| ecture 18:
Interconnection Networks

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Announcements

* Project deadlines:
- Mon, April 2: project proposal: 1-2 page writeup
- Fri, April 20: project checkpoint: 1-2 page writeup
- Thurs, May 10: final presentations + final writeup

(CMU 15-418, Spring 2012)

Today’s Agenda

" |[nterconnection Networks
- Introduction and Terminology

(CMU 15-418, Spring 2012)

Inteconnection Network Basics

= Topology
- Specifies way switches are wired
- Affects routing, reliability, throughput, latency, building ease

= Routing
- How does a message get from source to destination
- Static or adaptive

= Buffering and Flow Control

- What do we store within the network?
- Entire packets, parts of packets, etc?

- How do we manage and negotiate buffer space?
- How do we throttle during oversubscription?

- Tightly coupled with routing strategy

(CMU 15-418, Spring 2012)

Terminology

= Network interface
- Connects endpoints (e.g. cores) to network.
- Decouples computation/communication

= Links
- Bundle of wires that carries a signal

= Switch/router
- Connects fixed number of input channels to fixed
number of output channels

= Channel
- A single logical connection between routers/switches

(CMU 15-418, Spring 2012)

More Terminology

= Node
- A network endpoint connected to a router/switch
= Message
- Unit of transfer for network clients (e.g. cores,
memory)
= Packet
- Unit of transfer for network Packet
- SGE=
" Flit ﬂ\F\%%

- Unit of flow control within network

(CMU 15-418, Spring 2012)

Some More Terminology

= Direct or Indirect Networks

- Endpoints sit “inside” (direct) or “outside” (indirect) the network
- E.g. mesh is direct; every node Is both endpoint and switch

Router (switch), Radix of 2 (2 inputs, 2 outputs)

Abbreviation: Radix-ary
These routers are 2-ary

Indirect Direct
(CMU 15-418, Spring 2012)

Today’s Agenda

" Interconnection Networks

- Topology

(CMU 15-418, Spring 2012)

Properties of a Topology/Network

= Regqgular or Irregular
- regular If topology Is regular graph (e.g. ring, mesh)

= Routing Distance
- number of links/hops along route

= Diameter
- maximum routing distance

= Average Distance
- average number of hops across all valid routes

(CMU 15-418, Spring 2012)

Properties of a Topology/Network

= Bisection Bandwidth

- Often used to describe network performance
- Cut network In half and sum bandwidth of links severed

- (Min # channels spanning two halves) * (BW of each
channel)

- Meaningful only for recursive topologies

- Can be misleading, because does not account for
switch and routing efficiency

= Blocking vs. Non-Blocking

- If connecting any permutation of sources & destinations
IS possible, network is non-blocking; otherwise network

IS blocking.

(CMU 15-418, Spring 2012)

Many Topology Examples

= Bus

= Crossbar
= RiIng

= Jree

= Omega

= Hypercube
= Mesh

= Jorus

= Butterfly

(CMU 15-418, Spring 2012)

BUS

+ Simple
+ Cost effective for a small number of nodes
+ Easy to Implement coherence (snooping)

- Not scalable to large number of nodes
(limited bandwidth, electrical loading > reduced frequency)

- High contention

Memory Memory Memory Memory

—

cache cache cache cache

Proc Proc Proc Proc

(CMU 15-418, Spring 2012)

Crossbar

= Every node connected to all others (non-blocking)

= Good for small number of nodes
+ Low latency and high throughput

- Expensive
- Not scalable = O(N?) cost
- Difficult to arbitrate

Core-to-cache-bank networks:
- IBM POWERS5S
- Sun Niagara /Il

7

0 N WY WY WY W W

O||FR,|IN|I|W||H]|OT]|]|O

o H Ho—

= {-O—O—O—O—O—O—O—C

N {-O—O—O—O—O—O—O—C

00 H O o o
> H OO
o H O
& H H o o

w
:

(CMU 15-418, Spring 2012)

Ring
+ Cheap: O(N) cost
- High latency: O(N)
- Not easy to scale
- Bisection bandwidth remains constant

Used In:
RING

- Intel Larrabee/Core 17 ﬁ
- IBM Cell S [S [S

(CMU 15-418, Spring 2012)

