
Lecture 21:
Scaling a Web Site

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Acknowledgments: Solomon Boulos, Andreas Sundquist

 (CMU 15-418, Spring 2012)

Announcements

▪ List of class !nal projects
http://www.cs.cmu.edu/~15418/projectlist.html

▪ You are encouraged to keep a log of activities, rants, thinking,
!ndings, on your project web page
-­‐ It will be interesting for us to read
-­‐ It will come in handy when it comes time to do your writeup
-­‐ Writing clari!es thinking

http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/projectlist.html
http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/projectlist.html

 (CMU 15-418, Spring 2012)

From last time: synchronization granularity

from: http://wiki.python.org/moin/GlobalInterpreterLock

Python’s global interpreter lock:

http://wiki.python.org/moin/GlobalInterpreterLock
http://wiki.python.org/moin/GlobalInterpreterLock
http://wiki.python.org/moin/GlobalInterpreterLock
http://wiki.python.org/moin/GlobalInterpreterLock

 (CMU 15-418, Spring 2012)

What you should know
▪ How concepts we have discussed in this course relate to designing

high performance web sites

▪ Scale-out parallelism: use many machines
▪ How is work distributed onto these machines?
▪ Elasticity: how to adapt dynamically to varying load

▪ Caching: How is reuse and locality identi!ed and exploited to
avoid redundant computation and/or data-transfer

 (CMU 15-418, Spring 2012)

Our focus today: performance scaling
▪ Today I’m going to focus on performance issues

- parallelism and locality

▪ Many other issues in developing a successful web platform
- Reliability, security, privacy, etc.
- There are other great courses at CMU for this

 (CMU 15-418, Spring 2012)

A simple web server for static content

while	
 (1)	

{

	
 	
 	
 	
 request	
 =	
 wait_for_request();

	
 	
 	
 	
 filename	
 =	
 parse_request();

	
 	
 	
 	
 read	
 file	
 from	
 disk

	
 	
 	
 	
 send	
 file	
 contents	
 as	
 response

}

Is site performance a question of throughput or latency?

 (CMU 15-418, Spring 2012)

A simple parallel web server

Worker
Process 1

Parent Process

Worker
Process 2

Worker
Process N...

while	
 (1)	

{

	
 	
 	
 	
 request	
 =	
 wait_for_request();

	
 	
 	
 	
 filename	
 =	
 parse_request();

	
 	
 	
 	
 read	
 file	
 from	
 disk

	
 	
 	
 	
 send	
 file	
 contents	
 as	
 response

}

What factors would you consider in
setting the value of N?

▪ Parallelism: use all the server’s cores
▪ Latency hiding: hide long-latency disk read operations (by context switching between worker processes)
▪ Concurrency: many outstanding requests, want to service quick requests while long requests are in progress

(e.g., large !le transfer)
▪ Footprint: don’t want too many threads that thrashing occurs

 (CMU 15-418, Spring 2012)

Example: Apache’s parent process dynamically
manages size of worker pool

Worker
Process 1

Parent Process

Worker
Process 2

Worker
Process 3

Worker
Process 4

Worker
Process 5

Busy servicing
long request

Busy servicing
long request

New request

Desirable to maintain a few idle workers in
pool (avoid process creation in critical path of

servicing requests)

 (CMU 15-418, Spring 2012)

Limit maximum number of workers to avoid
excessive footprint (memory thrashing)

Worker
Process 1

Parent Process

Worker
Process 2

Worker
Process 3

Key parameter of Apache’s “prefork” multi-processing module: MaxRequestWorkers

Worker
Process 4

Worker
Process 5

Busy servicing
long request

Busy servicing
long request

New requestBusy servicing
request

Busy servicing
request

Busy servicing
request

Request queue

 (CMU 15-418, Spring 2012)

Aside: why partition into processes, not threads?

▪ Protection
- Don’t want a crash of one worker to bring down the whole web server
- Often want to use non-thread safe libraries (e.g., third-party libraries) in

server operation

▪ Parent process can periodically recycle workers
(robustness to memory leaks)

▪ Of course, multi-threaded web server solutions exist as well
(e.g., Apache’s “worker” module)

 (CMU 15-418, Spring 2012)

Dynamic web content

Database
(e.g., mySQL)

PHP/Ruby/Python/Node.js
interpreter

Worker Process

Web Server

Worker Process

PHP/Ruby/Python/Node.js
interpreter

...

