
Lecture 22:
Heterogeneous Parallelism and

Hardware Specialization

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

 (CMU 15-418, Spring 2012)

Announcements

▪ List of class !nal projects
http://www.cs.cmu.edu/~15418/projectlist.html

▪ You are encouraged to keep a log of activities, rants, thinking,
!ndings, on your project web page
-­‐ It will be interesting for us to read
-­‐ It will come in handy when it comes time to do your writeup
-­‐ Writing clari!es thinking

http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/projectlist.html
http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/projectlist.html

 (CMU 15-418, Spring 2012)

What you should know

▪ Trade-offs between latency-optimized, throughput-
optimized, and !xed-function processing resources

▪ Advantage of heterogeneous processing: efficiency!

▪ Disadvantages of heterogeneous processing?

 (CMU 15-418, Spring 2012)

You need to buy a computer system

Core Core

Core Core
Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Processor A
4 cores

Each core has sequential performance P

Processor B
16 cores

Each core has sequential performance P/2

All other components of the system are equal.
Which do you pick?

 (CMU 15-418, Spring 2012)

Amdahl’s law revisited

speedup(f,n)

f = fraction of program that is parallelizable
n =parallel processors

Assumptions:
Parallelizable work distributes perfectly onto n processors of equal capability

 (CMU 15-418, Spring 2012)

Account for resource limits

speedup(f,n,r)

f = fraction of program that is parallelizable
n =total processing resources (e.g., transistors on a chip)
r = resources dedicated to each processing cores,
 (each of the n/r cores has sequential performance perf(r)

Example:
Let n=16
rA = 4
rB = 1

(relative to processor with
1 unit worth of resources, n=1)

[Hill and Marty 08]

 (CMU 15-418, Spring 2012)

Speedup (relative to n=1)

Each graph is iso-resources
X-axis = r (many small cores to left, fewer “fatter” cores to right)
perf(r) modeled as

Up to 16 cores (n=16) Up to 256 cores (n=256)

[Source: Hill and Marty 08]

 (CMU 15-418, Spring 2012)

Asymmetric processing cores

Core Core Core Core

Core Core Core Core

Core Core

Core Core

Core

Example:
Let n=16
One core: r = 4
12 cores: r = 1

speedup(f,n,r)
(relative to processor with
1 unit worth of resources, n=1)

[Hill and Marty 08]

 (CMU 15-418, Spring 2012)

Speedup (relative to n=1)

X-axis for asymmetric architectures = r for the single “fat” core (rest of cores are r = 1)

X-axis for symmetric architectures = r all cores (many small cores to left)

(example chip from prev. slide)

[Source: Hill and Marty 08]

 (CMU 15-418, Spring 2012)

Heterogeneous processing
Observation: most real applications are complex **

They have components that can
be widely parallelized.

And components that are
difficult to parallelize.

They have components that are
amenable to wide SIMD
execution.

And components that are not.
(divergent control $ow)

They have components with
predictable data access

And components with unpredictable
access, but those accesses might
cache well.

** You will likely make this observation during your projects

Most efficient processor is a heterogeneous mixture of resources.
(“use the most efficient tool for the job”)

 (CMU 15-418, Spring 2012)

Example: AMD Fusion
▪ “APU”: accelerated processing unit

▪ Integrate CPU cores and GPU-style cores on
same chip

▪ Share memory system
- Regions of physical memory reserved for

graphics (not x86 coherent)
- Rest of memory is x86 coherent
- CPU and graphics memory spaces are not

coherent, but at least there is no need to copy
data in physical memory (or over PCIe bus) to
communicate between CPU and graphics

AMD Llano
(4 CPU cores + integrated GPU cores)

CPU core

CPU L2

Graphics data-parallel (accelerator) core

 (CMU 15-418, Spring 2012)

Integrated CPU+graphics

AMD Llano Intel Sandy Bridge

 (CMU 15-418, Spring 2012)

More heterogeneity: add discrete GPU
Intel Sandy Bridge

Discrete high-end GPU
(AMD or NVIDIA)

PCIe bus

DDR5 Memory

Keep discrete (power hungry) GPU unless needed for graphics-intensive applications
Use integrated, low power graphics for window manager/UI
(Neat: AMD Fusion can parallelize graphics across integrated and discrete GPU)

 (CMU 15-418, Spring 2012)

My Macbook Pro 2011 (two GPUs)

From i!xit.com teardown

AMD Radeon HD GPU

Quad-core Intel Core i7 CPU
(Sandy Bridge, contains integrated GPU)

 (CMU 15-418, Spring 2012)

Supercomputers use heterogeneous processing
▪ Los Alamos National Laboratory: Roadrunner

Fastest US supercomputer in 2008, !rst to break Peta$op barrier: 1.7 PFLOPS
Unique at the time due to use of two types of processing elements
(IBM’s Cell processor served as accelerator to achieve desired compute density)
- 6,480 AMD Opteron dual-core CPUs (12,960 cores)
- 12,970 IBM Cell Processors (1 CPU + 8 accelerator cores per Cell = 116,640 cores)
- 2.4 MWatts of power (about 2,400 average US homes)

 (CMU 15-418, Spring 2012)

Recent supercomputing trend: GPU acceleration

Use GPUs as accelerators!

11 PFLOPS,
12.6 MW

Although #1 uses only 8-core SPARC64 CPUs (128 GFLOPs per CPU)

 (CMU 15-418, Spring 2012)

GPU-accelerated supercomputing
▪ Tianhe-1A (world’s #2)
▪ 7168 NVIDIA Tesla M2050 GPUs

(basically what we have in 5205)

▪ Estimated cost $88M
▪ Estimated annual power/operating cost: $20M

Tianhe-1A

 (CMU 15-418, Spring 2012)

Energy-constrained computing
▪ Supercomputers are energy-constrained
- Due to shear scale
- Overall cost to operate (power for machine and for cooling)

▪ Mobile devices are energy-constrained
- Limited battery life

 (CMU 15-418, Spring 2012)

Efficiency bene!ts of specialization
▪ Rules of thumb: compared to average-quality C code on CPU...

