
Lecture 14:
Relaxed Memory Consistency +

Exam 1 Review

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

 (CMU 15-418, Spring 2012)

Announcements
▪ Exam 1 review session

- Sunday 6:30pm
- GHC 4405

▪ Will talk more about exam later in class

 (CMU 15-418, Spring 2012)

Today: what you should know

▪ Understand the motivation for relaxed consistency models

▪ Understand the implications of TSO and PC relaxed models

 (CMU 15-418, Spring 2012)

Relaxing memory operation ordering
▪ Four types of memory operation orderings

- W→R: write must complete before subsequent read

- R→R: read must complete before subsequent read

- R→W: read must complete before subsequent write

- W→W: write must complete before subsequent write

▪ Sequential consistency maintains all four orderings
▪ Relaxed memory consistency models allow certain orderings to be violated

 (CMU 15-418, Spring 2012)

Motivation: hiding latency
▪ Why are we interested in relaxing ordering requirements?

- Performance
- Speci!cally, hiding memory latency: overlap memory accesses with other operations
- Remember, memory access in a cache coherent system may entail much more then

simply reading bits from memory (!nding data, sending invalidations, etc.)

Write A

Read B

Write A

Read B

vs.

 (CMU 15-418, Spring 2012)

Another way of thinking about relaxed ordering

A	
 =	
 1;

B	
 =	
 1;

unlock(L);

Thread 1 (on P1) Thread 2 (on P2)

lock(L);

x	
 =	
 A;

y	
 =	
 B;

Program order
(dependencies in red: required for

sequential consistency)

A	
 =	
 1;

B	
 =	
 1;

unlock(L);

Thread 1 (on P1) Thread 2 (on P2)

lock(L);

x	
 =	
 A;

y	
 =	
 B;

Sufficient order
(logical dependencies in red)

“Intuitive” notion of correct = execution produces same results as a sequentially
consistent system

 (CMU 15-418, Spring 2012)

Allowing reads to move ahead of writes
▪ Four types of memory operation orderings

- W→R: write must complete before subsequent read

- R→R: read must complete before subsequent read

- R→W: read must complete before subsequent write

- W→W: write must complete before subsequent write

▪ Allow processor to hide latency of writes
- Processor Consistency (PC)
- Total Store Ordering (TSO)

 (CMU 15-418, Spring 2012)

Allowing reads to move ahead of writes
▪ Total store ordering (TSO)

- Processor P can read B before it’s write to A is seen by all processors
(processor can move its own reads in front of its own writes)

- Read by other processors cannot return new value of A until the write to
A is observed by all processors

▪ Processor consistency (PC)
- Any processor can read new value of A before the write is observed by all

processors

▪ In TSO and PC, W→W constraint still exists. Writes by the same thread are
not reordered (they occur in program order)

 (CMU 15-418, Spring 2012)

Four example programs

A	
 =	
 1;

flag	
 =	
 1;

while	
 (flag	
 ==	
 0);

print	
 A;

Thread 1 (on P1) Thread 2 (on P2)
A	
 =	
 1;

B	
 =	
 1;

print	
 B;

print	
 A;

Thread 1 (on P1) Thread 2 (on P2)

A	
 =	
 1;

print	
 B;

B	
 =	
 1;

print	
 A;

Thread 1 (on P1) Thread 2 (on P2)
A	
 =	
 1; while	
 (A	
 ==	
 0);

B	
 =	
 1;

Thread 1 (on P1) Thread 2 (on P2) Thread 3 (on P3)
while	
 (B	
 ==	
 0);

print	
 A;

1 2

3 4

1 2 3 4
Total Store Ordering (TSO)
Processor Consistency (PC)

Execution matches Sequential Consistency (SC)

✔
✔

✔
✔

✔
✗

✗
✗

 (CMU 15-418, Spring 2012)

Allowing writes to be reordered
▪ Four types of memory operation orderings

- W→R: write must complete before subsequent read

- R→R: read must complete before subsequent read

- R→W: read must complete before subsequent write

- W→W: write must complete before subsequent write

▪ Partial Store Ordering (PSO)
- Execution may not match sequential consistency on program 1

