Lecture 21:
Scaling a Web Site

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Acknowledgments: Solomon Boulos, Andreas Sundquist

Announcements

m List of class final projects
http://www.cs.cmu.edu/~15418/projectlist.html

m You are encouraged to keep a log of activities, rants, thinking,
findings, on your project web page
= It will be interesting for us to read

= It will come in handy when it comes time to do your writeup

= Writing clarifies thinking

(CMU 15-418, Spring 2012)

http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/projectlist.html
http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/projectlist.html

From last time: synchronization granularity
Python’s global interpreter lock:

from: http://wiki.python.org/moin/GlobalinterpreterLock

In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from
executing Python bytecodes at once. This lock is necessary mainly because CPython's memory
management is not thread-safe. (However, since the GIL exists, other features have grown to depend on the
guarantees that it enforces.)

CPython extensions must be GlL-aware in order to avoid defeating threads. For an explanation, see @
Global interpreter lock.

The GIL is controversial because it prevents multithreaded CPython programs from taking full advantage of
multiprocessor systems in certain situations. Note that potentially blocking or long-running operations, such
as 1/0, image processing, and NumPy number crunching, happen outside the GIL. Therefore it is only in
multithreaded programs that spend a lot of time inside the GIL, interpreting CPython bytecode, that the GIL
becomes a bottleneck.

However & the GIL degrades performance even when it is not a bottleneck. Summarizing those slides: The
system call overhead is significant, especially on multicore hardware. Two threads calling a function may
take twice as much time as a single thread calling the function twice. The GIL can cause I/O-bound threads
to be scheduled ahead of CPU-bound threads. And it prevents signals from being delivered.

Non-CPython implementations
Jython and IronPython have no GIL and can fully exploit multiprocessor systems.
[Mention place of GIL in StacklessPython.]

Eliminating the GIL

Getting rid of the GIL is an occasional topic on the python-dev mailing list. No one has managed it yet. The
following properties are all highly desirable for any potential GIL replacement; some are hard requirements.

(CMU 15-418, Spring 2012)

http://wiki.python.org/moin/GlobalInterpreterLock
http://wiki.python.org/moin/GlobalInterpreterLock
http://wiki.python.org/moin/GlobalInterpreterLock
http://wiki.python.org/moin/GlobalInterpreterLock

What you should know

m How concepts we have discussed in this course relate to designing
high performance web sites

m Scale-out parallelism: use many machines
®m How is work distributed onto these machines?

m Elasticity: how to adapt dynamically to varying load

m (aching: How is reuse and locality identified and exploited to
avoid redundant computation and/or data-transfer

(CMU 15-418, Spring 2012)

Our focus today: performance scaling

m Today I'm going to focus on performance issues
- parallelism and locality

m Many other issues in developing a successful web platform

- Reliability, security, privacy, etc.
- There are other great courses at CMU for this

(CMU 15-418, Spring 2012)

A simple web server for static content

while (1)
{

request = wait_for_request();
filename = parse_request();

read file from disk

send file contents as response

Is site performance a question of throughput or latency?

(CMU 15-418, Spring 2012)

A simple parallel web server

Parent Process

Worker
Process 1

Worker
Process 2

N

Worker
Process N

What factors would you consider in
setting the value of N?

m Parallelism: use all the server’s cores

while (1)
{

request = wait_for_request();
€---p filename = parse _request();
read file from disk

send file contents as response

m Latency hiding: hide long-latency disk read operations (by context switching between worker processes)

m Concurrency: many outstanding requests, want to service quick requests while long requests are in progress
(e.q., large file transfer)

m Footprint: don’t want too many threads that thrashing occurs

(CMU 15-418, Spring 2012)

Example: Apache’s parent process dynamically
manages size of worker pool

Parent Process

Worker Worker : Worker ' Worker ' Worker .

Process 1 Process 2 . Process3 ' + Process4 ' 1 Process5 |

o I Lo .

