Lecture 17:
A More Sophisticated Snooping Multi-Processor

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Announcements

m Michael will be giving lecture next class
- Interconnection networks

m Gentle reminder to come talk to us about project ideas

(CMU 15-418, Spring 2012)

Last time

B Weimplemented a very simple cache-coherent multi-
processor around a shared atomic bus

Processor

Cache

Processor

Cache

Atomic Bus

Memory

(CMU 15-418, Spring 2012)

Key Issues

to processor

We addressed the issue of contention for
access to tags by duplicating tags.

to bus
I Data are collectively reported to a cache
via shared, dirty, and valid lines on
o the bus.
] |rty

Snoop-valid

(CMU 15-418, Spring 2012)

Key Issues

We addressed correctness issues due to a CP l
write-back buffer by checking both the l

cache tags and the write-back buffer o o |y
when snooping. o 4

controller

(and also added the ability to cancel

pending bus transfer requests). -
{ R
Snoop state Addr Cmd I- Data buffer I I Addr I I Cmd I
A A A f
- * System busY \ \/ >

(CMU 15-418, Spring 2012)

Key Issues

We talk about ensuring write serialization:
processor is held up by the cache until the
“make exclusive” transaction appears on
the bus. (write commits)

We talked about how coherence protocol state

" transitions are not atomic machine operations
s (even though the bus itself it atomic) leading to
sl O o wwo possible race conditions.

(CMU 15-418, Spring 2012)

We discussed deadlock, livelock, and starvation

Situation 1:
P1 has a modified copy of cache block B

P1 is waiting for the bus to issue BusRdX on cache block A
BusRd for B appears on bus while P1 is waiting

FETCH DEADLOCK!

To avoid deadlock, P1 must be able to service incoming
transactions while waiting to issue its own requests

(CMU 15-418, Spring 2012)

Correctness?

Situation 2:

Two processors simultaneously write to cache block B
P1 acquires bus (“wins bus”), issues BusRdX

P2 invalidates in response to P1’s BusRdX

Before P1 performs the write (updates block), P2 acquires bus
and issues BusRdX

P1 invalidates in response to P2’s BusRdX

LIVELOCK!

To avoid livelock, write that obtains exclusive ownership must be
allowed to complete before exclusive ownership is relinquished.

(CMU 15-418, Spring 2012)

Starvation

m Multiple processors competing for bus access
= Must be careful to avoid (or minimize likelihood of) starvation

m FIFO arbitration

- Eliminates starvation

B Priority-based heuristics

- Reduce likelihood of starvation

(CMU 15-418, Spring 2012)

Source of the complexity: parallelism

m Processor, cache, bus, memory all are resources operating in parallel
- Often contending for shared resources:
- Processor and bus contending for cache
- (Caches and memory contenting for bus access

B “Memory operations” that are abstracted by the architecture as atomic
are implemented via multiple transactions involving all of these clients

B Performance optimization often entails splitting operations into several
smaller transactions

- Splitting work into smaller transactions reveals more parallelism
(recall pipelining example)
- Cost: more hardware needed to exploit additional parallelism

- Cost: more care needed to ensure abstractions still hold (the machine is correct)

(CMU 15-418, Spring 2012)

Today’s topic

More of the same...
but now we will build the system around a non-atomic bus.

Optimize
Re-evaluate correctness
Optimize
Re-evaluate correctness
[and so on...]

(CMU 15-418, Spring 2012)

What you should know

B How deadlock and livelock might occur in both atomic bus and non-atomic
bus-based systems (what are possible solutions for avoiding it?)

®m Why is an atomic bus likely insufficient for our needs

B The main components of a split-transaction bus, how transactions are split
into requests and responses

B Therole of queuesin a parallel system

(CMU 15-418, Spring 2012)

Transaction on an atomic bus

1. Clientis granted bus access (result of arbitration)
2. (Client places command on bus (may also place data on bus)

Problem: bus is idle while response is pending
(decreases effective bus bandwidth)

This is bad, because the bus is often a limited,
shared resource in a multi-processor system.

3. Response by another bus client placed on bus
4. Next client obtains bus access (arbitration)

(CMU 15-418, Spring 2012)

Split-transaction bus

Bus transactions are split into two separate request and

response sub-transactions.

Other transactions can intervene.