(P2 may observe change to flag before change to A)

A	
 =	
 1;

flag	
 =	
 1;

while	
 (flag	
 ==	
 0);

print	
 A;

Thread 1 (on P1) Thread 2 (on P2)

 (CMU 15-418, Spring 2012)

Allowing all reorderings
▪ Four types of memory operation orderings

- W→R: write must complete before subsequent read

- R→R: read must complete before subsequent read

- R→W: read must complete before subsequent write

- W→W: write must complete before subsequent write

▪ Examples:
- Weak ordering (WO)
- Release Consistency (RC)

- Processor supports special synchronization operations
- Memory accesses before sync must complete before sync issues
- Memory access after sync cannot begin until sync complete

reorderable	
 reads	

and	
 writes

...

SYNC

...

reorderable	
 reads	

and	
 writes

...

SNYC

 (CMU 15-418, Spring 2012)

Example: expressing synchronization in relaxed models

▪ Intel x86 ~ processor consistency (PC) model
▪ Provides sync instructions if software requires a speci!c

instruction ordering not guaranteed by the consistency model
- lfence (“load fence”), sfence (“store fence”), mfence (“mem fence”)

A cool post on the role of memory fences:
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/

http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/

 (CMU 15-418, Spring 2012)

Con#icting data accesses
▪ Two memory accesses by different processors con#ict if

- they access the same memory location
- at least one is a write

▪ Unsynchronized program
- Con#icting accesses not ordered by synchronization

▪ Synchronized programs yield SC results on non-SC systems

 (CMU 15-418, Spring 2012)

Relaxed consistency performance

Base: Sequentially consistent execution. Processor issues one memory operation at a time,
stalls until completion

W-R: relaxed W→R ordering constraint
(write latency almost fully hidden)

Processor 1

Cache

Write Buffer

Reads Writes

Reads Writes

 (CMU 15-418, Spring 2012)

Summary: relaxed consistency
▪ Motivation: obtain higher performance by allowing

reordering for latency hiding (not allowed by sequential
consistency)

▪ One cost is software complexity: programmer or compiler
must correctly insert synchronization to ensure certain
speci!c ordering
- But in practice complexities encapsulated in libraries that provide intuitive

primitives like lock, unlock, barrier

▪ Relaxed consistency models differ in which memory ordering
constraints they ignore

 (CMU 15-418, Spring 2012)

Course-so-far review

 (CMU 15-418, Spring 2012)

Exam details
▪ Closed book, closed laptop
▪ 1 “post it” of notes (but we’ll let you use both sides)
▪ Some resources:

- Hennessy and Patterson. Computer Architecture: a Quantitative Approach. 5th edition

- Chapter 4 is a great chapter on GPUs and SIMD processing

- Chapter 5 is a good alternative discussion of cache coherence

- 1 copy on reserve in the library

- Scanned pdf available: /afs/cs/academic/class/15418-s12/readings

- 1 additional copy of Culler and Singh on reserve in library

 (CMU 15-418, Spring 2012)

Throughput vs. latency

THROUGHPUT

LATENCY

The rate at which work gets done.
- Operations per second
- Bytes per second (bandwidth)
- Tasks per hour

The amount of time for an operation to complete
- An instruction takes 4 clocks
- A cache miss takes 200 clocks to complete
- It takes 20 seconds for a program to complete

 (CMU 15-418, Spring 2012)

Ubiquitous parallelism
▪ What motivated the shift toward multi-core parallelism in

modern processor design?
- Inability to scale clock frequency due to power limits
- Diminishing returns when trying to further exploit ILP

Is the new performance
focus on throughput, or
latency?

 (CMU 15-418, Spring 2012)

Exploiting concurrency in modern parallel processors

1. super-scalar
execution

What is it? What is the bene!t?
Processor executes multiple instructions per clock. Super-scalar execution
exploits instruction level parallelism (ILP). When instructions in the same
thread of control are independent they can be executed in parallel on a
super-scalar processor.

