Lecture 20:
Transactional Memory

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Giving credit

m Many of the slides in today’s talk are the work of Professor
Christos Kozyrakis (Stanford University)

(CMU 15-418, Spring 2012)

Raising level of abstraction for synchronization

®m Machine-level synchronization prims:
- fetch-and-op, test-and-set, compare-and-swap

B We used these primitives to construct higher level, but still quite
basic, synchronization prims:

- lock, unlock, barrier

m Today:
- transactional memory: higher level synchronization

(CMU 15-418, Spring 2012)

What you should know

m What a transaction is
B The difference between the atomic construct and locks

m Design space of transactional memory implementations
- data versioning policy
- conflict detection policy
- granularity of detection

® Understand HW implementation of transaction memory (consider
how it relates to coherence protocol implementations we've
discussed in the past)

(CMU 15-418, Spring 2012)

Example

void deposit(account, amount)

{
lock(account);
int t = bank.get(account);
t = t + amount;
bank.put(account, t);
unlock(account);
}

m Deposit is a read-modify-write operation: want “deposit” to be
atomic with respect to other bank operations on this account.

m Lock/unlock pair is one mechanism to ensure atomicity
(ensures mutual exclusion on the account)

(CMU 15-418, Spring 2012)

Programming with transactional memory

void deposit(account, amount){ void deposit(account, amount){
lock(account); atomic {
int t = bank.get(account); int t = bank.get(account);
t = t + amount; ‘ t = t + amount;
bank.put(account, t); bank.put(account, t);
unlock(account); \ }
}

m Declarative synchronization
=Programmers says what but not how

=No explicit declaration or management of locks

m System implements synchronization
=Typically with optimistic concurrency

uSlow down only on true conflicts (R-W or W-W)

(CMU 15-418, Spring 2012)

Declarative vs. imperative abstractions

m Declarative: programmer defines what should be done

- Process all these 1000 tasks
- Perform this set of operations atomically

B [mperative: programmer states how it should be done

- Spawn N worker threads. Pull work from shared task queue
- Acquire a lock, perform operations, release the lock

(CMU 15-418, Spring 2012)

Transactional Memory (TM)

EMemory transaction
"An atomic & isolated sequence of memory accesses
="Inspired by database transactions

mAtomicity (all or nothing)
At commit, all memory writes take effect at once
=0On abort, none of the writes appear to take effect

EJsolation
ENo other code can observe writes before commit

mSerializability
"Transactions seem to commit in a single serial order
"The exact order is not guaranteed though

(CMU 15-418, Spring 2012)

Advantages of transactional memory

(CMU 15-418, Spring 2012)

Another example: Java 1.4 HashMap

=Map: Key — Value

public Object get(Object key) ({
int idx = hash(key); // Compute hash
HashEntry e = buckets[idx]; // to find bucket
while (e != null) { // Find element in bucket
if (equals(key, e.key))

return e.value;
e = e.next;

}

return null;

}

BNot thread safe
BBut no lock overhead when not needed

(CMU 15-418, Spring 2012)

Synchronized HashMap

®mJava 1.4 solution: synchronized layer
=Convert any map to thread-safe variant
=Uses explicit, coarse-grain locking specified by programmer

public Object get(Object key) {

synchronized (mutex) { // mutex guards all accesses to hashMap

return myHashMap.get(key);

}

ECoarse-grain synchronized HashMap
="Pros: thread-safe, easy to program

=Cons: limits concurrency, poor scalability
Only one thread can operate on map at any time

(CMU 15-418, Spring 2012)

Better solution?

public Object get(Object key) {
int idx = hash(key); // Compute hash
HashEntry e = buckets[idx]; // to find bucket
while (e != null) { // Find element in bucket
if (equals(key, e.key))

return e.value;
e = e.next;

}

return null;

}

® Fined-grained synchronization: e.g., lock per bucket
B Now thread safe: but lock overhead even if not needed

(CMU 15-418, Spring 2012)

Performance: Locks

Hash-Table

Balanced Tree

Execution Time

Execution Time

1.0000

0.7500

0.5000

0.2500

5.0000

3.7500

2.5000

1.2500

- coarse locks

fine locks

\J\
\ .
e —
: 2 4 5 16
Processors
- coarse locks fine locks

'\

.__——a———-ﬁ'—<‘_'_—

1 2 4
Processors

16

(CMU 15-418, Spring 2012)

Transactional HashMap

®"Simply enclose all operation in atomic block
mSystem ensures atomicity

public Object get(Object key) {
atomic { // System guarantees atomicity
return m.get(key);

}

®*"Transactional HashMap
*Pros: thread-safe, easy to program

=Q: good performance & scalability?
Depends on the implementation, but typically yes

(CMU 15-418, Spring 2012)

Another example: tree update

Slide credit: Austen McDonald

Synchronization Example

..............