Requests

“Response” is not a static page on disk, but the result of web-
application logic running in response to a request.

 (CMU 15-418, Spring 2012)

Consider the amount of logic and the
number database queries required to
generate your Facebook News Feed.

 (CMU 15-418, Spring 2012)

Basic performance (poor)
▪ Two popular content management systems (PHP)

- Wordpress ~ 12 requests/sec/core (DB size = 1000 posts)
- MediaWiki ~ 8 requests/sec/core

[Source: Talaria Inc.]

 (CMU 15-418, Spring 2012)

“Scale out” to increase throughput

Database
(e.g., mySQL)

Worker Process

Web Server

Worker Process

...

Requests

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

...

Load Balancer

Use many web servers to meet site throughput goals.

Load balancer maintains list of available
web servers and an estimate of load on
each.

Distributes requests to pool of web servers.
(Redistribution logic is cheap: one load
balancer typically can service many web
servers)

 (CMU 15-418, Spring 2012)

Load balancing with persistence

Database
(e.g., mySQL)

Worker Process

Web Server

Worker Process

...

Requests

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

...

Load Balancer

All requests associated with a session are directed to the same server (aka. session affinity, “sticky sessions”)

map(sessionId, serverName)

1. SessionId = X

2. SessionId = Y

3. SessionId = X

4. SessionId = X

Session
State

Session
State

Session
State

1
3

4

2

Good:
- Do not have to change web-app design

to scale out
Bad:
- Stateful servers can limit load balancing

ability. Also, session is lost if server fails

 (CMU 15-418, Spring 2012)

Desirable: avoid persistent state in web server

Database
(e.g., mySQL)

Requests

Load Balancer

Maintain stateless servers, treat sessions as persistent data to be stored in the DB.

1. SessionId = X

2. SessionId = Y

3. SessionId = X

4. SessionId = X

Session State

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

...

 (CMU 15-418, Spring 2012)

Dealing with database contention

Database
(e.g., mySQL)

Requests

Load Balancer

Option 1: “scale up”: buy better hardware for database server, buy professional-grade DB that scales
Good: no change to software
Bad: High cost, limit to scaling

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

...

 (CMU 15-418, Spring 2012)

Scaling out a database: replicate

Database
Services (writes)

Requests

Load Balancer

Replicate data and parallelize reads
(most DB accesses are reads)
Cost: storage, consistency issues

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

...

Slave Database
Read only

Slave Database
Read only

Adopt very relaxed consistency models:
propagate updates “eventually”

 (CMU 15-418, Spring 2012)

Scaling out a database: partition

Users photos
(reads and writes)

Requests

Load Balancer

Partition data (“shard”)
- Good: avoids replication, provided

read and write parallelism
- Bad: Complexity, imbalance

problems, joins across shards
Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

Worker Process

Web Server

Worker Process

...

...

Users A-M pro!le
(reads and writes)

Users N-Z pro!le
(reads and writes)

Clickstream data
(writes)

Can tune database for access
characteristics of data is stores
(common to use different databases:
SQL vs. nosql)

 (CMU 15-418, Spring 2012)

How many web servers do you need?

 (CMU 15-418, Spring 2012)

Web traffic is bursty
Amazon.com Page Views HuffingtonPost.com Page Views Per Week

HuffingtonPost.com Page Views Per Day

(less people read news on weekends)

Holiday shopping season

More examples:
- Facebook gears up for bursts of image

uploads on Halloween and New Year’s Eve.
- Twitter topics trend after world events

 (CMU 15-418, Spring 2012)

Problem
▪ Site load is bursty

▪ Provisioning site for the average case load will result in poor
quality of service (or failures) during peak usage
- Peak usage tends to be when users care the most... since by the de!nition the

site is important at these times

▪ Provisioning site for the peak usage case will result in many
idle servers most of the time
- Not cost efficient

 (CMU 15-418, Spring 2012)

Elasticity!
▪ Main idea: site automatically adds or shuts

down web servers based on measured load

▪ Need source of servers available on-demand
- Example: Amazon.com EC2 instances

 (CMU 15-418, Spring 2012)

Example: Amazon’s elastic compute cloud (EC2)
▪ Amazon had an over-provisioning problem

Amazon.com Page Views

▪ Solution: make machines
available for rent to others in
need of compute

- For those that don’t want to incur cost of,
or have expertise to, manage own
machines at scale

- For those that need elastic compute
capability

 (CMU 15-418, Spring 2012)

Site con!guration: normal load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

...