4 Desirable to maintain a few idle workers in
pool (avoid process creation in critical path of
Busy servicing Busy servicing New request 0 servicing requests)

long request long request i
]
[]
]

(CMU 15-418, Spring 2012)

Limit maximum number of workers to avoid
excessive footprint (memory thrashing)

Parent Process
/ / N Request queue
Worker Worker Worker Worker Worker
Process 1 Process 2 Process 3 Process 4 Process 5
Bus . . B []
y servicing usy servicing Busy servicing Busy servicing Busy servicing New request

long request long request request request request 0

[

[

[

Key parameter of Apache’s “prefork” multi-processing module: MaxRequestiorkers

(CMU 15-418, Spring 2012)

Aside: why partition into processes, not threads?

B Protection

- Don’t want a crash of one worker to bring down the whole web server

- Often want to use non-thread safe libraries (e.g., third-party libraries) in
server operation

m Parent process can periodically recycle workers
(robustness to memory leaks)

m Of course, multi-threaded web server solutions exist as well
(e.g., Apache’s “worker” module)

(CMU 15-418, Spring 2012)

Dynamic web content

Web Server

Worker Process
Requests

- o e wm wm e PHP/Ruby/Python/Node.js
> interpreter

Database
(e.g., mySQL)

Worker Process

s PHP/Ruby/Python/Node.js | | >
interpreter

“Response” is not a static page on disk, but the result of web-
application logic running in response to a request.

(CMU 15-418, Spring 2012)

=) Update Status Add Photo / Video == Ask Question

=

What's on your mind?

Arti Desai

Thanks you! Maybe we can take these billions in savings and cover the
uninsured...
4 “#&' Doctors Urge Their Colleagues To Quit Doing
: ' Worthless Tests : NPR
A u
Na N

WwWwWw.npr.org

Nine national medical groups have identified 45 diagnostic
tests, procedures and treatments that they say often are
unnecessary and expensive. The head of one of the
specialty groups says unneeded tests probably account for
$250 billion in health care spending.

Like - Comment - Share - 33 minutes ago near San Francisco, CA - 1§

Boris Sofman was tagged in Marianna Sofman's photo.

Famous street art seen throughout city

Like - Comment - 2 hours ago - 24

Annie Bosler is now friends with Robert Vijay Gupta and Graham Fenton.

Find Friends - 10 hours ago

Austen McDonald

Whenever I'm at a presentation and they're having A/V problems, there's an
irresistible urge to jump in and fix it myself.

¥ Like - Comment - @austenmc on Twitter - 16 hours ago via Twitter - %
& Brian Park likes this.

Write a comment...

Dan Morris mapped a route on MapMyRUN.com.

““=" 5 miles from MS bldg 99 up to Old Redmond and
~across 520

Redmond, WA 5.32 mi

Like - Comment - 20 hours ago - }

On This List (32) See All

’ - FR—
‘ d ,/ 5 ‘
o £ f _)

Y8 1 o Rl

+ Add to this list

List Suggestions

Wilmot Li Add

Meredith Ringel Morris | Add

Mike Houston Add
Doantam Phan Add
David Akers Add

‘) N
- o §s

See More Suggestions

Consider the amount of logic and the
number database queries required to
generate your Facebook News Feed.

(CMU 15-418, Spring 2012)

Basic performance (poor)

m Two popular content management systems (PHP)
- Wordpress ~ 12 requests/sec/core (DB size = 1000 posts)
- MediaWiki ~ 8 requests/sec/core

[Source: Talaria Inc.]
(CMU 15-418, Spring 2012)

“Scale out” to increase throughput

Use many web servers to meet site throughput goals.

Requests

Load balancer maintains list of available
web servers and an estimate of load on

each.

Distributes requests to pool of web servers.
(Redistribution logic is cheap: one load
balancer typically can service many web

servers)

Load Balancer

Web Server
Worker Process
<! .
’ 5
’
? Worker Process
¢ A
9 o
YA
‘' ¢ Web Server
Y 2R 4
0 ?
04 Worker Process
~ o
~ . .
~ -l
. Worker Process
'\
‘ ()
‘ ()
'
‘ []
1
'\
N Web Server
'\
'\ Worker Process
Y .
[)
[)
Worker Process

T

Database
(e.g., mySQL)

(CMU 15-418, Spring 2012)

Load balancing with persistence

All requests associated with a session are directed to the same server (aka. session affinity, “sticky sessions”)