Mesh

O(N) cost
Average latency: O(sqrt(N))
Easy to layout on-chip: regular & equal-length links

Path diversity: many ways to get from one node to
another

Used In:
- Tilera 100-core CMP
- On-chip network prototypes

(CMU 15-418, Spring 2012)

Torus

= Mesh Is not symmetric on edges: performance very
sensitive to placement of task on edge vs. middle

= Torus avolds this problem

+ Higher path diversity (& bisection bandwidth) than mesh

- Higher cost

- Harder to lay out on-chip (/\ = @
- Unequal link lengths

VAR VERVIAV

(CMU 15-418, Spring 2012)

Trees

Planar, hierarchical topology

O C O C
Latency: Of]
y: O(logN) | W W
Good for local traffic
+ Cheap: O(N) cost Ol O0"™ 0 | C

+ Easy to Layout O C O C
- Root can become a bottleneck
Fat trees avoid this problem (CM-5)

- Fat Tree

Hdh db db
OOOOLOOOO

(CMU 15-418, Spring 2012)

Hypercube

= Latency: O(logN)
» Radix: O(logN) /7
= #links: O(NlogN) o 20 4D

0D 1D

+ Low latency
- Hard to lay out in 2D/3D

_ 1101 1111
= Used In some early message
. . 11
passing machines, e.g.: o //1fo
Intel iPSC —
- INtel | 010 o P 001 011

(CMU 15-418, Spring 2012)

Multistage Logarithmic Networks

ldea: Indirect networks with multiple layers of switches
between terminals

Cost: O(NlogN), Latency: O(logN)
Many variations (Omega, Butterfly, Benes, Banyan, ...)
E.g. Omega Network:

000
001

010
011

100
101

110

111 -

Omega Networ k

— 000

— 001

— 010 |
011 Q: Blocking or

non-blocking?

— 100
— 101

— 110
— 111

conflict |
(CMU 15-418, Spring 2012)

Review: Topologies

=

=

=

=
Topology Crossbar Multistage Logarith. Mesh
Direct/Indirect Indirect Indirect Direct
Blocking/ . . .
Non-blocking Non-blocking Blocking Blocking
Cost O(N?) O(NlogN) O(N)
Latency O(1) O(logN) O(sqrt(N))

(CMU 15-418, Spring 2012)

Today’s Agenda

" Interconnection Networks

- Buffering and Flow control

(CMU 15-418, Spring 2012)

Circuit vs. Packet Switching

= Circult switching sets up full path

- Establish route then send data
- (no one else can use those links)

(1l
ZIETINN:

. '/
//, /a /'}/,/
» ’ -

£
-?'
o 7 -~
o
:.—_
Sy b
- -
B e
\tf\»\
.’<
RSN
o
. \y >
]
Npo—
N2
L~
o 4
»e o

- faster and higher bandwidth
- setting up and bringing down links slow

= Packet switching routes per packet
- Route each packet individually (possibly via different paths)

- If link Is free can use
- potentially slower (must dynamically switch)

- no setup, bring down time

(CMU 15-418, Spring 2012)

Packet Switched Networks: Packet Format

= Header

- routing and control information
= Payload

- carries data (non HW specific information)

- can be further divided (framing, protocol stacks...)
= Error Code

- generally at tail of packet so it can be generated on the
way out

Header Payload Error Code

(CMU 15-418, Spring 2012)

Handling Contention

= Two packets trying to use the same link at the same time

= What do you do?
- Buffer one

- Drop one
- Misroute one (deflection)

= We will only consider buffering in this lecture

(CMU 15-418, Spring 2012)

Flow Control Methods

= Circult switching
= Store and forward (Packet based)
= Virtual Cut Through (Packet based)

= Wormhole (Flit based)

(CMU 15-418, Spring 2012)

Circult Switching Revisited

= Resource allocation granularity is high

* |dea: Pre-allocate resources across multiple switches for
a given “flow”

= Need to send a probe to set up the path for preallocation

+ No need for buffering

+ No contention (flow’s performance is isolated)

+ Can handle arbitrary message sizes

- Lower link utilization: two flows cannot use the same link
- Handshake overhead to set up a “circuit”

(CMU 15-418, Spring 2012)

Store and Forward Flow Control

Packet based flow control

Store and Forward

- Packet copied entirely into network router before
moving to the next node

- Flow control unit I1s the entire packet
Leads to high per-packet latency
Requires buffering for entire packet in each node

S

n

i

D

i

=

Can we do better?