2. SIMD
execution

3. multi-core
execution

4. multi-threaded
execution

Processor executes the same instruction on multiple pieces of data at
once (e.g., one operation on vector registers). The cost of fetching and
decoding the instruction is amortized over many arithmetic operations.

A chip contains multiple [largely] independent processing cores, each
capable of executing independent instruction streams.

Processor maintains execution contexts (state: e.g, a PC, registers, virtual
memory mappings) for multiple threads. Execution of thread instructions
is interleaved on the core over time. Multi-threading reduces processor
stalls by automatically switching to execute other threads when one
thread is blocked waiting for a long-latency operation to complete.

 (CMU 15-418, Spring 2012)

Exploiting concurrency in modern parallel processors

1. super-scalar
execution

Who is responsible for mapping?
Usually not a programmer responsibility:
ILP automatically detected by processor hardware or by compiler (or both)

2. SIMD
execution

3. multi-core
execution

4. multi-threaded
execution

In very simple cases, data parallelism is automatically detected by the compiler,
(e.g., assignment 1 saxpy). In practice, programmer explicitly describes SIMD
execution using vector instructions or by specifying independent execution in a
high-level language (e.g., ISPC gangs, CUDA)

Programmer de!nes independent threads of control.
e.g., pthreads, ISPC tasks, openMP pragmas

Programmer de!nes independent threads of control. But programmer
must create more threads than processing cores.

 (CMU 15-418, Spring 2012)

Frequently discussed processor examples
▪ Intel Core i7 GPU

- 4 cores
- Each core:

- Supports 2 threads (hyperthreading)
- Can issue 8-wide SIMD instructions (AVX instructions)
- Can perform multiple instructions per clock

▪ NVIDIA GTX 480 GPU
- 15 cores
- Each core:

- Supports up to 48 warps (warp is a group of 32 “CUDA threads”)
- Issues 32-wide SIMD instructions (same instruction for all 32 “CUDA threads” in a warp)
- Also capable of issuing multiple instructions per clock, but we haven’t talked about it

▪ Blacklight Supercomputer
- 512 CPUs

- Each CPU: 8 cores
- Each core: supports 2 threads, issues 4-wide SIMD instructions (SSE instructions)

 (CMU 15-418, Spring 2012)

Decomposition: asst 1, program 2
▪ You used ISPC to parallelize Mandelbrot generation
▪ You created a bunch of tasks. How many? Why?

uniform	
 int	
 rowsPerTask	
 =	
 height	
 /	
 2;

//	
 create	
 a	
 bunch	
 of	
 tasks

launch[2]	
 <	
 mandelbrot_ispc_task(
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 x0,	
 y0,	
 x1,	
 y1,
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 width,	
 height,
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 rowsPerTask,
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 maxIterations,
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 output)	
 >;

 (CMU 15-418, Spring 2012)

Amdahl’s law
▪ Let S = the fraction of sequential execution that is inherently sequential
▪ Max speedup on P processors given by:

speedup

Processors

M
ax

 Sp
ee

du
p

S=0.01

S=0.05

S=0.1

 (CMU 15-418, Spring 2012)

Work assignment Problem to solve

Subproblems
(“tasks”)

Threads
(or processors)

Decomposition

Assignment

STATIC
ASSIGNMENT

DYNAMIC
ASSIGNMENT

Assignment of subproblems to processors is determined before (or right
at the start) of execution. Assignment does not dependent on execution
behavior.

Assignment of subproblems to processors is determined as the program runs.

Good: very low (almost none) run-time overhead
Bad: execution time of subproblems must be predictable (so programmer
can statically balance load)

Good: can achieve balance load under unpredictable conditions
Bad: incurs runtime overhead to determine assignment

Examples: solver kernel, OCEAN, mandlebrot in asst 1, problem 1, ISPC foreach

Examples: ISPC tasks, executing grid of CUDA thread blocks on GPU,
assignment 3, shared work queue

 (CMU 15-418, Spring 2012)

Balancing the workload
Ideally all processors are computing all the time during program execution
(they are computing simultaneously, and they !nish their portion of the work at the same time)

Recall Amdahl’s Law:
Only small amount of load imbalance can
signi!cantly bound maximum speedup

