Lecture 16:
A Basic Snooping Multi-Processor

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Announcements

m Assighment 4

- To many of you: just get it done!

- You only are required to report timings out to 32 C(PUs (although it would be
great to see how code scales to larger processor counts)

- Keep track of all the things you try. Describe your thought process in the writeup.

m Special queue that should decrease wait time on Blacklight

- Addoption -q pri_3toyourqsub command
- PSC’s comment:

“The limits for the queue are 256 cores and 30 minutes of walltime, although

jobs that ask for 64 or fewer cores will be better turnaround. because of how
we have structured the queue.”

(CMU 15-418, Spring 2012)

Final projects

B Key deadlines:
- Mon, April 2: project proposal: 1-2 page writeup
- Fri, April 20: project checkpoint: 1-2 page writeup
- Thurs, May 10: final presentations + final writeup

(CMU 15-418, Spring 2012)

Your choice of computing resources

Quad-core Intel Xeon CPUs in GHC 5205
NVIDIA GPUs in GHC 5205
Blacklight

If you have a machine you want to try, that’s a possibility too

(CMU 15-418, Spring 2012)

Your choice of project: some suggestions

m A great source of application-oriented project ideas are

projects you've done in other classes (now make them fast)
- machine learning

- A.L

- graphics / physical simulation

- computational photography

- computer vision

m But systems projects are also encouraged

- Workload analysis:

- comparing performance on GPU vs (PU
- simulating behavior of a bunch of SIMD widths

- Characterize performance of GPU using microbenchmarks
- Modify ISPC compiler

(CMU 15-418, Spring 2012)

Today’s topic:
A basicimplementation of cache-coherence

m Wait... haven’t we talked about this before?

PrRd/-- PrRd/ - ﬂ
Prwr/" PrWr/--
> T P R
M >\ (Modified) J ~~---"-"mmmmmes
> \ (Modified)) T
PrWr/-- I

(((((((((((((

m Before spring break we talked about cache coherence protocols

— But our discussion was very abstract (a protocol is an abstraction)

— We described what messages/transactions needed to be sent
— We assumed messages/transactions were atomic

— Today we will talk about designing a machine that efficiently implements the

desired protocol (in a real machine... behavior is more complex)
(CMU 15-418, Spring 2012)

Our implementation goals

1. Correct
- Implements cache coherence

- Adheres to specified consistency model

2. High performance

3. Minimize cost (for us: minimize extra hardware)

As you will see: tricks to gain high performance
tend to make ensuring correctness tricky.

(CMU 15-418, Spring 2012)

What you should know

m The concept of pipelining
m Deadlock, livelock, starvation
m Basicunderstanding of how a bus works

m Understand why maintaining coherence is challenging to
implement, even when operating under simple machine
design parameters

- Mental model of hardware: many components, many simultaneous
transactions

- How do performance optimizations make correctness challenging?

(CMU 15-418, Spring 2012)

Background concepts

m Pipelining

m System correctness/fairness issues:
- Deadlock
- Livelock
- Starvation

(CMU 15-418, Spring 2012)

(CMU 15-418, Spring 2012)

Doing your laundry

Operation: do your laundry

1. Wash clothes
2.Dry clothes
3. Fold clothes
G "
Washer Dryer | | CoIIe en _
45 min 60 min 15 min

Latency of completing 1 load of laundry = 2 hours

(CMU 15-418, Spring 2012)

Increasing laundry throughput
Goal: maximize throughput of many loads of laundry

On approach: duplicate execution resources:
use two washers, two dryers, and call a friend

Latency of completing 2 loads of laundry = 2 hours
Throughput increases by 2x: 1 load/hour
Cost increases by 2x: use twice the resources

(CMU 15-418, Spring 2012)

Pipelining

Goal: maximize throughput of many loads of laundry

1hr 2 hr 3hr 4 hr 5hr

Latency: 1 load takes 2 hours
Throughput: 1 load/hour

(CMU 15-418, Spring 2012)

An instruction pipeline

Break instruction execution down into many steps

Key to scaling CPU clock frequency (each clock, a simple short operation is done by each unit)

Clocks

N N B B B B B EES BN S S R S R R B B S H E e

IF | D | EX | WB
IF | D | EX|WB
IF{ D | EX |WB
IF | D | EX |[WB
IF | D | EX |WB
IF (D | EX|WB

Latency: 1 instruction takes 4 cycles
Throughput: 1 instruction per cycle
(Important: special care must be taken to ensure correctness in case of dependent instructions)

Modern Intel Core i7 pipeline is variable length ~15-20 stages

IF = instruction fetch

D = instruction decode + register read
EX = execute

WB = write back results to registers

(CMU 15-418, Spring 2012)

Correctness

Deadlock
Livelock
Starvation

(deadlock and livelock are clearly about correctness. Starvation is really an issue of fairness)

(CMU 15-418, Spring 2012)

Deadlock

State where a system has
outstanding operations to complete,
but no operation can make progress.