▪ Throughput-maximized architectures: e.g., GPU cores
- ~ 10x improvement in perf / watt
- Assuming code maps well to wide data-parallel execution and is compute bound

▪ Fixed-function ASIC (“application speci!c integrated circuit”)
- ~ 100x or greater improvement in perf/watt
- Assuming code is compute bound

[Source: Chung et al. 2010 , Dally 08] [Figure credit Eric Chung]

 (CMU 15-418, Spring 2012)

Example: iPad 2

Image processing DSP

Flash memory

Dual-core ARM CPU

PowerVR
GPU

Video
Encode/Decode

Image Processor

 (CMU 15-418, Spring 2012)

Original iPhone touchscreen controller

From US Patent Application 2006/0097991

 (CMU 15-418, Spring 2012)

NVIDIA Tegra 3 (2011)

Image credit: NVIDA

Asymmetric CPU-style cores

Low performance, low powerHigher performance, higher power

 (CMU 15-418, Spring 2012)

Texas Instruments OMAP 5 (2012)

Image credit: TI

 (CMU 15-418, Spring 2012)

Performance matters more, not less

Steve Jobs’ “Thoughts on Flash”, 2010
http://www.apple.com/hotnews/thoughts-on-$ash/

http://www.apple.com/hotnews/thoughts-on-flash/
http://www.apple.com/hotnews/thoughts-on-flash/

 (CMU 15-418, Spring 2012)

Demo: image processing on Nikon D7000

16 MPixel RAW image to JPG image conversion:
Quad-core Macbook Pro laptop: 1-2 sec
Camera: ~ 1/6 sec

GPU is itself a heterogeneous multi-core processor

GPU GPU
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Scheduler / Work Distributor

Compute resources you used in assignment 2

Rasterization:
Determining what pixels a triangle overlaps

Example graphics tasks performed in !xed-function HW
Texture mapping:

Warping/!ltering images to apply detail to surfaces

Geometric tessellation:
computing !ne-scale geometry
from coarse geometry

 (CMU 15-418, Spring 2012)

DESRES Anton supercomputer
▪ Supercomputer highly specialized for molecular dynamics

- Simulate proteins
▪ ASIC for computing particle-particle interactions (512 of them)
▪ Throughput-oriented subsystem

for efficient fast-fourier transforms
▪ Custom, low-latency communication

network

 (CMU 15-418, Spring 2012)

ARM + GPU Supercomputer
▪ Observation: heavy lifting in supercomputing applications is the data-

parallel part of workload
- Less need for “beefy” sequential performance cores

▪ Idea: build supercomputer out of power-efficient building blocks
- ARM + GPU cores

▪ Goal: 7 GFLOPS/Watt efficiency
▪ Project underway at Barcelona Supercomputing Center

http://www.montblanc-project.eu

http://www.montblanc-project.eu
http://www.montblanc-project.eu

 (CMU 15-418, Spring 2012)

Challenges of heterogeneity
▪ To date in course:

- Goal: to get best speedup, keep all processors busy
- Homogeneous system: every processor can be used for every task

▪ Heterogeneous system: preferred processor for each task
- Challenge for system designer: what is the right mixture of resources?
- Too few throughput-oriented resources (fast sequential processor is

underutilized--- should have used resources for more throughput cores)
- Too little sequential processing resources (bit by Amdahl’s Law)
- How much chip area should be dedicated to a speci!c function, like video?

(these are resources taken away from general-purpose processing)

▪ Work balance must be anticipated at chip design time

 (CMU 15-418, Spring 2012)

GPU heterogeneity design challenge

Say 10% of the computation is rasterization. (most of graphics workload is computing color of pixels)
Consider the error of under-provisioning !xed-function component for rasterization.
(1% of chip used for rasterizer, really needed 1.2%)

Problem is that if rasterization is bottleneck, the expensive programmable processors are idle waiting on rasterization.
So the other 99% of the chip runs at 80% efficiency.
Tendency is to be conservative, and over-provision !xed-function components (diminishing their advantage)

[Molnar 2010]

 (CMU 15-418, Spring 2012)

Challenges of heterogeneity
▪ Heterogeneous system: preferred processor for each task

- Challenge for system designer: what is the right mixture of resources?
- Too few throughput oriented resources (fast sequential processor is

underutilized)
- Too little sequential processing resources (bit by Amdahl’s Law)
- How much chip area should be dedicated to a speci!c function, like video?

(these are resources taken away from general-purpose processing)
- Work balance must be anticipated at chip design time
- Cannot adapt to changes in usage over time, new algorithms, etc.

- Challenge to software developer: how to map programs onto a heterogeneous
collection of resources?
- Makes scheduling decisions complex
- Mixture of resources can dictate choice of algorithm
- Software portability nightmare

 (CMU 15-418, Spring 2012)

Summary
▪ Heterogeneous processing: use a mixture of computing resources that each !t with

mixture of needs of target applications
- Latency-optimized sequential cores, throughput-optimized parallel cores,

domain-specialized !xed-function processors
- Examples exist throughout modern computing: mobile processors, desktop

processors, supercomputers

▪ Traditional rule of thumb in system design is to design simple, general-purpose
components. This is not the case with emerging processing systems (perf/watt)

▪ Challenge of using these resources effectively is pushed up to the programmer
- Current CS research challenge: how to write efficient, portable programs for

emerging heterogeneous architectures?