Time P1 P2 P3 P4

P4 does 20% more work → P4 takes 20% longer to complete
 → 20% of parallel program runtime is
 essentially serial execution
 (clari!cation: work in serialized section here is about 5% of a
 sequential program’s execution time: S=.05 in Amdahl’s law eqn)

 (CMU 15-418, Spring 2012)

Dynamic assignment using work queues

Worker threads:
Pull data from work queue
Push new work to queue as it’s created

T1 T2 T3 T4

Sub-problems
(aka “tasks”, “work”)

Shared work queue: a list of work to do
(for now, let’s assume each piece of work is independent)

 (CMU 15-418, Spring 2012)

Decomposition in assignment 2
▪ Most solutions decomposed the problem in several ways

- Decomposed screen into tiles (“task” per tile)
- Decomposed tile into per circle “tasks”
- Decomposed tile into per pixel “tasks”

 (CMU 15-418, Spring 2012)

Programming model abstractions

1. shared
address space

Communication?

Implicit: loads and stores to
shared variables

2. message
passing

3. data-parallel

Sync?

Synchronization primitives
such as locks and barriers

Structure?

Multiple processors
sharing an address
space.

Multiple processors,
each with own memory
address space.

Explicit: send and receive
messages

Build synchronization out
of messages.

Rigid program
structure: single logical
thread containing
map(f,	
 collection)
where “iterations” of
the map can be
executed concurrently

Typically not allowed
within map except
through special built-in
primitives (like
“reduce”). Comm
implicit through loads
and stores to address
space

Implicit barrier at the
beginning and end of
the map.

 (CMU 15-418, Spring 2012)

Artifactual vs. inherent communication

ARTIFACTUAL
COMMUNICATION

INHERENT
COMMUNICATION

FALSE SHARING

P1 P2

Cache line

Problem assignment as shown. Each processor
reads/writes only from its local data.

 (CMU 15-418, Spring 2012)

Cache coherence
Why cache coherence?
Hand wavy answer: would like shared memory to behave “intuitively” when two
processors read and write to a shared variable. Reading a value after another processor
writes to it should return the new value. (despite replication due to caches)

Requirements of a coherent address space
1. A read by processor P to address X that follows a write by P to address X, should return the value of the

write by P (assuming no other processor wrote to X in between)

2. A read by a processor to address X that follows a write by another processor to X returns the written value...
if the read and write are sufficiently separated in time (assuming no other write to X occurs in between)

3. Writes to the same location are serialized; two writes to the same location by any two processors are seen
in the same order by all processors.
(Example: if values 1 and then 2 are written to address X, no processor observes 2 before 1)

Condition 1: program order (as expected of a uniprocessor system)

Condition 2: write propagation: The news of the write has to eventually get to the other processors. Note that
 precisely when it is propagated is not de!ned by de!nition of coherence.

Condition 3: write serialization

 (CMU 15-418, Spring 2012)

Implementing cache coherence
Main idea of invalidation-based protocols: before
writing to a cache line, obtain exclusive access to it

SNOOPING Each cache broadcasts its cache misses to all other caches. Waits for other
caches to react before continuing.

DIRECTORIES Information about location of cache line and number of shares is stored in a
centralized location. On a miss, requesting cache queries the directory to
!nd sharers and communicates with these nodes using point-to-point
messages.

Good: simple, low latency
Bad: broadcast traffic limits scalability

Good: coherence traffic scales with number of sharers, and number of
sharers is usually low
Bad: higher complexity, overhead of directory storage, additional latency
due to longer critical path

 (CMU 15-418, Spring 2012)

MSI state transition diagram

S
(Shared)

M
(Modi!ed)

PrRd / --
PrWr / --

PrRd / BusRd

BusRd / #ush

Broadcast (bus) initiated transaction

Processor initiated transaction

A / B: if action A is observed by cache controller, action B is taken

I
(Invalid)

PrWr / BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / #ush

BusRd / --

 (CMU 15-418, Spring 2012)

CPU vs. GPU
▪ What would you say is the most notable architectural

difference you observe when programming the CPU vs. the
GPU?

