Lecture 14:
Relaxed Memory Consistency +
Exam 1 Review

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Announcements

B Exam 1 review session
- Sunday 6:30pm
- GHC4405

m Will talk more about exam later in class

(CMU 15-418, Spring 2012)

Today: what you should know

m Understand the motivation for relaxed consistency models

®m Understand the implications of TSO and PC relaxed models

(CMU 15-418, Spring 2012)

Relaxing memory operation ordering

® Four types of memory operation orderings

= W—R: write must complete before subsequent read
= R—R:read must complete before subsequent read
= R—W:read must complete before subsequent write

= W-—W: write must complete before subsequent write

B Sequential consistency maintains all four orderings

m Relaxed memory consistency models allow certain orderings to be violated

(CMU 15-418, Spring 2012)

Motivation: hiding latency

B Why are we interested in relaxing ordering requirements?

- Performance
- Specifically, hiding memory latency: overlap memory accesses with other operations

- Remember, memory access in a cache coherent system may entail much more then
simply reading bits from memory (finding data, sending invalidations, etc.)

Write A Write A
Read B

Vs.
Read B

(CMU 15-418, Spring 2012)

Another way of thinking about relaxed ordering

Program order

(dependencies in red: required for
sequential consistency)

Thread 1 (on P1) Thread 2 (on P2)

A= 1;
'
B = 1;
'
unlock(L);
lock(L);
!
X = A;
!
y = B;

Sufficient order
(logical dependenciesin red)

Thread 1 (on P1) Thread 2 (on P2)
A=1; —

B =1;
! !
unlock(L);
lock(L);
!
X = A;
y:B;<_

“Intuitive” notion of correct = execution produces same results as a sequentially

consistent system

(CMU 15-418, Spring 2012)

Allowing reads to move ahead of writes

® Four types of memory operation orderings
" W=Rowritemust-completebeforesubsequentread

= R—R:read must complete before subsequent read

= R—W:read must complete before subsequent write

= W-—W: write must complete before subsequent write

m Allow processor to hide latency of writes

- Processor Consistency (P(C)
- Total Store Ordering (T5S0)

(CMU 15-418, Spring 2012)

Allowing reads to move ahead of writes

m Total store ordering (TSO)

- Processor P can read B before it’s write to A is seen by all processors
(processor can move its own reads in front of its own writes)

- Read by other processors cannot return new value of A until the write to
A is observed by all processors

® Processor consistency (P(C)

- Any processor can read new value of A hefore the write is observed by all
processors

® InTSO and PC, W— W constraint still exists. Writes by the same thread are
not reordered (they occur in program order)

(CMU 15-418, Spring 2012)

Four example programs
1

2

Thread 1 (on P1) Thread 2 (on P2) Thread 1 (on P1) Thread 2 (on P2)
A= 1; while (flag == 0); A =1; print B;
flag = 1; print A; B =1; print A;
Thread1(onP1) Thread 2 (on P2) Thread 3 (on P3) Thread 1 (on P1) Thread 2 (on P2)
A= 1; while (A == @0); while (B == 0); A=1; B = 1;
B =1; print A; print B; print A;
Execution matches Sequential Consistency (5C)
1 2 3 4

Total Store Ordering (TSO)

X

Processor Consistency (P(C)

X

X

(CMU 15-418, Spring 2012)

Allowing writes to be reordered

® Four types of memory operation orderings
" W=Rowritemust-completebeforesubsequentread

= R—R:read must complete before subsequent read

= R—W:read must complete before subsequent write

W W s complete beforecul y

m Partial Store Ordering (PSO)

- Execution may not match sequential consistency on program 1

(P2 may observe change to f1ag before change to A)

Thread1(onP1) Thread 2 (on P2)
A=1; while (flag == 0);
flag = 1; print A;

(CMU 15-418, Spring 2012)

Allowing all reorderings

Four types of memory operation orderings

= Pereadmusteompletebeloresubseguentread

Examples:
- Weak ordering (WO)
- Release Consistency (R(C)

Processor supports special synchronization operations

Memory accesses before sync must complete before syncissues

Memory access after sync cannot begin until sync complete

reorderable reads
and writes

SYNC

reorderable reads
and writes

SNYC

(CMU 15-418, Spring 2012)