Web Server Session
State
* Worker Process
1, f :
' 3"
) 4 Worker Process
° , " :' | \
¢ ¢ . [
€quests 1, ¢ Session
1. Sessionld =X > ,1' ,' Web Server State
2. Sessionld =Y . \"':, Worker Process v\\
3. Sessionld =X Ll b .
4. Sessionld =X > “ Worker Process <
'
. [
map(sessionld, serverName) “ .
‘ L
' 2 .
. “ Web Server S:tS:It:n
Good: '
- Do not have to change web-app design . Worker Process g
to scale out X
Bad: o . Worker Process
- Stateful servers can limit load balancing

ability. Also, session is lost if server fails

Database
(e.g., mySQL)

(CMU 15-418, Spring 2012)

0 0
1> 1w 1IN 1=

Desirable: avoid persistent state in web server

Maintain stateless servers, treat sessions as persistent data to be stored in the DB.

Requests

Sessionld =X
S_ess_ioEId_=!
S_ess_iorlld_=)ﬁ
S_ess._iorlld_=)£

vVVvVYVYYy

Load Balancer

Web Server
Worker Process
<! .
’ 5
’
’ Worker Process
¢ A
9 o
¢ 0
YA
R Web Server
Y 2K 4
0 ? Worker Process
¢
& o
] N °
SRR ;
“ Worker Process
'\
‘ ()
‘ ()
'
‘ o
1
'\
N Web Server
'\
'\ Worker Process
Y .
[)
[)
Worker Process

T

Session State

Database
(e.g., mySQL)

(CMU 15-418, Spring 2012)

Dealing with database contention

Option 1: “scale up”: buy better hardware for database server, buy professional-grade DB that scales

Good: no change to software
Bad: High cost, limit to scaling

Requests

Load Balancer

Web Server

Worker Process

Worker Process

Web Server

Worker Process

Worker Process

T

Web Server

Worker Process

Worker Process

Database
(e.g., mySQL)

(CMU 15-418, Spring 2012)

Scaling out a database: replicate

Repllcate data and parallellze reads Adopt very relaxed consistency models:
(most DB accesses are reads) propagate updates “eventually”

Cost: storage, consistency issues R 5
Worker Process §
’ . Slave Database M
:' Worker Process 4+ Read only
¢ A
Requests R
> R Web Server 3 Slave Database
------- ’
,"' Worker Process Read only
------- > Load Balancer |: _ e
------- | | Y~ N :
> “ B Worker Process
------- * ‘
|
‘ [
! * Database
“ Services (writes)
. Web Server
|
. Worker Process
Worker Process

(CMU 15-418, Spring 2012)

Scaling out a database: partition

Partition data (“shard”)
- Good: avoids replication, provided

read and write parallelism Web Server
- Bad: Complexity, imbalance Worker Process
problems, joins across shards f :
q
’ Worker Process
¢ A
Requests R
" " Web Server
....... > Ve
," Worker Process
------- > Load Balancer |: - .
------- * } ~ Ny >
“ oy Worker Process
....... > .
‘ o
| |
‘ o
‘ o
|
| |
Web Server
Can tune database for access “
characteristics of data is stores ' WorkerBrocess
(common to use different databases: :
SQL vs. nosql) Worker Process

Clickstream data
(writes)

Users A-M profile
(reads and writes)

Users N-Z profile
(reads and writes)

Users photos
(reads and writes)

(CMU 15-418, Spring 2012)

How many web servers do you need?

(CMU 15-418, Spring 2012)

Web trafficis bursty

Amazon.com Page Views

Daily Pageviews (percent)
amazon.com

-
- —
- -
- -
05.— —
.
- -
- -
- -

Holiday shopping season

More examples:

- Facebook gears up for bursts of image
uploads on Halloween and New Year’s Eve.

