A, B, C map to the same set of the L1 cache

A
B

A
B L2

Cache

L1
Cache

Processor accesses A (L1+L2 miss)

✘

✘

No!

Set 0 Set 1

Set 0 Set 1

Set 2 Set 3

Processor accesses B (L1+L2 miss).

Processor accesses A many times (all L1 hits).

Processor now accesses C, triggering an L1 and L2
miss. L1 and L2 might choose to evict different
lines, because the access histories differ.

As a result, inclusion no longer holds!

44

CMU 15-418/618,
Spring 2018

Maintaining inclusion: handling
invalidations

L1
Cache

L2
Cache

Processor

Interconnect

BusRdX / --

When line X is invalidated in L2 cache due
to BusRdX from another cache.

Must also invalidate line X in L1

Invalidate

X

X

✘

✘
“in L1” bit

One solution: each L2 line contains an
additional state bit indicating if line also
exists in L1

This bit tells the L2 invalidations of the
cache line due to coherence traffic need to
be propagated to L1.

45

CMU 15-418/618,
Spring 2018

Maintaining inclusion: L1 write hit

L1
Cache

L2
Cache

Processor

Interconnect

Assume L1 is a write-back cache. Processor
writes to line X. (L1 write hit)

Line X in L2 cache is in modified state in the
coherence protocol, but it has stale data!

When coherence protocol requires X to be
flushed from L2 (e.g., another processor
loads X), L2 cache must request the data
from L1.

Add another bit for “modified-but-stale”
(flushing a “modified-but-stale” L2 line
requires getting the real data from L1 first.)

Flush X

X

X

“in L1” bit

“modified-
but-stale” bit

BusRd / Flush X

46

CMU 15-418/618,
Spring 2018

HW implications of implementing coherence
▪ Each cache must listen for and react to all coherence traffic

broadcast on interconnect
▪ Additional traffic on interconnect

- Can be significant when scaling to higher core counts

▪ Most modern multi-core CPUs implement cache coherence
▪ To date, discrete GPUs do not implement cache coherence

- Thus far, overhead of coherence deemed not worth it for graphics and scientific
computing applications (NVIDIA GPUs provide single shared L2 + atomic
memory operations)

- But the latest Intel Integrated GPUs do implement cache coherence

47

CMU 15-418/618,
Spring 2018

NVIDIA GPUs do not implement cache coherence
▪ Incoherent L1 caches (L1 per SMM)
▪ Single, unified L2 cache

Memory (DDR5 DRAM)

Shared L2 Cache

L1 Cache

SMM Core

L1 Cache

SMM Core

L1 Cache

SMM Core

L1 Cache

SMM Core
. . .

CUDA global memory atomic operations “bypass” L1 cache, so
an atomic operation will always observe up-to-date data

// this is a read-modify-write performed atomically on the
// contents of a line in the L2 cache
atomicAdd(&x, 1);

L1 caches are write-through to L2 by default

CUDA volatile qualifier will cause compiler to generate a LD
instruction that will bypass the L1 cache. (see ld.cg
instruction)

NVIDIA graphics driver will clear L1 caches between any two
kernel launches (ensures stores from previous kernel are
visible to next kernel. Imagine a case where driver did not
clear the L1 between kernel launches…

Kernel launch 1:
SMM core 0 reads x (so it resides in L1)
SMM core 1 writes x (updated data available in L2)

Kernel launch 2:
SMM core 0 reads x (cache hit! processor observes stale data)

If interested in more details, see “Cache Operators” section of NVIDIA PTX Manual
(Section 8.7.6.1 of Parallel Thread Execution ISA Version 4.1)

48

CMU 15-418/618,
Spring 2018

Implications of cache coherence
to the programmer

49

CMU 15-418/618,
Spring 2018

Artifactual communication via false sharing

What is the potential performance problem with this code?
// allocate per-thread variable for local per-thread accumulation

int myPerThreadCounter[NUM_THREADS];

