Lecture 19:
Synchronization

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Announcements

m Assignment 4 due tonight at 11:59 PM

(CMU 15-418, Spring 2012)

Synchronization primitives

(that we have or will soon see in class)

m For ensuring mutual exclusion
- Locks
- Basic atomic operations (e.q., atomicAdd)
- Transactions (next time)
m For event signaling
- Barriers
- Flags

Today’s topic: efficiently implementing
synchronization primitives

(CMU 15-418, Spring 2012)

Three phases of a synchronization event

1. Acquire method
- How process attempts to gain access to protected resource

2. Waiting algorithm
- How process waits for access to be granted to shared resource

3. Release method

- How process enables other processes to gain resource when its
work in the synchronized region is complete

(CMU 15-418, Spring 2012)

What you should know

m Performance issues related to various lock implementations
(specifically their interaction with cache coherence)

B Performance issues related to various barrier
implementations

(CMU 15-418, Spring 2012)

Busy waiting and blocking

m Busy waiting (a.k.a. “spinning”)

while (condition X not true) {}
proceed with logic that assumes X is true

® |n15-213 orin 0S, you have talked about synchronization
- You have probably been taught busy-waiting is bad: why?

m “Blocking”

- If progress cannot be made, free up resources for someone else (pre-emption)

if (condition X not true)

block; // 0S scheduler kicks in, de-schedules process from processor

(CMU 15-418, Spring 2012)

Busy waiting vs. blocking

B Busy-waiting can be preferable to blocking if:
- Scheduling overhead is larger than expected wait time
- Processor’s resources not needed for other tasks

- This often the case in a parallel program since we usually don’t oversubscribe a
system when running a performance-critical parallel app: e.g., there aren't
multiple programs running at the same time)

- (larification: be careful to not confuse this idea with the clear value of multi-
threading (interleaving execution of multiple threads/tasks to hiding long
latency of memory operations) with other work within the same app.

(CMU 15-418, Spring 2012)

(CMU 15-418, Spring 2012)

Warm up: a simple, but incorrect, lock

lock: ld RO, mem|[addr] // load word into RO
cmp RO, #0 // 1f 0, store 1
bnz 1lock // else, try again

st mem[addr], #1

unlock: st mem[addr], #0 // store O to address

Problem: data race because LOAD-TEST-STORE is not atomic!

(CMU 15-418, Spring 2012)

Test-and-set based lock

Test-and-set instruction:

ts RO, mem[addr] // atomically load mem[addr] into RO
// and set mem[addr] to 1

lock: ts RO, mem[addr] // load word into RO
bhnz RO, #0 // 1f 0, lock obtained

unlock: st mem[addr], #0 // store O to address

(CMU 15-418, Spring 2012)

Test & set lock: consider coherence traffic

Processor 1 Processor 2 Processor 3

- BusRdX "1 Invalidate line Invalidate line

- "™ " " S S S SESEEESESEE S S S EEEDSDEEEESEESE S S ES S S S E S S S S S S S @@

Invalidate line - BusRdX 1&S:

Update line in cache (set to 1)

[P1 is holding holding lock...] ' BusRdX Tas: Invalidate line
Update line in cache (set to 1)
Invalidateline Buskl i
Update line in cache (set to 1) I
sushdk] Invalidateline
Update line in cache (set to 0)
Invalidate line Buskdx 'Té[s';

Update line in cache (set to 1)

(CMU 15-418, Spring 2012)

Test-and-set lock performance

Benchmark: Total of N lock/unlock sequences (in aggregate) by P processors
Critical section time removed so graph plots only time acquiring/releasing the lock

20 —
Benchmark executes:
lock(L);

18 critical-section(c)
unlock(L);

18—

14

Time (us)
l

\V Bus contention increases amount of

time to transfer lock (lock holder must
S wait to acquire bus to release)
6

Not shown: bus contention also slows
41 down execution of critical section
2

/ -- Ideal: one bus transaction
0 1 1 1 1 1 1 1 l 1 1 1 1 | 1 , Perlock event
T,) 7 9 j 3 13 15
Number of processors

(CMU 15-418, Spring 2012)

Desirable lock performance characteristics

m Low latency

- Iflock is free, and no other processors are trying to acquire it, a processor should
be able to acquire it quickly

B Low traffic

- If all processors are trying to acquire lock at once, they should acquire the lock in
suggestion with as little traffic as possible

m Scalability

- Latency/ traffic should scale reasonably with number of processors
m Low storage cost
B Fairness

- Avoid starvation or substantial unfairness

- Oneideal: processors should acquire lock in the order they request access to it

Simple: test and set lock: low latency (under low contention), high traffic, poor scaling, low storage

cost (one int), no provisions for fairness
(CMU 15-418, Spring 2012)

Test-and-test-and-set lock

void Lock(volatile int* lock) {

while (1) {
while (*lock != 0); // while another processor has the lock
if (test&set(*lock) == @) // when lock is released, try to acquire it
return;
}
}
void Unlock(volatile int* lock) {
*lock = 0;
}

(CMU 15-418, Spring 2012)

Test & test & set lock: coherence traffic

Processor 1 Processor 2 Processor 3
 BusRdX """ Invalidate line Invalidate line
Updateline n cache (setto1)

| BusRd BusRd
[PT1s holding holding lock...] [Many reads from local cache] [Many reads from local cache]
Updateline incache(setto0) Invalidateline @~ Invalidate line
Invalidate line BusRdX

Invalidate line BusRdX T&S

(CMU 15-418, Spring 2012)

Test & test & set characteristics

m Higher latency than test & set in uncontended case
- Must test... then test and set
B Generates much less bus traffic
- Oneinvalidation per waiting processor per lock release
m More scalable (due to less traffic)
m Storage cost unchanged
m Still no provisions for fairness