- Twitter topics trend after world events

HuffingtonPost.com Page Views Per Week

Directly Measured quUntcast

25M

20M

15M

10M ‘
2/2012 3/2012

HuffingtonPost.com Page Views Per Day

oM Directly Measured quUocntcast

2/2012 3/2012

(less people read news on weekends)

(CMU 15-418, Spring 2012)

Problem

m Site load is bursty

m Provisioning site for the average case load will result in poor
quality of service (or failures) during peak usage

- Peak usage tends to be when users care the most... since by the definition the
site is important at these times

m Provisioning site for the peak usage case will result in many
idle servers most of the time

- Not cost efficient

(CMU 15-418, Spring 2012)

Elasticity!

m Main idea: site automatically adds or shuts
down web servers based on measured load

B Need source of servers available on-demand

amazon
web services”

- Example: Amazon.com EC2 instances

(CMU 15-418, Spring 2012)

Example: Amazon’s elastic compute cloud (EC2)

Amazon.com Page Views

B Amazon had an over-provisioning problem

B Solution: make machines

available for rent to others in
need of compute

For those that don’t want to incur cost of,
or have expertise to, manage own
machines at scale

For those that need elastic compute
capability

Daily Pageviews (percent)
damazon.com

R o

|

Standard On-Demand Instances

Small (Default)
Medium

Large

Extra Large

Micro On-Demand Instances

Micro

Hi-Memory On-Demand Instances
Extra Large

Double Extra Large

Quadruple Extra Large

Hi-CPU On-Demand Instances
Medium

Extra Large

Cluster Compute Instances
Quadruple Extra Large

Eight Extra Large

Cluster GPU Instances

Quadruple Extra Large

2011

Linux/UNIX Usage

$0.080 per Hour
$0.160 per Hour
$0.320 per Hour
$0.640 per Hour

$0.020 per Hour

$0.450 per Hour
$0.900 per Hour
$1.800 per Hour

$0.165 per Hour
$0.660 per Hour

$1.300 per Hour
$2.400 per Hour

$2.100 per Hour

2012

Windows Usage

$0.115 per Hour
$0.230 per Hour
$£0.460 per Hour
$0.920 per Hour

$0.030 per Hour

$0.570 per Hour
$1.140 per Hour
$2.280 per Hour

$£0.285 per Hour
$1.140 per Hour

$1.610 per Hour
$2.970 per Hour

$£2.600 per Hour

(CMU 15-418, Spring 2012)

Site configuration: normal load

Requests

Perf. Monitor
Load: moderate

Load Balancer

Web Server

Database
(potentially multiple
machines)

Web Server

DB Slave 1

Master

DB Slave 2

Web Server

(CMU 15-418, Spring 2012)

Event triggers spike in load

Requests

Perf. Monitor
Load: high

Load Balancer

\ machines)
DB Slave 1

b
A " Web Server
ﬁ’ . 4
- g o g o> '
2 >
¢' S 4 *
T m m =
T o Web Server
NS - :
AR R
‘s‘ss
) 3
.) 2 °
\:s:
A Web Server
|

@justinbieber: OMG, parallel
prog. class at (MU is awesome.

Look 4 my final project on hair
sim. #15418

Database
(potentially multiple

Master

DB Slave 2

Heavily loaded servers: slow response times

(CMU 15-418, Spring 2012)

Site configuration: high load

Site performance monitor detects high load
Instantiates new web server instances
Informs load balancer about presence of new servers

Requests
Il B BE =E = = * ---------------------------------------
Web Server
=======91" porf. Monitor ,’ __
m====dp | Loadmoderate S Database
R¢ N Web Server (potentially multiple
I N O O . * " "" \ maChiHES)
’ .
o’ 9
> Load Balancer KA = DB Slave 1
=P ’:~._* Web Server —)
NP Master
Il N = = . * “:‘s o DBSlaVEZ
\ } $ °
\ 3
B B O = * . “ “ S [
“ SRR
SR o 0 Web Server
' Y |
Il I I = = ‘
*)} “ E"""'""""'"""""""""""":
=== ‘\ Web Server
W :
Il I I = = * ‘ --
W S
=== \ k Web Server §

(CMU 15-418, Spring 2012)

Site configuration: return to normal load

Site performance monitor detects low load

Kills extra server instances (to save operating cost)

Informs load balancer about loss of servers

Perf. Monitor
Requests Load: too low
b 4
-------* 'I '
’ -
-------* ¢ o
Load Balancer | .o _ _
-------* ¢z‘ *
SN
W 3
S
¢
A
) 3
|

Note convenience of stateless
servers in elastic environment:
can kill server without loss of
important information.

