
Full Name: Harry Q. Bovik
Andrew Id: bovik

15-418/618
Exercise 2 SOLUTION

Problem 1: Lock-Free Programming

1A: Implementing LL/SC

1. Suppose the CPU supports two execution contexts. Describe a scenario in which the proposed imple-
mentation would fail.

Thread 1 executes load-link. Then Thread 2 writes to the same address and executes load-link. If
Thread 1 now executes store conditional, it will succeed, even though the value at the address has
changed.

2. Describe how you would modify the design to support T > 1 execution contexts per CPU.

For each cache line, have T copies of the clean flag. The protocol operates as described, with the
load, store, and BusRdX operations updating all T flags, while the load-link and store conditional
operations only operating on the flag for the particular thread.

1



1B: Implementing Atomic Primitives

1. Fill in the code below to implement CAS with LL/SC, in a way that appears to operate atomically.

int CAS(int *addr, int compare, int new) {
while (true) {

int old = load_link(addr);
if (old == compare) {

if (store_conditional(addr, new))
return old;

} else
return old;

}
}

2. Is your solution guaranteed to terminate? Explain.

No. The while loop could continue indefinitely if writes to the the address cause the store conditional
to fail.

2



1C: Lock-free Stack Implementation

1. Rewrite the code to use load link/store conditional.

Node* pop(Stack* s) {
while (1) {

Node* old_top = load_link(&s->top);
if (old_top == NULL)

return NULL;
Node* new_top = old_top->next;
if (store_conditional(&s->top, new_top))

return old_top; // Assume that consumer then recycles old_top
}

}

2. The compare-and-swap code of Slide 28 was shown to have an ABA problem, which could cause it to
fail to maintain the stack properly. Does your implementation using load-link/store conditional have
an ABA problems? Explain.

There is no ABA problem here, since the store conditional would fail if the value at s->top were
altered, even if it then reverted back.

3



Problem 2: Synchronization and Transactional Memory

2A: Implementing Locks

1. Acquire

void acquire(int *lock) {
while (true) {

xbegin();
boolean done = lock > 0;
if (done)

lock = 0;
if (xend() && done)

return;
}

}

2. Release

void release(int *lock);
while (true) {

xbegin();
lock = 1;
if (xend())

return;
}

}

4



2B: A Banking System with Locks

1. Transfer

boolean transfer(int to_acct, int from_acct, int amount) {
int amin = min(from_acct, to_acct);
int amax = max(from_acct, to_acct);
// Acquire locks in ascending order of account number
acquire(&lock[amin]); acquire(&lock[amax]);
boolean ok = balance[from_acct] >= amount;
if (ok) {

balance[from_acct] -= amount;
balance[to_acct] += amount;

}
release(&lock[amax]); release(&lock[amin]);
return ok;

}

2. Check Sum

boolean check_sum(int expected);
int a;
int sum = 0;
// Must lock down all accounts. Can sum as acquire locks
for (a = 0; a < NACCT; a++) {

acquire(lock[a]);
sum += balance[a];

}
for (a = 0; a < NACCT; a++)

release(lock[a]);
return sum == expected;

}

5



2C: A Banking System with Transactional Memory

1. Transfer

boolean transfer(int to_acct, int from_acct, int amount) {
while (true) {

xbegin();
boolean ok = balance[from_acct] >= amount;
if (ok) {

balance[from_acct] -= amount;
balance[to_acct] += amount;

}
if (xend())

return ok;
}

}

2. Check Sum

boolean check_sum(int expected)
while (true) {

int a;
int sum = 0;
xbegin();
for (a = 0; a < NACCT; a++) {

sum += balance[a];
}
boolean ok = sum == expected;
if (xend())

return ok;
}

}

3. If the system performs millions of transactions per second over thousands of bank accounts, what
problem to you forsee for the implementation based on transactional memory?

Chances are that check sum would keep failing, because ongoing transfers would keep causing writes
to the array balance.

6