Why is this better?
// allocate per thread variable for local accumulation

struct PerThreadState {

int myPerThreadCounter;

char padding[CACHE_LINE_SIZE - sizeof(int)];

};

PerThreadState myPerThreadCounter[NUM_THREADS];

50

CMU 15-418/618,
Spring 2018

Demo: false sharing
void* worker(void* arg) {

volatile int* counter = (int*)arg;

for (int i=0; i<MANY_ITERATIONS; i++)
(*counter)++;

return NULL;
}

void test1(int num_threads) {

pthread_t threads[MAX_THREADS];
int counter[MAX_THREADS];

for (int i=0; i<num_threads; i++)
pthread_create(&threads[i], NULL,

&worker, &counter[i]);

for (int i=0; i<num_threads; i++)
pthread_join(threads[i], NULL);

}

void test2(int num_threads) {

pthread_t threads[MAX_THREADS];
padded_t counter[MAX_THREADS];

for (int i=0; i<num_threads; i++)
pthread_create(&threads[i], NULL,

&worker, &(counter[i].counter));

for (int i=0; i<num_threads; i++)
pthread_join(threads[i], NULL);

}

struct padded_t {
int counter;
char padding[CACHE_LINE_SIZE - sizeof(int)];

};

Execution time with num_threads=12
on 12 core system: 5.1 sec

Execution time with num_threads=12
on 12 core system: 2.1 sec

threads update a per-thread counter many times

51

CMU 15-418/618,
Spring 2018

False sharing
▪ Condition where two processors write to different

addresses, but addresses map to the same cache line

▪ Cache line “ping-pongs” between caches of writing
processors, generating significant amounts of
communication due to the coherence protocol

▪ No inherent communication, this is entirely
artifactual communication

▪ False sharing can be a factor in when programming
for cache-coherent architectures

P1 P2

Cache line

52

CMU 15-418/618,
Spring 2018

Impact of cache line size on miss rate
M

iss
 Ra

te
 %

0.6

0.5

0.4

0.3

0.2

0.1

0

Upgrade
False sharing
True sharing
Capacity/Conflict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Barnes-Hut Radiosity

Cache Line Size

M
iss

 Ra
te

 %

12

10

8

6

4

2

0

Upgrade
False sharing
True sharing
Capacity/Conflict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Ocean Sim Radix Sort

Cache Line Size

Results from simulation of a 1 MB cache (four example applications)

* Note: I separated the results into two graphs because of different Y-axis scales
Figure credit: Culler, Singh, and Gupta 53

CMU 15-418/618,
Spring 2018

Parallel radix sort of b-bit numbers

Input:

P0 P1 P2 P3

Output:

Sort array of N, b-bit numbers
Here: radix = 24 = 16

b bits

r bits
(sort key in iter 0)

r bitsr bitsr bits
(sort key in iter [b/r]-1)

For each group of r bits: (serial loop)
In parallel, on each processor:

Sort elements by r-bit value
Compute number of elements in each bin (2r bins)

Aggregate per-processor counts to compute
compute bin starts
Write elements to appropriate position

LSB

Potential for lots of false sharing
False sharing decreases with increasing array size 54

CMU 15-418/618,
Spring 2018

Summary: snooping-based coherence
▪ The cache coherence problem exists because the abstraction of a single

shared address space is not implemented by a single storage unit
- Storage is distributed among main memory and local processor caches
- Data is replicated in local caches for performance

▪ Main idea of snooping-based cache coherence: whenever a cache operation
occurs that could affect coherence, the cache controller broadcasts a
notification to all other cache controllers
- Challenge for HW architects: minimizing overhead of coherence implementation
- Challenge for SW developers: be wary of artifactual communication due to coherence

protocol (e.g., false sharing)

▪ Scalability of snooping implementations is limited by ability to broadcast
coherence messages to all caches!
- Next time: scaling cache coherence via directory-based approaches

55

