
Lecture 16:
A Basic Snooping Multi-Processor

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

 (CMU 15-418, Spring 2012)

Announcements
▪ Assignment 4

- To many of you: just get it done!
- You only are required to report timings out to 32 CPUs (although it would be

great to see how code scales to larger processor counts)
- Keep track of all the things you try. Describe your thought process in the writeup.

▪ Special queue that should decrease wait time on Blacklight
- Add option -­‐q	
 pri_3 to your qsub command
- PSC’s comment:

“The limits for the queue are 256 cores and 30 minutes of walltime, although
jobs that ask for 64 or fewer cores will be better turnaround. because of how
we have structured the queue.”

 (CMU 15-418, Spring 2012)

Final projects
▪ Key deadlines:

- Mon, April 2: project proposal: 1-2 page writeup
- Fri, April 20: project checkpoint: 1-2 page writeup
- Thurs, May 10: !nal presentations + !nal writeup

 (CMU 15-418, Spring 2012)

Your choice of computing resources
▪ Quad-core Intel Xeon CPUs in GHC 5205
▪ NVIDIA GPUs in GHC 5205
▪ Blacklight
▪ If you have a machine you want to try, that’s a possibility too

 (CMU 15-418, Spring 2012)

Your choice of project: some suggestions
▪ A great source of application-oriented project ideas are

projects you’ve done in other classes (now make them fast)
- machine learning
- A.I.
- graphics / physical simulation
- computational photography
- computer vision

▪ But systems projects are also encouraged
- Workload analysis:

- comparing performance on GPU vs CPU
- simulating behavior of a bunch of SIMD widths

- Characterize performance of GPU using microbenchmarks
- Modify ISPC compiler

 (CMU 15-418, Spring 2012)

Today’s topic:
A basic implementation of cache-coherence

▪ Wait... haven’t we talked about this before?

▪ Before spring break we talked about cache coherence protocols
- But our discussion was very abstract (a protocol is an abstraction)
- We described what messages/transactions needed to be sent
- We assumed messages/transactions were atomic

- Today we will talk about designing a machine that efficiently implements the
desired protocol (in a real machine... behavior is more complex)

 (CMU 15-418, Spring 2012)

Our implementation goals
1. Correct

- Implements cache coherence
- Adheres to speci"ed consistency model

2. High performance

3. Minimize cost (for us: minimize extra hardware)

As you will see: tricks to gain high performance
tend to make ensuring correctness tricky.

 (CMU 15-418, Spring 2012)

What you should know
▪ The concept of pipelining

▪ Deadlock, livelock, starvation

▪ Basic understanding of how a bus works

▪ Understand why maintaining coherence is challenging to
implement, even when operating under simple machine
design parameters
- Mental model of hardware: many components, many simultaneous

transactions
- How do performance optimizations make correctness challenging?

 (CMU 15-418, Spring 2012)

Background concepts
▪ Pipelining

▪ System correctness/fairness issues:
- Deadlock
- Livelock
- Starvation

 (CMU 15-418, Spring 2012)

Pipelining

 (CMU 15-418, Spring 2012)

Doing your laundry

Washer
45 min

Dryer
60 min

College Student
15 min

Operation: do your laundry
1. Wash clothes
2. Dry clothes
3. Fold clothes

Latency of completing 1 load of laundry = 2 hours

 (CMU 15-418, Spring 2012)

Increasing laundry throughput
Goal: maximize throughput of many loads of laundry

On approach: duplicate execution resources:
use two washers, two dryers, and call a friend

Latency of completing 2 loads of laundry = 2 hours
Throughput increases by 2x: 1 load/hour

Cost increases by 2x: use twice the resources

 (CMU 15-418, Spring 2012)

Pipelining
Goal: maximize throughput of many loads of laundry

1 hr 2 hr 3 hr 4 hr 5 hr

Latency: 1 load takes 2 hours
Throughput: 1 load/hour

 (CMU 15-418, Spring 2012)

An instruction pipeline

Clocks

Latency: 1 instruction takes 4 cycles
Throughput: 1 instruction per cycle
(Important: special care must be taken to ensure correctness in case of dependent instructions)

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

WBEXDIF

Modern Intel Core i7 pipeline is variable length ~15-20 stages

IF = instruction fetch
D = instruction decode + register read
EX = execute
WB = write back results to registers

Break instruction execution down into many steps
Key to scaling CPU clock frequency (each clock, a simple short operation is done by each unit)

 (CMU 15-418, Spring 2012)

Correctness

Deadlock
Livelock

Starvation
(deadlock and livelock are clearly about correctness. Starvation is really an issue of fairness)

 (CMU 15-418, Spring 2012)

Deadlock

Non-technical side note:
Deadlock happens in Pittsburgh all the time
A great example is a bus turning right onto Morewood from 5th when cars on Morewood have creeped up past the white line.
(Deadlock can be amusing when a bus driver decides to let another driver know he has caused deadlock... “go take 418 you fool”)

State where a system has
outstanding operations to complete,
but no operation can make progress.