Slide credit: Austen McDonald

Synchronization Example

o0 ® %
‘‘‘‘‘‘
%% 0o
L)

.................................
[}
o
..
o"’
..
..
..

S :
lide credit: Austen McDonald

Synchronization Example

)
.......
ooooo
0000000
o0))
) °
ooooo
..................
))
00000
..................
...........
o® P
o0®

Slide credit: Austen McDonald

Synchronization Example

o0
o0 ®)
ooooooo
.............
000000
"""""""""
........
°
oo ®
o0®

Slide credit: Austen McDonald

Synchronization Example

Slide credit: Austen McDonald

Synchronization Example

Goals: Modify nodes 3 and 4 in a thread-safe way.

Locking prevents concurrency

Slide credit: Austen McDonald

TM Example

aaaaaaaaaa

Slide credit: Austen McDonald

TM Example

aaaaaaaaaa

Slide credit: Austen McDonald

TM Example: no conflicts

Transaction A Transaction B
READ: 1, 2, 3 READ: 1,2,4
WRITE: 3 WRITE: 4

NO READ-WRITE, or WRITE-WRITE conflicts!
Slide credit: Austen McDonald

TM Example: with conflicts

Transaction A Transaction B
READ: 1, 2, 3 READ: 1, 2, 3
WRITE: 3 WRITE: 3

Conflicts exist! Must be serialized!
Slide credit: Austen McDonald

Performance: locks vs. transactions

9 coarse locks fine locks TCC
1.0000
Q.
© 30.7500
c
N .g 0.5000
S o
T X
Ww (0.2500
0 :
1 2 4 8 16
Processors
9~ coarse locks fine locks TCC
4.0000
D
o
|— aEJS.OOOO
T - -
® S 2.0000 o
Q 3
O .
n M
C_B 1.0000 \ _;
S — .
1 0 . - - T
1 2 4 16

8
Processors TCC: a HW-based TM system

(CMU 15-418, Spring 2012)

Failure atomicity: locks

void transfer(A, B, amount)
synchronized(bank) {

try {
withdraw(A, amount);

deposit(B, amount);

}
catch(exceptionl) { /* undo code 1*/ }

catch(exception2) { /* undo code 2*/ }

®"Manually catch exceptions

"Programmer provides undo code on a case by case basis

Complexity: what to undo and how...

"Some side-effects may become visible to other threads

E.g., an uncaught case can deadlock the system...

(CMU 15-418, Spring 2012)

Failure atomicity: transactions

void transfer(A, B, amount)
atomic {
withdraw(A, amount);
deposit(B, amount);

}

ESystem processes exceptions

=" All but those explicitly managed by the programmer
®"Transaction is aborted and updates are undone

=No partial updates are visible to other threads
E.g., No locks held by a failing threads...

(CMU 15-418, Spring 2012)

Composability: locks

void transfer(A, B, amount) void transfer(B, A, amount)
synchronized(A) { DEADLOCK! synchronized(B) {
synchronized(B) { ><synchronized(A) {
withdraw(A, amount); withdraw(B, amount);
deposit(B, amount); deposit(A, amount);
} }
} }

="Composing lock-based code can be tricky

=mRequires system-wide policies to get correct
"Breaks software modularity

"Between an extra lock & a hard place

"Fine-grain locking: good for performance, but can lead to
deadlock

(CMU 15-418, Spring 2012)

Composability: transactions

void transfer (A, B, amount) void transfer (B, A, amount)
atomic { atomic {
withdraw (A, amount) ; withdraw (B, amount) ;
deposit (B, amount) ; deposit (A, amount);

} }

®Transactions compose gracefully

=" Programmer declares global intent (atomic transfer)
No need to know of global implementation strategy

=" Transaction in transfer subsumes those in withdraw & deposit
Outermost transaction defines atomicity boundary

BSystem manages concurrency as well as possible
=Serialization for transfer(A, B, $100) & transfer(B, A, $200)
= Concurrency for transfer(A, B, $100) & transfer(C, D, $200)