P1

P2

Consider:
Read miss to A by P1
Bus upgrade of B by P2

Cache

Cache

Split-Transaction Bus

Memory

P1 gains access to bus

P1 sends BusRd command

[memory starts fetching data]

P2 gains access to bus

P2 sends BusUpg command

Memory gains access to bus

Memory places A on bus

(CMU 15-418, Spring 2012)

New issues

1. How to match requests with responses?

2. Conflicting requests on bus
Consider:

- P71 has outstanding request for block A
- Before response to P1 occurs, P2 makes request for block A

3. Flow control: how many requests can be outstanding at a time,
and what should be done when buffers fill up?

4. When are snoop results reported? During the request? During the
response?

(CMU 15-418, Spring 2012)

A basic design

(follows design discussed in textbook section 6.4)

m Up to eight outstanding requests at a time

B Responses need not be in the same order as requests
- Butrequest order establishes the total order for the system

m Flow control via negative acknowledgements (NACKs)
- When a buffer is full, client can NACK a transaction, causing a retry

(CMU 15-418, Spring 2012)

Initiating a request

Can think of a split-transaction bus as two separate buses:
a request bus and a response bus.

Request bus:

I cmd + address
Request Table
Response bus: (copy maintained by each cache)

I

256 bits Requestor Addr State

[RESpOﬂSE tag

index into table

Step 1: Requestor asks for request bus access

Step 2: Bus arbiter grants access, assigns transaction a tag

Step 3: Requestor places command + address on the request bus

(CMU 15-418, Spring 2012)

Read miss: cycle-by-cycle bus behavior (phase 1)

ARB RSLV ADDR DCD ACK Clocks
-+
A
Request Bus Addr Addr
(Addr/cmd) Grant | Addr Ack

A A A T

Caches that could not complete snoop in time let it be known here (inhibit)

Caches perform snoop: look up tags, update cache state, etc.
Memory operation commits here!
(NO BUS TRAFFIC)

Bus “winner” places command/address on the bus

Request resolution: address bus arbiter grants access to one of the requestors
Request table entry allocated for request
Special arbitration lines indicate tag assigned to request

Request arbitration: cache controllers present request for address to bus
(many caches may be doing so in the same cycle)

(CMU 15-418, Spring 2012)

Read miss: cycle-by-cycle bus behavior (phase 2)

ARB RSLV ADDR DC(D ACK

+———))ttt

Request Bus
(Addr/cmd)

Addr
re

Grant

Addr

Addr
Ack

Response Bus
(Data Arbitration)

ARB RSLV ADDR DC(D ACK Clocks

Data Grant Tag
req check
A A A

Original requestor signals readiness to receive response
(or lack thereof: requestor may be busy at this time)

Data bus arbiter grants one responder bus access

Data response arbitration: responder presents intent to respond
torequest withtag T
(many caches --or memory-- may be doing so in the same cycle)

(CMU 15-418, Spring 2012)

Read miss: cycle-by-cycle bus behavior (phase 3)

ARB RSLV ADDR DC(D ACK

Request Bus
(Addr/cmd)

Addr
re

Grant

Addr

Addr
Ack

Response Bus
(Data Arbitration)

ARB RSLV ADDR DC(D ACK
+———))ttt

Data
req

Grant

Tag

check

Clocks

Responder places response data on data bus
Caches present snoop result for request with the data
Request table entry is freed

Here: assume 128 byte cache lines — 4 cycles on 256 bit bus

(CMU 15-418, Spring 2012)

ARB RSLV ADDR DC(D ACK

Pipelined transactions

ARB RSLV ADDR DC(D ACK

+———))ttt

Clocks

Request Bus Addr Addr || Addr Addr
Grant | Add
(Addr/cmd) re fan r Ack || bk Ack
Response Bus Data | .. .| Tag Data | cone | 129
S req check req check
(Data Arbitration)
(Data) Data | Data | Data | Data Data | Data

= memory transaction 1

= memory transaction 2

Note: write-backs and BusUpg transactions do not have a response component
(write backs acquire access to both request address and data bus as part of the request)

(CMU 15-418, Spring 2012)

Pipelined transactions

Clocks

Request Bus
(Addr/cmd)

Response Bus ‘ ‘ ‘
(Data Arbitration)

= memory transaction 1
= memory transaction 2
= memory transaction 3

S = memory transaction 4

(CMU 15-418, Spring 2012)

Dealing with key issues

m (Conflicting requests

- Avoid conflicting requests by disallowing them
- Each cache has a copy of the request table