Can arise when each operation has
acquired a shared resource that
another operation needs.

There is no way for any process to
make progress unless some process
relinquishes a resource (“backs up”)

 (CMU 15-418, Spring 2012)

Deadlock

Credit: David Maitland, National Geographic

 (CMU 15-418, Spring 2012)

Deadlock in computer systems

B

A

A produces work for B’s work queue

B produces work for A’s work queue

Queues are "nite. Workers wait if no
output space is available

const	
 int	
 numEl	
 =	
 1024;
float	
 msgBuf1[numEl];
float	
 msgBuf2[numEl];

int	
 processId;
MPI_Comm_rank(MPI_COMM_WORLD,	
 &processId);

...	
 do	
 work	
 ...

MPI_Send(msgBuf1,	
 numEl,	
 MPI_INT,	
 processId+1,	
 ...
MPI_Recv(msgBuf2,	
 numEl,	
 MPI_INT,	
 processId-­‐1,	
 ...

Every process sends a message (blocking send)
to right neighbor
Then receives message from left neighbor.

Example 1: Example 2:

Work queue (full)

Work queue (full)

 (CMU 15-418, Spring 2012)

Livelock

 (CMU 15-418, Spring 2012)

Livelock

 (CMU 15-418, Spring 2012)

Livelock

 (CMU 15-418, Spring 2012)

Livelock
State where a system is executing
many transactions/operations, but no
process is making meaningful progress.

Computer system examples:

Operations continually abort and retry

 (CMU 15-418, Spring 2012)

Starvation
State where a system is making
overall progress, but some
processes make no progress.
(green cars make progress, but yellow cars are
stopped)

Starvation is usually not a
permanent state
(as soon as green cars pass, yellow cars can go)

Example: assume left/right traffic must yield to top/bottom traffic.

 (CMU 15-418, Spring 2012)

A basic implementation of snooping

 (CMU 15-418, Spring 2012)

Basic system design
▪ One outstanding memory request per processor
▪ Single level cache per CPU (write back)
▪ Interconnect is an atomic shared bus
▪ Cache can stall processor as its carrying out coherence operations

Cache

Processor

Interconnect (shared bus)

Data
Cache

Processor

Tags Data

Memory

State Tags State

 (CMU 15-418, Spring 2012)

A basic cache miss on a uniprocessor
1. Determine cache set (using appropriate bits in cache)
2. Check cache tags (to determine if block is in cache)

3. Assert request for bus
4. Wait for bus grant (as determined by bus arbitrator)
5. Send address + command on bus
6. Wait for command to be accepted
7. Receive data on bus

[No matching tags, must read from memory]

Multi-processor atomic bus:

BusRd, BusRdX: no other bus
transactions allowed between issuing
address and receiving data

BusWr: address and data sent
simultaneously, received by memory
before any other transaction allowed

Address

Data

 (CMU 15-418, Spring 2012)

Multi-processor cache controller behavior
Challenge: both requests from processor and bus require tag lookup

CacheTags DataState

to processor

to bus

If bus receives priority:
During bus transaction, processor
is locked out from cache.

If processor receives priority:
During processor cache access,
cache can’t respond with snoop“Snoop” controller **

“processor-side” controller

** snoop controller has its mind on the bus and the bus on its mind

 (CMU 15-418, Spring 2012)

Allow simultaneous access by processor-side
and snoop controllers

Cache

Tags

Data

State

to processor

to bus

Option 1: Duplicate tags

Option 2: multi-ported tag memory

Note: tags must stay in sync for
correctness, so tag update by one
controller will still need to block
the other controller (but modifying
tags is infrequent compared to
checking them)

“Snoop” controller

“processor-side” controller

Tags State

 (CMU 15-418, Spring 2012)

Reporting snoop results
▪ Assume a cache read miss
▪ Collective response of caches must appear on bus

- Is block dirty? If so, memory should not respond (MESI)
- Is block shared? If so, cache should load into S state, not E

Memory needs to
know what to do

Loading cache
needs to know
what to doHOW?

WHEN?