Perf. Monitor

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Load: moderate

 (CMU 15-418, Spring 2012)

Event triggers spike in load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

...

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

@justinbieber: OMG, parallel
prog. class at CMU is awesome.
Look 4 my !nal project on hair
sim. #15418

Heavily loaded servers: slow response times

Perf. Monitor
Load: high

 (CMU 15-418, Spring 2012)

Site con!guration: high load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

...

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Site performance monitor detects high load
Instantiates new web server instances
Informs load balancer about presence of new servers

Perf. Monitor
Load: moderate

 (CMU 15-418, Spring 2012)

Site con!guration: return to normal load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

...

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Site performance monitor detects low load
Kills extra server instances (to save operating cost)
Informs load balancer about loss of servers

Perf. Monitor
Load: too low

@justinbieber: WTF, parallel
programming is 2 hrd. Buy my
new album.

Note convenience of stateless
servers in elastic environment:
can kill server without loss of
important information.

 (CMU 15-418, Spring 2012)

Today: many “turn-key” environment-in-a-box services
Offer elastic computing environments for web applications

CloudWatch+Auto Scaling
Amazon Elastic Beanstalk

 (CMU 15-418, Spring 2012)

The story so far: parallelism
scale out, scale out, scale out

(+ elasticity to be able to scale out on demand)

Now: reuse and locality

 (CMU 15-418, Spring 2012)

Recall: basic site con!guration

DatabasePHP/Ruby/Python/Node.js
interpreter

Worker Process

Web Server

Requests

$query	
 =	
 "SELECT	
 *	
 FROM	
 users	
 WHERE	
 username=‘kayvonf’;
$user	
 =	
 mysql_fetch_array(mysql_query($userquery));
	
 	
 	
 	
 	
 	

echo	
 “<div>”	
 .	
 $user[‘FirstName’]	
 .	
 “	
 “	
 .	
 $user[‘LastName’]	
 .	
 “</div>”;

Responses

PHP ‘user’ objectHTML ‘users’ table

Response Information Flow

<div>Kayvon Fatahalian</div>

Example PHP Code

 (CMU 15-418, Spring 2012)

Work repeated every page

$query	
 =	
 "SELECT	
 *	
 FROM	
 users	
 WHERE	
 username=‘kayvonf’;
$user	
 =	
 mysql_fetch_array(mysql_query($userquery));
	
 	
 	
 	
 	
 	

echo	
 “<div>”	
 .	
 $user[‘FirstName’]	
 .	
 “	
 “	
 .	
 $user[‘LastName’]	
 .	
 “</div>”;

PHP ‘user’ objectHTML ‘users’ table

Response Information Flow

<div>Kayvon Fatahalian</div>

Example PHP Code

▪ Steps repeated to emit my name at the top of every page:
- Communicate with DB
- Perform query
- Marshall results from database into object model of scripting language
- Generate presentation
- etc...

Remember, DB can be hard to scale!

 (CMU 15-418, Spring 2012)

Solution: cache!

Database
(potentially multiple

machines)

Requests

Load Balancer ...

Perf. Monitor Web Server

DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Memcached

▪ Cache commonly accessed objects
- Example: memcached, in memory key-value store (e.g, a big hash table)
- Reduces database load (fewer queries)
- Reduces web server load:

- Less data shuffling between DB response and scripting environment
- Store intermediate results of common processing

 (CMU 15-418, Spring 2012)

Caching example
userid	
 =	
 $_SESSION[‘userid’];

check	
 if	
 memcache-­‐>get(userid)	
 retrevies	
 a	
 valid	
 user	
 object

if	
 not:
	
 	
 	
 make	
 expensive	
 database	
 query
	
 	
 	
 add	
 resulting	
 object	
 into	
 cache	
 with	
 memcache-­‐>put()
	
 	
 	
 (so	
 future	
 requests	
 involving	
 this	
 user	
 can	
 skip	
 the	
 query)

continue	
 with	
 request	
 processing	
 logic

▪ Obviously, there is complexity associated with keeping caches in sync with data in
the DB in the presence of writes
- Must invalidate cache
- Simple solution: only cache read-only objects

 (CMU 15-418, Spring 2012)

Site con!guration

Database
(potentially multiple

machines)

Requests

Load Balancer ...