25
(CMU 15-418, Spring 2012)

Advantages of transactional memory

mEasy to use synchronization construct
=" As easy to use as coarse-grain locks
" Programmer declares, system implements

mOften performs as well as fine-grain locks
= Automatic read-read concurrency & fine-grain concurrency

®Failure atomicity & recovery
=" No lost locks when a thread fails
= Failure recovery = transaction abort + restart

mComposability
= Safe & scalable composition of software modules

(CMU 15-418, Spring 2012)

Example integration with OpenMP

" Example: OpenTM = OpenMP + TM
= OpenMP: master-slave parallel model
Easy to specify parallel loops & tasks

=TM: atomic & isolation execution
Easy to specify synchronization and speculation

" OpenTM features
" Transactions, transactional loops & sections

= Data directives for TM (e.qg., thread private data)
=" Runtime system hints for TM

=" Code example
#pragma omp transfor schedule (static, chunk=50)

for (int i=0; i<N; i++) {
bin[A[i]] = bin[A[i]]+1;
}

(CMU 15-418, Spring 2012)

Atomic() # lock()+unlock()

®The difference
= Atomic: high-level declaration of atomicity
Does not specify implementation/blocking behavior
Does not provide a consistency model
" Lock: low-level blocking primitive
Does not provide atomicity or isolation on its own

= Keep in mind
= Locks can be used to implement atomic(), but...

= Locks can be used for purposes beyond atomicity
Cannot replace all lock regions with atomic regions

= Atomic eliminates many data races, but..

" Programming with atomic blocks can still suffer from atomicity

violations. e.g., atomic sequence incorrectly split into two atomic
blocks

(CMU 15-418, Spring 2012)

Example: lock-based code that does not work with atomic

// Thread 1 // Thread 2
synchronized(lockl) { synchronized(lock2) {
flagB = true; flagA = true;
while (flagA==0); while (flagB==0);
} }

=" What is the problem with replacing synchronized with atomic?

(CMU 15-418, Spring 2012)

Example: atomicity violation

// Thread 1 // Thread 2
atomic() { atomic {
ptr = Aj; ptr = NULL;
}
}
atomic() {
B = ptr->field;
}

® Programmer mistake: logically atomic code sequence separated
into two atomic() blocks.

(CMU 15-418, Spring 2012)

Transactional memory: summary + henefits

®TM = declarative synchronization
=User specifies requirement (atomicity & isolation)
=System implements in best possible way

= Motivation for TM

=Difficult for user to get explicit sync right
Correctness vs. performance vs. complexity

=Explicit sync is difficult to scale
Locking scheme for 4 CPUs is not the best for 64

=Difficult to do explicit sync with composable SW
Need a global locking strategy

=Other advantages: fault atomicity, ...

®Productivity argument: system support for transactions can
achieve 90% of the benefit of programming with fined-
grained locks, with 10% of the development time

(CMU 15-418, Spring 2012)

Implementing transactional memory

(CMU 15-418, Spring 2012)

Recall: transactional memory

mAtomicity (all or nothing)
At commit, all memory writes take effect at once
=0On abort, none of the writes appear to take effect

EJsolation
ENo other code can observe writes before commit

mSerializability
"Transactions seem to commit in a single serial order
"The exact order is not guaranteed though

(CMU 15-418, Spring 2012)

TM implementation basics

®TM systems must provide atomicity and isolation
=\Without sacrificing concurrency

EBasic implementation requirements
="Data versioning (ALLOWS abort)
="Conflict detection & resolution (WHEN to abort)

BImplementation options
"Hardware transactional memory (HTM)
=mSoftware transactional memory (STM)

"Hybrid transactional memory
e.g., Hardware accelerated STMs

(CMU 15-418, Spring 2012)

Data versioning

® Manage uncommited (new) and commited (old) versions of
data for concurrent transactions

1.Eager versioning (undo-log based)

2.Lazy versioning (write-buffer based)

(CMU 15-418, Spring 2012)

Eager versioning

Update memory immediately, maintain “undo log” in case of abort

Beqgin Xaction Write X«15
Thread Thread j
Undo Undo
-0g X: 10| Log
X: 10 Memory X: 15 Memory
Commit Xaction Abort Xaction
Thread Thread
N kJndo kJndo
X: 15 Memory X: 10 Memory

(CMU 15-418, Spring 2012)