Web Server

Web Server

\ machines)
DB Slave 1

Web Server

@justinbieber: WTF, parallel
programming is 2 hrd. Buy my
new album.

Database
(potentially multiple

Master

DB Slave 2

(CMU 15-418, Spring 2012)

Today: many “turn-key” environment-in-a-box services

Offer elastic computing environments for web applications

@))81(’ /
Websenvices- re 'RiGHT SCaLE L)
: o
CloudWatch+Auto Scaling ‘ {JN E"GI"%
Amazon Elastic Beanstalk < & '.'lﬂR[I

(CMU 15-418, Spring 2012)

The story so far: parallelism
scale out, scale out, scale out

(+ elasticity to be able to scale out on demand)

Now: reuse and locality

(CMU 15-418, Spring 2012)

Recall: basic site configuration

Web Server
Requests
- === Worker Process
il PHP/Ruby/Python/Node.js | [> LELELRREE
interpreter
Responses
B
B
Example PHP Code

'$query = "SELECT * FROM users WHERE username=‘kayvonf’;
‘$user = mysql fetch_array(mysql query($userquery));

Eecho “div>” . $user[‘FirstName’] . “ “ . $user[‘LastName’] . “</div>”;i

Response Information Flow

HTML PHP ‘user’ object ‘users’ table

<div>Kayvon Fatahalian</div>

(CMU 15-418, Spring 2012)

Work repeated every page

Example PHP Code

Hello, Kayy D
Your Account - \-.,Cart v

'$query = "SELECT * FROM users WHERE username=‘kayvonf~’;
$user = mysql_fetch_array(mysql_query($userquery));

recho “<div>” . $user[‘FirstName’] . “ “ . $user[‘LastName’] . “</div>”;i

B Steps repeated to emit my name at the top of every page:

HTML

Response Information Flow

PHP ‘user’ object

<div>Kayvon Fatahalian</div>

Communicate with DB

Perform query

‘users’ table

Remember, DB can be hard to scale!

Marshall results from database into object model of scripting language
Generate presentation

etc...

(CMU 15-418, Spring 2012)

Solution: cache!

® (Cache commonly accessed objects

Requests

Example: memcached, in memory key-value store (e.g, a big hash table)

Reduces database load (fewer queries)

Reduces web server load:
Less data shuffling between DB response and scripting environment

Store intermediate results of common processing

Perf. Monitor

Load Balancer

Web Server

Web Server

Web Server

Web Server

7
—

Memcached

Database
(potentially multiple
machines)

DB Slave 1

Master

DB Slave 2

(CMU 15-418, Spring 2012)

Caching example

userid = $ SESSION[‘userid’];
check if memcache->get(userid) retrevies a valid user object
if not:

make expensive database query

add resulting object into cache with memcache->put()

(so future requests involving this user can skip the query)

continue with request processing logic

B Obviously, there is complexity associated with keeping caches in sync with data in
the DB in the presence of writes

- Must invalidate cache

- Simple solution: only cache read-only objects

(CMU 15-418, Spring 2012)

Site configuration

Requests

Perf. Monitor

Load Balancer

Web Server

Web Server

Web Server

Web Server

Memcached servers
value = get(key)
put(key, value)

Database
(potentially multiple
machines)

DB Slave 1

Master

DB Slave 2

(CMU 15-418, Spring 2012)

Example: Facebook memcached deployment

m Facebook, circa 2008

- 800 memcached servers
- 28 TB of cached data

m Performance
- 200,000 UDP requests per second @ 173 msec latency

- 300,000 UDP requests per second possible at
“unacceptable” latency

Source: https://www.facebook.com/note.php?note_id=39391378919 ,
(CMU 15-418, Spring 2012)

https://www.facebook.com/note.php?note_id=39391378919
https://www.facebook.com/note.php?note_id=39391378919

More caching

B (Cache web server responses (e.g. entire pages, pieces of pages)
Reduce load on web servers