Perf. Monitor Web Server

DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Memcached servers
value = get(key)
put(key, value)

 (CMU 15-418, Spring 2012)

Example: Facebook memcached deployment
▪ Facebook, circa 2008

- 800 memcached servers
- 28 TB of cached data

▪ Performance
- 200,000 UDP requests per second @ 173 msec latency
- 300,000 UDP requests per second possible at

“unacceptable” latency

Source: https://www.facebook.com/note.php?note_id=39391378919

https://www.facebook.com/note.php?note_id=39391378919
https://www.facebook.com/note.php?note_id=39391378919

 (CMU 15-418, Spring 2012)

More caching
▪ Cache web server responses (e.g. entire pages, pieces of pages)

- Reduce load on web servers
- Example: Varnish-Cache application “accelerator”

Database
(potentially multiple

machines)
Requests

Load Balancer ...

Perf. Monitor
Web Server

DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Memcached servers

Front-End Cache

Front-End Cache

Front-End Cache

Front-End Cache

 (CMU 15-418, Spring 2012)

Caching using content distribution networks (CDNs)
▪ Serving large media assets can be expensive to serve (high bandwidth costs, tie up

web servers)
- E.g., images, streaming video

▪ Physical locality is important
- Higher bandwidth
- Lower latency

London Content Distribution Network
Source: http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html

http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html
http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html

 (CMU 15-418, Spring 2012)

CDN usage example

Image source URL:
https://fbcdn-sphotos-a.akamaihd.net/hphotos-ak-ash4/306471_10150401639593897_722973896_8538832_807089003_n.jpg

Photo on Facebook Wall:
Page URL:
https://www.facebook.com/photo.php?fbid=10150562736973897&set=a.10150275074093897.338852.722973896

https://fbcdn-sphotos-a.akamaihd.net/hphotos-ak-ash4/306471_10150401639593897_722973896_8538832_807089003_n.jpg
https://fbcdn-sphotos-a.akamaihd.net/hphotos-ak-ash4/306471_10150401639593897_722973896_8538832_807089003_n.jpg
https://www.facebook.com/photo.php?fbid=10150562736973897&set=a.10150275074093897.338852.722973896
https://www.facebook.com/photo.php?fbid=10150562736973897&set=a.10150275074093897.338852.722973896

 (CMU 15-418, Spring 2012)

CDN Integration

Media Requests

Database

Load Balancer ...

Perf. Monitor
Web Server

DB Slave
1

Master

Memcached servers

Front-End Cache

Front-End Cache

Front-End Cache

Front-End Cache

Web Server

Web Server

Web Server

DB Slave
2

Local CDN
(Pittsburgh)

Local CDN
(San Francisco)

Page Requests

Page Requests

Media Requests

 (CMU 15-418, Spring 2012)

Summary: scaling modern web sites
▪ Use parallelism

- Scale-out parallelism: many web servers
- Elastic scale-out (cost-effectively adapt to bursty load)
- Scaling databases can be tricky due to writes (replicate, partition, shard)

▪ Exploit locality and reuse
- Cache everything (key-value stores)

- Cache the results of database access (reduce DB load)
- Cache computation results (reduce web server load)
- Cache the results of processing requests (reduce web server load)

- Localize cached data to users, especially for large media content (CDNs)

▪ Specialize for performance
- Different forms of requests, different workload patterns

 (CMU 15-418, Spring 2012)

Final comment
▪ CS student perception:

- Web programming is low brow
(a bunch of entry-level programmers hacking in PHP)

▪ Reality:
- It is true that:

- Performance of straight-line application logic is often very poor in these web-
programming languages (orders of magnitude left on the table)

- Programmers writing this code are likely not the world’s best coders
- BUT... scaling a web site is a very challenging parallel-systems problem that involves many of

the optimization techniques and design choices studied in this class: just at much larger scales
- Identifying parallelism and dependencies
- Workload balancing: static vs. dynamic partitioning issues
- Data duplication vs. contention
- Throughput vs. latency trade-offs
- Parallelism vs. footprint trade-offs
- Identifying and exploiting reuse and locality