Lazy versioning

Log memory updates in transaction write buffer, flush buffer on commit

Beqgin Xaction Write X«—15
Thread Thread j
Write Write
Buffer X: 15 |Buffer
X: 10 Memory X: 10 Memory
Commit Xaction Abort Xaction
Thread Thread
. Mrite ~ Mrite
‘ }{,\Buﬁer }{,\Buﬁer
X: 15 Memory X: 10 Memory

(CMU 15-418, Spring 2012)

Data versioning

® Manage uncommited (new) and commited (old) versions of
data for concurrent transactions

1.Eager versioning (undo-log based)
= Update memory location directly
= Maintain undo info in a log (per store penalty)

+ Faster commit
- Slower aborts, fault tolerance issues (crash in middle of trans)

2.Lazy versioning (write-buffer based)
= Buffer data until commit in a write-buffer
* Update actual memory location on commit
+ Faster abort, no fault tolerance issues
- Slower commits

(CMU 15-418, Spring 2012)

Conflict detection

B Detect and handle conflicts between transactions

" read-write conflict: transaction A reads addr X, which
was written to by pending transaction B

= write-write conflict: transactions A and B are pending,
both write to address X.

® Must track the transaction’s read-set and write-set
Read-set: addresses read within the transaction
Write-set: addresses written within transaction

(CMU 15-418, Spring 2012)

Pessimistic detection

® Check for conflicts during loads or stores
"e.g., HW implementation will check through coherence actions
(will discuss later)

= "Contention manager” decides to stall or abort transaction
=\/arious priority policies to handle common case fast

(CMU 15-418, Spring 2012)

Pessimistic detection example

dINIL

Case 1

X0 X1

IrdA I

 »
check

I Wr BI

I
check

Iwr C I

commit

Success

Case 2

X0 X1

Ier I

 »
check

I rd AI

‘_ ’ I
check |

I stall ;

commit

commit

Early Detect

Case 3

X1

X0
Ird A I
~ check

I WrAI

I
check

restart I

commit

I
IrdA

-

check

commit

Abort

: restart

rd A I

wr A

 »
check |

restart :

I rd A

wr A

R S A
check

restart
No progress

(CMU 15-418, Spring 2012)

Optimistic detection

® Detect conflicts when a transaction attempts to commit
=HW: validate write-set using coherence actions

Get exclusive access for cache lines in write-set

®0On a conflict, give priority to committing transaction

= Other transactions may abort later on

=" On conflicts between committing transactions, use contention
manager to decide priority

® Note: can use optimistic & pessimistic schemes together

= Several STM systems use optimistic for reads and pessimistic for
writes

(CMU 15-418, Spring 2012)

Optimistic detection

dINIL

Case 1

X0 X1

rd A II

wr B

Iwr C

commit

J—
check

commit

 »
check

Success

Case 2

X0 X1
I wr A

rd A
_
_
commit

 »
check

|
|
|
restart :
|

rd AI

commit

L
check

Abort

Case 3

X0 X1
Ird A
I erI

commit

 »
check

commit I

L
check

Success

 »
check

Forward progress
(CMU 15-418, Spring 2012)

Conflict detection trade-offs

1.Pessimistic conflict detection (a.k.a. “encounter” or “eager”)

+ Detect conflicts early

Undo less work, turn some aborts to stalls

- No forward progress guarantees, more aborts in some cases
- Fine-grain communication

- On critical path

2.0ptimistic conflict detection (a.k.a. "commit” or “lazy”)
+ Forward progress guarantees
+ Potentially less conflicts, bulk communication

- Detects conflicts late, can still have fairness problems

(CMU 15-418, Spring 2012)

Conflict detection granularity

®(Object granularity (SW-based techniques)
+ Reduced overhead (time/space)
+Close to programmer’s reasoning
- False sharing on large objects (e.g. arrays)

®\Word granularity
+ Minimize false sharing
-Increased overhead (time/space)

mCache line granularity
+Compromise between object & word

=Mix & match = best of both words
=\Word-level for arrays, object-level for other data, ...