- Example: Varnish-Cache application “accelerator”
o © VARNISH

Requests

Perf. Monitor

Load Balancer

CACHE

Front-End Cache |-

Front-End Cache

Front-End Cache |-

Front-End Cache

- P Web Server
Web Server
- =P Web Server
Web Server

Memcached servers

Database
(potentially multiple
machines)

DB Slave 1

Master

DB Slave 2

(CMU 15-418, Spring 2012)

Caching using content distribution networks (CDNs)

B Serving large media assets can be expensive to serve (high bandwidth costs, tie up
web servers)

- E.g.,images, streaming video @ .t
. o 04 I cloudfront
m Physical locality is important) //’,®
o ° Loca%iin Q
- Higher bandwidth A
- Lower latency = 7
é?ﬁgh1 ‘E!' ”!E!L"'<£§i>>
*VeT —— L ocation >
2 X%
S
e N

Location

London Content Distribution Network
Source: http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.htmi

(CMU 15-418, Spring 2012)

http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html
http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html

CDN usage example

B Kayvon Fatahalian > N 4
y November 24, 2011

Nice thanksgiving day.

Like - Comment - Share Ph3 2

Photo on Facebook Wall:

Page URL:
https://www.facebook.com/photo.php?fbid=10150562736973897&set=a.10150275074093897.338852.722973896

Image source URL:
https://fbcdn-sphotos-a.akamaihd.net/hphotos-ak-ash4/306471_10150401639593897_722973896_8538832_807089003_n.jpg

(CMU 15-418, Spring 2012)

https://fbcdn-sphotos-a.akamaihd.net/hphotos-ak-ash4/306471_10150401639593897_722973896_8538832_807089003_n.jpg
https://fbcdn-sphotos-a.akamaihd.net/hphotos-ak-ash4/306471_10150401639593897_722973896_8538832_807089003_n.jpg
https://www.facebook.com/photo.php?fbid=10150562736973897&set=a.10150275074093897.338852.722973896
https://www.facebook.com/photo.php?fbid=10150562736973897&set=a.10150275074093897.338852.722973896

CDN Integration

83

P

Media Requests
I % Local CDN
L » | (Pittsburgh)
age Requests
E ; o «
: : vt Perf. Monitor
: l Lo ,""
L RN o', X
' : ----- > Y 4
L CTTrmmmmmmemmmennes _: Load Balancer E % ;
== > N
: 1SS mmmmmmsmmmmmmmnees >)
: Page Requests ====> |
L ity piiyigit E Local CDN

'1 — oo < (San Francisco)
===

: * Media Requests
3 \'/\3

Front-End Cache

Front-End Cache

Front-End Cache

Front-End Cache

Memcached servers

Database

DB Slave
1

- P Web Server

Web Server

- = Web Server
Web Server

DB Slave Master

2

(CMU 15-418, Spring 2012)

Summary: scaling modern web sites

m Use parallelism

- Scale-out parallelism: many web servers
- Elastic scale-out (cost-effectively adapt to bursty load)

- Scaling databases can be tricky due to writes (replicate, partition, shard)

m Exploit locality and reuse

- (Cache everything (key-value stores)
- (Cache the results of database access (reduce DB load)

- (Cache computation results (reduce web server load)
= (Cache the results of processing requests (reduce web server load)

- Localize cached data to users, especially for large media content (CDNs)

m Specialize for performance

- Different forms of requests, different workload patterns

(CMU 15-418, Spring 2012)

Final comment

m (S student perception:

- Web programming is low brow
(a bunch of entry-level programmers hacking in PHP)

B Reality:
= |tis true that:

- Performance of straight-line application logic is often very poor in these web-
programming languages (orders of magnitude left on the table)

- Programmers writing this code are likely not the world’s best coders

- BUT...scaling a web site is a very challenging parallel-systems problem that involves many of
the optimization techniques and design choices studied in this class: just at much larger scales
- ldentifying parallelism and dependencies
- Workload balancing: static vs. dynamic partitioning issues
- Data duplication vs. contention
- Throughput vs. latency trade-offs
- Parallelism vs. footprint trade-offs
- ldentifying and exploiting reuse and locality

(CMU 15-418, Spring 2012)