- Policy: caches do not make requests that conflict with requests in the
request table

m Flow control:

- (Caches/memory have buffers for receiving data off the bus
- If the buffer fills, client NACKs relevant requests or responses
- Triggers a later retry

(CMU 15-418, Spring 2012)

Situation 1: P1 read miss to X, transaction involving

X is outstanding on bus

Requestor Addr

P1 Request Table

State

P2

X

Op: BusRdX , share

read X

P1

P2

Cache

Cache

Split-Transaction Bus

Memory

If there is a conflicting outstanding request (as determined by checking the request

table), cache must hold request until conflict clears

If outstanding request is a read: not a conflict. No need to make
new request, just listen for the response to the previous one.

(CMU 15-418, Spring 2012)

Situation 2: P1 read miss to X, X dirty in P2’s cache

read X
P1 P2
Cache - Cache
(Split-Transaction Bus)

Memory

P1 wins request bus, issues BusRd request on bus
Caches begin snooping, memory may begin fetch

What happens next?

(CMU 15-418, Spring 2012)

Multi-level cache hierarchies

Processor Processor

Response * Processor request

-

Ly $

Response/ [Y ®Response/

Y
request request @ @

from L, to L; * fromLqto Ly

Response/ @ @ Request/response 5
; eque:t + % to bus * @ O
rom bus *

=

Bus
Assume one outstanding memory request per processor.

Consider fetch deadlock problem: cache must be able to service requests while waiting on
response to its own request (hierarchies increase response delay)

(CMU 15-418, Spring 2012)

Aside: why do we have queues?

(D— 0

To accommodate variable (unpredictable) rates of production and consumption.

As long as A and B, on average, produce and consume at the same rate, both
workers can run at full rate.

With queue of A ---_-- i
size2:Aand B 2 3 3 4 3 g 5
never stall 2 § R A
B 1 2 3 4 5 || 6
llas e
stalls exist A -- - - -
B 1 2 3 4 5 6

(CMU 15-418, Spring 2012)

Multi-level cache hierarchies

Processor

Processor

A
Response * Processor request

Ly $

Respons Y ®Response/ @ v

request request @
from L, to L; * from L4 to Ly ‘

Response/ @ @ Request/response

request to bus

from bus * %

< e
Bus

Assume one outstanding memory request per processor.

Consider fetch deadlock problem: cache must be able to service requests while waiting on
response to its own request (hierarchies increase response delay)

Ideally, would like buffering at each cache for all requests that can be outstanding on bus.

(CMU 15-418, Spring 2012)

Buffer deadlock

to processor

I

L1 Cache

L1—12 queue

' 1

i/é/ Outgoing read request (initiated by this processor)

+————Incoming read request (due to another cache) **

1211 queue Both requests generate responses that require

space in the other queue (circular dependency)

L2 Cache

|

to bus

** will only occur if L1 is write back

(CMU 15-418, Spring 2012)

to processor

I

L1 Cache

L1—12
request queue

L1—L2
response queue

-

-
--

«[-[

vy 11

tv t1

12—L1
request queue

12—L1
response queue

L2 Cache

|

to bus

Avoiding buffer deadlock

Classify all transactions as requests and responses

Responses can be completed without generating
further transactions

While stalled attempting to send a request, cache
must be able to service responses.

Responses will make progress (they generate no
new work so there’s no circular dependence),
eventually freeing up resources for requests

** will only occur if L1 is write back

(CMU 15-418, Spring 2012)

Putting it all together

Class exercise: describe everything that might occur during the
execution of this statement

lnt X = 193 // assume write to memory, not stored in register

(CMU 15-418, Spring 2012)

Class exercise: describe everything that might
occur during the execution of this statement
int x = 10;

Virtual address to physical (TLB lookup)

TLB miss

TLB update (might involve 05)

0S may need to swap in page (load from disk to physical address)
Cache lookup

Line not in cache (need to generate BusRdX)

Arbitrate for bus

Win bus, place address, command on bus

Another cache or memory decides it must respond (assume memory)
Memory request sent to memory controller

Memory controller is itself a scheduler

Memory checks active row. Changes active row into row buffer
Values read from row buffer

Memory arbitrates for data bus

Memory wins bus
Memory puts data on bus

Cache grabs data, updates cache line and tags, moves line into Exclusive state
Processor notified data exists

Instruction proceeds

(CMU 15-418, Spring 2012)