(CMU 15-418, Spring 2012)

Cut through Flow Control

Another form of packet based flow control

Start forwarding as soon as header Is recelved and

resources (buffer, channel, etc) allocated

- Dramatic reduction in latency

Still allocate buffers and channel bandwidth for full

packets
S

U

D

i

What If packets are large?

=

(CMU 15-418, Spring 2012)

Cut through Flow Control

= What to do If output port is blocked?

= Lets the tail continue when the head is blocked,
absorbing the whole message into a single switch.

- Requires a buffer large enough to hold the largest
packet.

= Degenerates to store-and-forward with high contention

= Can we do better?

(CMU 15-418, Spring 2012)

Wormhole Flow Control

= Packets broken into (potentially) smaller

flits (buffer/bw allocation unit)

= Flits are sent across the fabric In a
wormhole fashion

- Body follows head, tail follows body
- Pipelined

- If head blocked, rest of packet stops
> - Routing (src/dest) information only in head

= How does body/taill know where to go?
= Latency almost independent of distance

for long messages

(CMU 15-418, Spring 2012)

Wormhole Flow Control

Advantages over “store and forward” flow control
+ Lower latency
+ More efficient buffer utilization

Limitations
- Suffers from head-of-line (HOL) blocking

- If head flit cannot move due to contention, another worm
cannot proceed even though links may be idle

(CMU 15-418, Spring 2012)

Head-of-Line Blocking

Red holds this channel: Channel idle but

channel remains idle red packet blocked
until read proceeds behind blue

Buffer full: blue
cannot proceed

Blocked by other
packets

(CMU 15-418, Spring 2012)

Virtual Channel Flow Control

* |dea: Multiplex multiple channels over one physical
channel

= Reduces head-of-line blocking

= Divide up the input buffer into multiple buffers sharing a
single physical channel

= Dally, “Virtual Channel Flow Control,” ISCA 1990.

InL‘r]:Irtl.: ‘ Dmﬁ:m Input | Output
P ‘? "_I>—Fur oot > | —[} DOrts
RS : —|>—[J: j]—» -
:‘:’| B Cross-bar _% Crossbar
D - > = >
W Scheduling W [

(CMU 15-418, Spring 2012)

Virtual Channel Flow Control

Buffer full: blue
cannot proceed

Blocked by other
packets

(CMU 15-418, Spring 2012)

Other Uses of Virtual Channels

= Deadlock avoidance

- Enforcing switching to a different set > T
of virtual channels on some “turns” can | é‘}? .
break the cyclic dependency of resources g/\

- Escape VCs: Have at least one VC that uses deadlock-free
routing. Ensure each flit has fair access to that VC.

- Protocol level deadlock: Ensure request and response packets
use different VCs - prevent cycles due to intermixing of
different packet classes

= Prioritization of traffic classes
- Some virtual channels can have higher priority than others

(CMU 15-418, Spring 2012)

Communicating Buffer Availability

* Credit-based flow control

- Upstream knows how many buffers are downstream
- Downstream passes back credits to upstream
- Significant upstream signaling (esp. for small flits)

= On/Off (XON/XOFF) flow control

- Downstream has on/off signal to upstream

= Ack/Nack flow control

- Upstream optimistically sends downstream
- Buffer cannot be deallocated until ACK/NACK recelved
- |Inefficiently utilizes buffer space

(CMU 15-418, Spring 2012)

Review: Flow Control

s Store and Forward S Cut Through / Wormhole

- - Shrink Buffers - -

Reduce latency

Any other
ISsues?

Head-of-Line o -d packet blockec

Blocking annel remains idle sehind blue

v

Use Virtual e suffer full: blue
Channels : e€

(CMU 15-418, Spring 2012)

Review: Flow Control

Store and Forward

S Cut Through / Wormhole

S
Shrink Buffers
> |
E Reduce latency
Any other
ISsues?
Head-of-Line
Blocking
Use Virtual

Channels

(CMU 15-418, Spring 2012)

