
Lecture 17:
A More Sophisticated Snooping Multi-Processor

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

 (CMU 15-418, Spring 2012)

Announcements

▪ Michael will be giving lecture next class
- Interconnection networks

▪ Gentle reminder to come talk to us about project ideas

 (CMU 15-418, Spring 2012)

Last time
▪ We implemented a very simple cache-coherent multi-

processor around a shared atomic bus

Cache

Processor

Atomic Bus

Cache

Processor

Memory

 (CMU 15-418, Spring 2012)

Key issues
We addressed the issue of contention for
access to tags by duplicating tags. Tags

Data

State

to processor

to bus

“Snoop” controller

“processor-side” controller

Tags State

Address
Data

Shared
Dirty
Snoop-valid

We described how snoop results
are collectively reported to a cache
via shared, dirty, and valid lines on
the bus.

 (CMU 15-418, Spring 2012)

Key issues
We addressed correctness issues due to a
write-back buffer by checking both the
cache tags and the write-back buffer
when snooping.

(and also added the ability to cancel
pending bus transfer requests).

 (CMU 15-418, Spring 2012)

Key issues

We talked about how coherence protocol state
transitions are not atomic machine operations
(even though the bus itself it atomic) leading to
possible race conditions.

We talk about ensuring write serialization:
processor is held up by the cache until the
“make exclusive” transaction appears on
the bus. (write commits)

 (CMU 15-418, Spring 2012)

We discussed deadlock, livelock, and starvation

Situation 1:
P1 has a modi"ed copy of cache block B
P1 is waiting for the bus to issue BusRdX on cache block A
BusRd for B appears on bus while P1 is waiting

FETCH DEADLOCK!
To avoid deadlock, P1 must be able to service incoming
transactions while waiting to issue its own requests

 (CMU 15-418, Spring 2012)

Correctness?
Situation 2:
Two processors simultaneously write to cache block B
P1 acquires bus (“wins bus”), issues BusRdX
P2 invalidates in response to P1’s BusRdX
Before P1 performs the write (updates block), P2 acquires bus
and issues BusRdX
P1 invalidates in response to P2’s BusRdX

LIVELOCK!
To avoid livelock, write that obtains exclusive ownership must be
allowed to complete before exclusive ownership is relinquished.

 (CMU 15-418, Spring 2012)

Starvation
▪ Multiple processors competing for bus access

- Must be careful to avoid (or minimize likelihood of) starvation

▪ FIFO arbitration
- Eliminates starvation

▪ Priority-based heuristics
- Reduce likelihood of starvation

 (CMU 15-418, Spring 2012)

Source of the complexity: parallelism
▪ Processor, cache, bus, memory all are resources operating in parallel

- Often contending for shared resources:
- Processor and bus contending for cache
- Caches and memory contenting for bus access

▪ “Memory operations” that are abstracted by the architecture as atomic
are implemented via multiple transactions involving all of these clients

▪ Performance optimization often entails splitting operations into several
smaller transactions
- Splitting work into smaller transactions reveals more parallelism

(recall pipelining example)
- Cost: more hardware needed to exploit additional parallelism
- Cost: more care needed to ensure abstractions still hold (the machine is correct)

 (CMU 15-418, Spring 2012)

Today’s topic

More of the same...
but now we will build the system around a non-atomic bus.

Optimize
Re-evaluate correctness

Optimize
Re-evaluate correctness

[and so on...]

 (CMU 15-418, Spring 2012)

What you should know
▪ How deadlock and livelock might occur in both atomic bus and non-atomic

bus-based systems (what are possible solutions for avoiding it?)

▪ Why is an atomic bus likely insufficient for our needs

▪ The main components of a split-transaction bus, how transactions are split
into requests and responses

▪ The role of queues in a parallel system

 (CMU 15-418, Spring 2012)

Transaction on an atomic bus
1. Client is granted bus access (result of arbitration)
2. Client places command on bus (may also place data on bus)

3. Response by another bus client placed on bus
4. Next client obtains bus access (arbitration)

Problem: bus is idle while response is pending
(decreases effective bus bandwidth)

This is bad, because the bus is often a limited,
shared resource in a multi-processor system.