 (CMU 15-418, Spring 2012)

Reporting snoop results: how

Address
Data

Shared
Dirty
Snoop-valid

‘OR’ of result from all processors
‘OR’ of result from all processors

Bus

‘OR’ of result from all processors
(0 value indicates all processors have responded)

 (CMU 15-418, Spring 2012)

Reporting snoop results: when
Mainly an issue of when memory should react to the request

1. Fixed number of clocks after address appearing on bus
- All caches guaranteed to respond in a "xed number of clocks
- Note importance of duplicated tags (to meet guarantee)

2. Variable delay
- Memory assumes one of the caches will service request until it hears otherwise
- More complex, but lower latency if snoops are completed quickly

 (CMU 15-418, Spring 2012)

Handling write backs
▪ Write backs involve two bus transactions

1. Incoming block (requested by processor)
2. Outgoing block (dirty block to #ush)

▪ Ideally would like the processor to continue as soon as
possible (shouldn’t have to wait for the "ush to complete)

▪ Solution: write-back buffer
- Stick block to #ush in buffer
- Load requested block (allows processor to continue)
- Flush contents of write-back buffer at later time

 (CMU 15-418, Spring 2012)

Cache with write-back buffer

What if a request for the address of
the data in the write back buffer
appears on the bus?

Snoop controller must check write
back buffer address in addition to
cache tags.

If match:

1. Respond with data from write-
back buffer rather than cache

2. Cancel outstanding bus access
request (for the write back)

 (CMU 15-418, Spring 2012)

Non-atomic state transitions
▪ State transition diagrams during protocol discussion assumed that transitions

were atomic

▪ Bus is atomic, but all the operations the system performs as a result of a memory
operation are not
- Look up tags, arbitrate for bus, wait for actions by other controllers, etc.

▪ Must be careful to handle race conditions appropriately

 (CMU 15-418, Spring 2012)

Example race condition

Example from book (EX: 6.1):

Processors P1 and P2 write to cache line A simultaneously
(both need to issue BusUpg to move line from S state to M state)

P1 wins bus access, sends BusUpg

P2 is waiting for bus access (to send its own BusUpg), can’t proceed because P1 has bus

P2 receives BusUpg, must invalidate line A (as per MESI protocol)

P2 must also change its pending BusUpg request to a BusRdX

Cache must be able to
handle requests while
waiting to acquire bus AND
be able to modify its own
outstanding requests

 (CMU 15-418, Spring 2012)

Write serialization
▪ Tempting optimization: on processor write, update cache line,

allow processor to proceed prior to sending transaction out to bus
(to obtain exclusive access)

▪ Violates coherence. Why?
- Why does a write-back buffer not cause this problem?

▪ To ensure write serialization, cache cannot allow processor to
proceed until read-exclusive transaction appears on bus
- At this point, the write is “committed”
- Key idea: order of transactions on the bus de"nes the global order

 (CMU 15-418, Spring 2012)

Fetch deadlock
P1 has a modi!ed copy of cache block B
P1 is waiting for the bus to issue BusRdX on cache block A
BusRd for B appears on bus while P1 is waiting

To avoid deadlock, P1 must be able to service incoming
transactions while waiting to issue requests

 (CMU 15-418, Spring 2012)

Livelock
Two processors writing to cache block B
P1 acquired bus, issues BusRdX
P2 invalidates
Before P1 performs write, P2 acquires bus, issues BusRdX
P1 invalidates
and so on...

To avoid livelock, write that obtains exclusive ownership must be
allowed to complete before exclusive ownership is relinquished.

 (CMU 15-418, Spring 2012)

Starvation
▪ Multiple processors competing for bus access

- must be careful to avoid (or minimize likelihood of) starvation

▪ FIFO arbitration

▪ Priority-based heuristics

 (CMU 15-418, Spring 2012)

Design issues

▪ Design of cache controller and tags
(to support access from processor and bus)

▪ How and when to present snoop results on bus
▪ Dealing with write backs
▪ Dealing with non-atomic state transitions
▪ Avoiding deadlock, livelock, starvation

These issues arose even though we only implemented a few optimizations on a basic
invalidation-based, write-back system!
(atomic bus, one outstanding memory request per processor, single-level caches)

Next time: will discuss more advanced (a.k.a. more complex) implementations that strive
for higher performance.

 (CMU 15-418, Spring 2012)

Source of the complexity: parallelism
▪ Processor, cache, bus all are resources operating in parallel

- Often contending for shared resources:
- Processor and bus contending for cache
- Caches contenting for bus access

▪ “Memory operations” that are abstracted by the architecture as atomic
are implemented via multiple transactions involving all of these clients

▪ Performance optimization often entails splitting operations into more,
smaller transactions
- Splitting work into smaller transactions reveals more parallelism

(recall pipelining example)
- Cost: more hardware needed to exploit additional parallelism
- Cost: more care needed to ensure abstractions still hold (the machine is correct)