Can arise when each operation has
acquired a shared resource that
another operation needs.

There is no way for any process to
make progress unless some process
relinquishes a resource (“backs up”)

Non-technical side note:

Deadlock happens in Pittsburgh all the time

A great example is a bus turning right onto Morewood from 5th when cars on Morewood have creeped up past the white line.
(Deadlock can be amusing when a bus driver decides to let another driver know he has caused deadlock... “go take 418 you fool”)

(CMU 15-418, Spring 2012)

Deadlock

Credit: David Maitland, National Geographic

(CMU 15-418, Spring 2012)

Deadlock in computer systems

Example 1:

®

Work queue (full)

Work queue (full)

A produces work for B's work queue
B produces work for A's work queue

Queues are finite. Workers wait if no
output space is available

Example 2:

const int numEl = 1024;
float msgBufl[numEl];
float msgBuf2[numEl];

int processld;
MPI_Comm_rank (MPI_COMM_WORLD, &processId);

. do work ...

MPI_Send(msgBufl, numEl, MPI_INT, processId+l, ...
MPI_Recv(msgBuf2, numEl, MPI_INT, processId-1, ...

Every process sends a message (blocking send)
to right neighbor
Then receives message from left neighbor.

(CMU 15-418, Spring 2012)

Livelock

(CMU 15-418, Spring 2012)

Livelock

(CMU 15-418, Spring 2012)

Livelock

(CMU 15-418, Spring 2012)

Livelock

State where a system is executing
many transactions/operations, but no
process is making meaningful progress.

Computer system examples:

Operations continually abort and retry

(CMU 15-418, Spring 2012)

Starvation

State where a system is making
overall progress, but some

processes make no progress.

(green cars make progress, but yellow cars are
stopped)

Starvation is usually not a

permanent state
(as soon as green cars pass, yellow cars can go)

Example: assume left/right traffic must yield to top/bottom traffic.

(CMU 15-418, Spring 2012)

A basicimplementation of snooping

(CMU 15-418, Spring 2012)

Basic system design

One outstanding memory request per processor
Single level cache per CPU (write back)
Interconnect is an atomic shared bus

Cache can stall processor as its carrying out coherence operations

Processor

Processor

Cache

Cache

Tags

State

Data

Tags

State

Data

Interconnect (shared bus)

Memory

(CMU 15-418, Spring 2012)

A basic cache miss on a uniprocessor

1. Determine cache set (using appropriate bits in cache)

2. Check cache tags (to determine if block is in cache)

[No matching tags, must read from memory]

. Assert request for bus

. Send address + command on bus
. Wait for command to be accepted

~NN &N W»ni B W

. Receive data on bus

Address

I -

. Wait for bus grant (as determined by bus arbitrator)

Multi-processor atomic bus:

BusRd, BusRdX: no other bus
transactions allowed between issuing
address and receiving data

BusWr: address and data sent
simultaneously, received by memory
before any other transaction allowed

(CMU 15-418, Spring 2012)

Multi-processor cache controller behavior

Challenge: both requests from processor and bus require tag lookup

to processor

A If bus receives priority:
During bus transaction, processor
_________________________ LA — is locked out from cache.
__________ “processor-side” controller :
rags | State Data Cache If processor receives priority:
e During processor cache access,
= | “Snoop” controller ** : , .
... cache can't respond with snoop
e T\ A
\/
to bus

snoop controller has its mind on the bus and the bus on its mind (CMU 15-418, Spring 2012)

Allow simultaneous access by processor-side

and snoop controllers

to processor

Tags

State |

Tags

State

Cache

Option 1: Duplicate tags

Option 2: multi-ported tag memory

Note: tags must stay in sync for
correctness, so tag update by one
controller will still need to block
the other controller (but modifying
tags is infrequent compared to
checking them)

(CMU 15-418, Spring 2012)

Reporting snoop results

m Assume a cache read miss Memory needs to

know what to do
m (ollective response of caches must appear on bus /
- Is block dirty? If so, memory should not respond (MESI)

- Is block shared? If so, cache should load into S state, not E

N

Loading cache
needs to know

HOW?
WHEN?