 (CMU 15-418, Spring 2012)

Split-transaction bus
Bus transactions are split into two separate request and
response sub-transactions.

Other transactions can intervene.

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

Consider:
Read miss to A by P1
Bus upgrade of B by P2

P1 gains access to bus
P1 sends BusRd command
[memory starts fetching data]

P2 gains access to bus
P2 sends BusUpg command
Memory gains access to bus
Memory places A on bus

 (CMU 15-418, Spring 2012)

New issues

2. Con$icting requests on bus
Consider:
- P1 has outstanding request for block A
- Before response to P1 occurs, P2 makes request for block A

3. Flow control: how many requests can be outstanding at a time,
and what should be done when buffers "ll up?

4. When are snoop results reported? During the request? During the
response?

1. How to match requests with responses?

 (CMU 15-418, Spring 2012)

A basic design

▪ Up to eight outstanding requests at a time

▪ Responses need not be in the same order as requests
- But request order establishes the total order for the system

▪ Flow control via negative acknowledgements (NACKs)
- When a buffer is full, client can NACK a transaction, causing a retry

(follows design discussed in textbook section 6.4)

 (CMU 15-418, Spring 2012)

Initiating a request
Can think of a split-transaction bus as two separate buses:
a request bus and a response bus.

Request bus:
cmd + address

Response bus:
data

Step 1: Requestor asks for request bus access
Step 2: Bus arbiter grants access, assigns transaction a tag
Step 3: Requestor places command + address on the request bus

Requestor Addr

P0 0xbeef

State

Request Table
(copy maintained by each cache)

Transaction tag is
index into table

256 bits

3 bits
Response tag

 (CMU 15-418, Spring 2012)

Read miss: cycle-by-cycle bus behavior (phase 1)

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant

Request arbitration: cache controllers present request for address to bus
(many caches may be doing so in the same cycle)

Request resolution: address bus arbiter grants access to one of the requestors
Request table entry allocated for request
Special arbitration lines indicate tag assigned to request

Addr

Bus “winner” places command/address on the bus

Caches perform snoop: look up tags, update cache state, etc.
Memory operation commits here!
(NO BUS TRAFFIC)

Addr
Ack

Caches that could not complete snoop in time let it be known here (inhibit)

 (CMU 15-418, Spring 2012)

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant Addr Addr

Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus
(Data Arbitration)

(Data)

Tag
check

Data response arbitration: responder presents intent to respond
to request with tag T
(many caches --or memory-- may be doing so in the same cycle)

Original requestor signals readiness to receive response
(or lack thereof: requestor may be busy at this time)

Grant

Data bus arbiter grants one responder bus access

Read miss: cycle-by-cycle bus behavior (phase 2)

 (CMU 15-418, Spring 2012)

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant Addr Addr

Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus
(Data Arbitration)

(Data)

Tag
checkGrant

Read miss: cycle-by-cycle bus behavior (phase 3)

Data DataData Data

Responder places response data on data bus
Caches present snoop result for request with the data
Request table entry is freed
Here: assume 128 byte cache lines → 4 cycles on 256 bit bus

 (CMU 15-418, Spring 2012)

ClocksARB RSLV ADDR DCD ACK

Request Bus
(Addr/cmd)

Addr
req Grant Addr Addr

Ack

Data
req

ARB RSLV ADDR DCD ACK

Response Bus
(Data Arbitration)

(Data)

Tag
checkGrant

Pipelined transactions

Data DataData Data

Addr
req Grant Addr Addr

Ack

Data
req

Tag
checkGrant

Data Data ...

Note: write-backs and BusUpg transactions do not have a response component
(write backs acquire access to both request address and data bus as part of the request)

= memory transaction 1

= memory transaction 2

 (CMU 15-418, Spring 2012)

Request Bus
(Addr/cmd)

Response Bus
(Data Arbitration)

(Data)

Pipelined transactions
Clocks

= memory transaction 1

= memory transaction 2

...