(CMU 15-418, Spring 2012)

TM implementation space (examples)

®"Hardware TM systems
=l azy + optimistic: Stanford TCC
= azy + pessimistic: MIT LTM, Intel VTM
="EFager + pessimistic: Wisconsin LogTM
"Eager + optimistic: not practical

mSoftware TM systems
"l azy + optimistic (rd/wr): Sun TL2
= azy + optimistic (rd)/pessimistic (wr): MS OSTM
"Eager + optimistic (rd)/pessimistic (wr): Intel STM
="EFager + pessimistic (rd/wr): Intel STM

= Optimal design remains an open question
=May be different for HW, SW, and hybrid

(CMU 15-418, Spring 2012)

Hardware transactional memory (HTM)

®Data versioning in caches
= Cache the write-buffer or the undo-log
= New cache meta-data to track read-set and write-set
= Can do with private, shared, and multi-level caches

= Conflict detection through cache coherence protocol
=" Coherence lookups detect conflicts between transactions
=" Works with snooping & directory coherence

®Notes
" Register checkpoint must be taken at transaction begin

(CMU 15-418, Spring 2012)

HTM design

B Cache lines annotated to track read-set & write set

=R bit: indicates data read by transaction; set on loads

=\W bit: indicates data written by transaction; set on stores

R/W bits can be at word or cache-line granularity

="R/W bits gang-cleared on transaction commit or abort

="For eager versioning, need a 2" cache write for undo log

V|| D|| E Tag

Word1 = - -

® Coherence requests check R/W bits to detect conflicts

Word N

=Shared request to W-word is a read-write conflict

= Exclusive request to R-word is a write-read conflict

=Exclusive request to W-word is a write-write conflict

(CMU 15-418, Spring 2012)

Example HTM: lazy optimistic

4)
CPU
Registers I ALUs
. TMState)
4)
Cache
\"/ Tag Data
- /

® CPU changes

= Register checkpoint (available in many CPUs)
=" TM state registers (status, pointers to handlers, ...)

(CMU 15-418, Spring 2012)

Example HTM: Lazy Optimistic

4)
CPU
Registers I ALUs
. | TMState)
4)
Cache
.. \"/ Tag Data
- /

®Cache changes
=" R bit indicates membership to read-set
= \W bit indicates membership to write-set

(CMU 15-418, Spring 2012)

HTM transaction execution

CPU
Registers I ALUs
. TMState)
4)
Cache
.. \"/ Tag Data
N /

® Transaction begin

= [nitialize CPU & cache state
= Take register checkpoint

Xbegin <mm
Load A

Store B & 5

Load C
Xcommit

(CMU 15-418, Spring 2012)

HTM transaction execution

CPU

_

Registers I

ALUs

-

-
iiii
o

Cache

\"/ Tag

Data

/

®| oad operation
= Serve cache miss if needed
=" Mark data as part of read-set

Xbegin
Load A <=
Store B & 5
Load C
Xcommit

(CMU 15-418, Spring 2012)

HTM transaction execution

4)
CPU
Registers I ALUs
. TMState)
4)
Cache
.. \"/ Tag Data
N /

® Store operation
= Serve cache miss if needed (eXclusive if not shared, Shared otherwise)

= Mark data as part of write-set

Xbegin
Load A
Store B & 5 <=

Load C
Xcommit

(CMU 15-418, Spring 2012)

HTM transaction execution

4 A Xbegin
CPU
‘ Load A
Registers ALUs Store B & 5
| mswte Load C
N\ / .
- N Xcommit <=
Cache
.. \"/ Tag Data
II) upgradeX B
\ J

® Fast, 2-phase commit

= Validate: request exclusive access to write-set lines (if needed)

= Commit: gang-reset R & W bits, turns write-set data to valid (dirty) data

(CMU 15-418, Spring 2012)

HTM conflict detection

-
ii
o

4)
CPU
Registers I ALUs
. TMState)
\
Cache
\"/ Tag Data

<

</

® Fast conflict detection & abort
= Check: lookup exclusive requests in the read-set and write-set

Xbegin
Load A
Store B & 5

Load C
Xcommit

upgradeX D V]

upgradeX A

= Abort: invalidate write-set, gang-reset R and W bits, restore checkpoint

(CMU 15-418, Spring 2012)

Transactional memory summary

m Atomic construct: declaration of atomic behavior

- Motivating idea: increase simplicity of synchronization, without
sacrificing performance

m Transactional memory implementation
- Many variants have been proposes: SW, HW, SW+HW
- Differ in versioning policy (eager vs. lazy)
- Conflict detection policy (pessimistic vs. optimistic)
- Detection granularity
m Hardware transactional memory
- Versioned data kept in caches
- Conflict detection built upon coherence protocol

(CMU 15-418, Spring 2012)