(CMU 15-418, Spring 2012)

Reporting snoop results: how

Bus

Address
Data

Shared ‘OR’ of result from all processors
Dirty ‘OR’ of result from all processors

Snoop-valid ‘OR’ of result from all processors
(0 value indicates all processors have responded)

(CMU 15-418, Spring 2012)

Reporting snoop results: when

Mainly an issue of when memory should react to the request

1. Fixed number of clocks after address appearing on bus
- All caches guaranteed to respond in a fixed number of clocks

- Note importance of duplicated tags (to meet guarantee)

2. Variable delay
- Memory assumes one of the caches will service request until it hears otherwise

- More complex, but lower latency if snoops are completed quickly

(CMU 15-418, Spring 2012)

Handling write backs

B Write backs involve two bus transactions

1. Incoming block (requested by processor)
2. Outgoing block (dirty block to flush)

B |deally would like the processor to continue as soon as
possible (shouldn’t have to wait for the flush to complete)

m Solution: write-back buffer
- Stick block to flush in buffer

- Load requested block (allows processor to continue)
= Flush contents of write-back buffer at later time

(CMU 15-418, Spring 2012)

Cache with write-back buffer

" What if a request for the address of
Data e lcmd the data in the write back buffer
appears on the bus?
Processo
side

Cache data RAM controller

Bus-

Snoop controller must check write

bk A back buffer address in addition to
.......... L. cache tags.
i controlier
\ \J
Write-back buffer If match:
i 1. Respond with data from write-
X § back buffer rather than cache
S o s’
il s 2. Cancel outstanding bus access
i Ig] ¢ — request (for the write back)
* System bus' j * _ * -

(CMU 15-418, Spring 2012)

Non-atomic state transitions

B State transition diagrams during protocol discussion assumed that transitions
were atomic

m Busis atomic, but all the operations the system performs as a result of a memory
operation are not

- Look up tags, arbitrate for bus, wait for actions by other controllers, etc.

B Must be careful to handle race conditions appropriately

> M I 7 A e e o R R Tl A T T S e
>\ (Modified) J ~~---"""mmmme ;
r 5
PriWr / BusRdX > | Buskd/flush

PrRd/-- 5 5 5

PrRd / BusRd PrRd /BusRd U « BusRdX /- . BusRdX/--
(no other cache (another cache PrRd/-- -
asserts s hared) asserts shared) BusRd / -

(CMU 15-418, Spring 2012)

Example race condition

Example from book (EX: 6.1):

Processors P1 and P2 write to cache line A simultaneously
(both need to issue BusUpg to move line from S state to M state)

P1 wins bus access, sends BusUpg
P2 is waiting for bus access (to send its own BusUpg), can’t proceed because P1 has bus
P2 receives BusUpg, must invalidate line A (as per MESI protocol)

P2 must also change its pending BusUpg request to a BusRdX «

Cache must be able to
handle requests while
waiting to acquire bus AND
be able to modify its own
outstanding requests

(CMU 15-418, Spring 2012)

Write serialization

B Tempting optimization: on processor write, update cache line,
allow processor to proceed prior to sending transaction out to bus
(to obtain exclusive access)

m Violates coherence. Why?

- Why does a write-back buffer not cause this problem?

m To ensure write serialization, cache cannot allow processor to
proceed until read-exclusive transaction appears on bus

= At this point, the write is “committed”

- Key idea: order of transactions on the bus defines the global order

(CMU 15-418, Spring 2012)

Fetch deadlock

P1 has a modified copy of cache block B
P1 is waiting for the bus to issue BusRdX on cache block A

BusRd for B appears on bus while P1 is waiting

To avoid deadlock, P1 must be able to service incoming
transactions while waiting to issue requests

(CMU 15-418, Spring 2012)

Livelock

Two processors writing to cache block B

P1 acquired bus, issues BusRdX

P2 invalidates

Before P1 performs write, P2 acquires bus, issues BusRdX

P1 invalidates
and so on...

To avoid livelock, write that obtains exclusive ownership must be
allowed to complete before exclusive ownership is relinquished.

(CMU 15-418, Spring 2012)

Starvation

m Multiple processors competing for bus access

- must be careful to avoid (or minimize likelihood of) starvation

m FIFO arbitration

B Priority-based heuristics

(CMU 15-418, Spring 2012)

Design issues

m Design of cache controller and tags
(to support access from processor and bus)

® How and when to present snoop results on bus
m Dealing with write backs

m Dealing with non-atomic state transitions

m Avoiding deadlock, livelock, starvation

These issues arose even though we only implemented a few optimizations on a basic
invalidation-based, write-back system!

(atomic bus, one outstanding memory request per processor, single-level caches)

Next time: will discuss more advanced (a.k.a. more complex) implementations that strive
for higher performance. (CMU 15418, Spring 2012)

Source of the complexity: parallelism

B Processor, cache, bus all are resources operating in parallel

- Often contending for shared resources:
- Processor and bus contending for cache
- (Caches contenting for bus access

B “Memory operations” that are abstracted by the architecture as atomic
are implemented via multiple transactions involving all of these clients

B Performance optimization often entails splitting operations into more,
smaller transactions

- Splitting work into smaller transactions reveals more parallelism
(recall pipelining example)
- Cost: more hardware needed to exploit additional parallelism

- Cost: more care needed to ensure abstractions still hold (the machine is correct)

(CMU 15-418, Spring 2012)