= memory transaction 3

= memory transaction 4

 (CMU 15-418, Spring 2012)

Dealing with key issues
▪ Con$icting requests

- Avoid con$icting requests by disallowing them
- Each cache has a copy of the request table
- Policy: caches do not make requests that con$ict with requests in the

request table

▪ Flow control:
- Caches/memory have buffers for receiving data off the bus
- If the buffer "lls, client NACKs relevant requests or responses
- Triggers a later retry

 (CMU 15-418, Spring 2012)

Situation 1: P1 read miss to X, transaction involving
X is outstanding on bus

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

read	
 XRequestor Addr

P2 X

State

P1 Request Table

Op: BusRdX

If outstanding request is a read: not a con$ict. No need to make
new request, just listen for the response to the previous one.

, share

If there is a con$icting outstanding request (as determined by checking the request
table), cache must hold request until con$ict clears

 (CMU 15-418, Spring 2012)

Situation 2: P1 read miss to X, X dirty in P2’s cache

Cache

P2

Split-Transaction Bus

Cache

P1

Memory

read	
 X

X

P1 wins request bus, issues BusRd request on bus
Caches begin snooping, memory may begin fetch
What happens next?

 (CMU 15-418, Spring 2012)

Multi-level cache hierarchies

Assume one outstanding memory request per processor.
Consider fetch deadlock problem: cache must be able to service requests while waiting on
response to its own request (hierarchies increase response delay)

 (CMU 15-418, Spring 2012)

Aside: why do we have queues?

A B

To accommodate variable (unpredictable) rates of production and consumption.
As long as A and B, on average, produce and consume at the same rate, both
workers can run at full rate.

A

B

1 2 3 4

1

2

2

3
2

3

3

4

4

5

5

6

5 6

6
5

5

A

B

1 2 3 4

1 2 3 4

5 6

5 6

With queue of
size 2: A and B
never stall

No queue:
stalls exist

 (CMU 15-418, Spring 2012)

Multi-level cache hierarchies

Assume one outstanding memory request per processor.
Consider fetch deadlock problem: cache must be able to service requests while waiting on
response to its own request (hierarchies increase response delay)
Ideally, would like buffering at each cache for all requests that can be outstanding on bus.

 (CMU 15-418, Spring 2012)

Buffer deadlock

L1 Cache

L2 Cache

to processor

to bus

L1→L2 queue L2→L1 queue

Incoming read request (due to another cache) **

Outgoing read request (initiated by this processor)

Both requests generate responses that require
space in the other queue (circular dependency)

** will only occur if L1 is write back

 (CMU 15-418, Spring 2012)

Avoiding buffer deadlock

L1 Cache

L2 Cache

to processor

to bus

L1→L2
request queue

L2→L1
request queue

Classify all transactions as requests and responses

Responses can be completed without generating
further transactions

While stalled attempting to send a request, cache
must be able to service responses.

Responses will make progress (they generate no
new work so there’s no circular dependence),
eventually freeing up resources for requests

** will only occur if L1 is write back

L1→L2
response queue

L2→L1
response queue

 (CMU 15-418, Spring 2012)

int	
 x	
 =	
 10;	
 	
 	
 	
 	
 	
 //	
 assume	
 write	
 to	
 memory,	
 not	
 stored	
 in	
 register

Putting it all together

Class exercise: describe everything that might occur during the
execution of this statement

 (CMU 15-418, Spring 2012)

int	
 x	
 =	
 10;
Virtual address to physical (TLB lookup)
TLB miss
TLB update (might involve OS)
OS may need to swap in page (load from disk to physical address)
Cache lookup
Line not in cache (need to generate BusRdX)
Arbitrate for bus
Win bus, place address, command on bus
Another cache or memory decides it must respond (assume memory)
Memory request sent to memory controller
Memory controller is itself a scheduler
Memory checks active row. Changes active row into row buffer
Values read from row buffer
Memory arbitrates for data bus
Memory wins bus
Memory puts data on bus
Cache grabs data, updates cache line and tags, moves line into Exclusive state
Processor noti"ed data exists
Instruction proceeds

Class exercise: describe everything that might
occur during the execution of this statement