(CMU 15-418, Spring 2012)

Test-and-set lock with backoff

Upon failure to acquire lock, delay for awhile before retrying

void Lock(volatile int* 1) {
int amount = 1;
while (1) {
if (test&set(*1) == 0)
return;
delay(amount);
amount *= 2;
}
}

B Same uncontended latency as test and set

B Generates less traffic than test and set (not continually attempting to acquire lock)
B [mproves scalability (due to less traffic)

® Storage cost unchanged

B Exponential backoff can cause severe unfairness

— Newer requesters back off for shorter intervals

(CMU 15-418, Spring 2012)

Ticket lock

Main problem with test & set style locks: upon

release, all waiting processors attempt to acquire
lock using test & set

NOW SERVING |

struct lock {
volatile int next ticket;
volatile int now_serving;

}s

void Lock(lock* 1) {

int my_ticket = atomicIncrement(1l->next_ticket);
while (my_ticket != 1l->now_serving);

}

void unlock(lock* 1) {
1->now_serving++;

}

(CMU 15-418, Spring 2012)

Array-based lock

Each processor spins on a different memory address
Use fetch&op (below: atomicincrement) to assign address on attempt to acquire

struct lock {
volatile int status|[P];
volatile int head;

}s
int my_element;

void Lock(lock* 1) {
my_ element = atomicIncrement(l->head); // assume circular inc

while (l->status[my _element] == 1);
}

void unlock(lock* 1) {
1->status[next(my_element)] = 0;

}

0(1) traffic per release, but requires space linearin P

(CMU 15-418, Spring 2012)

Implementing atomic fetch and op

// atomicCAS: atomic compare and swap
int atomicCAS(int* addr, int compare, int val)

{
int old = *addr;

*addr = (old == compare) ? val : old;
return old;

}

m Exercise: how can you build an atomic fetch+op out of
atomicCAS()?

- try: atomicincrement()

B See definition of atomicCAS() in NVIDIA programmers guide

(CMU 15-418, Spring 2012)

Barriers

(CMU 15-418, Spring 2012)

Implementing a centralized barrier

Based on shared counter

struct Bar {
int counter; // initialize to ©
int flag;
LOCK lock;

}s

// barrier for p processors
void Barrier(Bar* b, int p) {
lock(b->lock);
if (b->counter == 0) {
b->flag = 0; // first arriver clears flag
}
int arrived = ++(b->counter);
unlock(b->lock);

if (arrived == p) { // last arriver sets flag Does it work? Consider:
b->counter = 0;
b->flag = 1; do stuff ...

} Barrier(b, P);

else { . do more stuff ...
while (b->flag == 0); // wait for flag

Barrier(b, P);

}

(CMU 15-418, Spring 2012)

Correct centralized barrier

struct Bar {
int arrive counter; // initialize to ©
int leave_counter; // initialize to P
int flag;
LOCK lock;

}s

// barrier for p processors
void Barrier(Bar* b, int p) {
lock(b->lock);

if (b->arrive _counter == 0) {
while (b->leave counter != P); // wait for all to leave before clearing
b->flag = 0; // first arriver clears flag

}

int arrived = ++(b->counter);
unlock(b->lock);

if (arrived == p) { // last arriver sets flag .. .
b->arrive_counter = 0; Main idea: wait for all
b->leave_counter = 0; | ﬁ
b->flag = 1; processes to leave nirst

(};lse { barrier, before clearing
while (b->flag == 0); // wait for flag ﬂag for the second

lock(b->lock);
b->leave counter++;
unlock(b->lock);

} (CMU 15-418, Spring 2012)

Correct centralized barrier: sense reversal

struct Bar {
int counter; // initialize to ©
int flag;
LOCK lock;

}s
int local sense = ©@; // private per processor

// barrier for p processors
void Barrier(Bar* b, int p) {
local sense != local sense;
lock(b->lock);
int arrived = ++(b->counter);
if (b->counter == p) { // last arriver sets flag
unlock(b->lock);
b->counter = 0;
b->flag = local _sense;
}
else {
unlock(b->lock);
while (b.flag != local sense); // wait for flag

}

One spin instead of two

(CMU 15-418, Spring 2012)

Centralized barrier: traffic

m ((p) trafficon a bus:
- 2p transactions to obtain barrier lock and update counter
- 2 transactions to write flag + reset counter
- p-1transactions to read updated flag

m But there s still serialization on a single shared variable

- Latency is O(P)
- Can we do better?

(CMU 15-418, Spring 2012)

Combining trees

High contention!

0

= S@\\QQ ot < }Q\Q

Centralized Barrier Combining Tree Barrier

B Combining trees make better use of parallelism in interconnect topologies
- lg(P) latency
- Strategy makes less sense on a bus (all traffic still serialized on single shared bus)

B Acquire: when processor arrives at barrier, performs atomicincr() of parent counter
- Process recurses to root

B Release: beginning from root, notify children of release

(CMU 15-418, Spring 2012)

Next time

What if you have a shared variable for which contention is low
enough that it is unlikely two processors will enter the critical
section at the same time?

You could avoid the overhead of taking the lock since it is very
likely ensuring mutual exclusion is not needed for correctness

What happens if you take this approach and you're wrong: in
the middle of the critical region, another process enters the
same region?

(CMU 15-418, Spring 2012)

Next time: transactional memory

atomic

{ // begin transaction
perform atomic computation here ...

} // end transaction

Instead of ensuring mutual exclusion via locks, system will proceed as if no
synchronization was necessary (speculation).

System provides hardware/software support for “rolling back” all loads and
stores from critical region if it detects (at runtime) that another thread has

entered same region.

(CMU 15-418, Spring 2012)