Example: expressing synchronization in relaxed models

m |ntel x86 ~ processor consistency (PC) model

m Provides syncinstructions if software requires a specific
instruction ordering not guaranteed by the consistency model

- lfence (“load fence”), sfence (“store fence”), mfence (“mem fence”)

A cool post on the role of memory fences:
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/

(CMU 15-418, Spring 2012)

http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-fences-on-an-x86/

Conflicting data accesses

B Two memory accesses by different processors conflict if

- they access the same memory location
- atleast oneis a write

m Unsynchronized program

- Conflicting accesses not ordered by synchronization

m Synchronized programs yield SC results on non-SC systems

(CMU 15-418, Spring 2012)

Relaxed consistency performance

Processor 1

Q
E
b
o :
= Reads Writes
O
- 4
w N—
T - Write-Buffer--
N X £ T "B, =, "0l -
: b
“,_-’ Cache

Base W-R Base W-R Base W-R l l

MP3D LU PTHOR Reads Writes

Base: Sequentially consistent execution. Processor issues one memory operation at a time,
stalls until completion

W-R: relaxed W— R ordering constraint
(write latency almost fully hidden)

(CMU 15-418, Spring 2012)

Summary: relaxed consistency

m Motivation: obtain higher performance by allowing
reordering for latency hiding (not allowed by sequential
consistency)

B One cost is software complexity: programmer or compiler
must correctly insert synchronization to ensure certain
specific ordering

- Butin practice complexities encapsulated in libraries that provide intuitive
primitives like lock, unlock, barrier

B Relaxed consistency models differ in which memory ordering
constraints they ignore

(CMU 15-418, Spring 2012)

Course-so-far review

(CMU 15-418, Spring 2012)

Exam details

m (losed book, closed laptop
m 1“postit” of notes (but we'll let you use both sides)
B Some resources:

- Hennessy and Patterson. Computer Architecture: a Quantitative Approach. 5th edition

- Chapter4is a great chapter on GPUs and SIMD processing

- Chapter 5 is a good alternative discussion of cache coherence

- 1 copy on reserve in the library

- Scanned pdf available: /afs/cs/academic/class/15418-s12/readings

- 1additional copy of Culler and Singh on reserve in library

(CMU 15-418, Spring 2012)

Throughput vs. latency

TH RO U G H P UT The rate at which work gets done.

— Operations per second
— Bytes per second (handwidth)
— Tasks per hour

I_ ATE N CY The amount of time for an operation to complete
— An instruction takes 4 clocks

— A cache miss takes 200 clocks to complete
— It takes 20 seconds for a program to complete

(CMU 15-418, Spring 2012)

Ubiquitous parallelism

m What motivated the shift toward multi-core parallelism in

modern processor design?

- Inability to scale clock frequency due to power limits
- Diminishing returns when trying to further exploit ILP

10,000,000

 Dual-Core Itanium 2

Intel CPU Trends

(sources: Intel, Wikipedia, K. Olukotun)

1,000,000

100,000

_ Is the new performance
focus on throughput, or
latency?

100

10

1

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

(CMU 15-418, Spring 2012)

Exploiting concurrency in modern parallel processors

What is it? What is the benefit?

1. super-scalar
execution

Processor executes multiple instructions per clock. Super-scalar execution
exploits instruction level parallelism (ILP). When instructions in the same
thread of control are independent they can be executed in parallelon a
super-scalar processor.

2. SIMD
execution

Processor executes the same instruction on multiple pieces of data at
once (e.g., one operation on vector registers). The cost of fetching and
decoding the instruction is amortized over many arithmetic operations.

3. multi-core
execution

A chip contains multiple [largely] independent processing cores, each
capable of executing independent instruction streams.

4. multi-threaded
execution

Processor maintains execution contexts (state: e.g, a PC, registers, virtual
memory mappings) for multiple threads. Execution of thread instructions
is interleaved on the core over time. Multi-threading reduces processor
stalls by automatically switching to execute other threads when one
thread is blocked waiting for a long-latency operation to complete.

(CMU 15-418, Spring 2012)

Exploiting concurrency in modern parallel processors

Who is responsible for mapping?

_ Usually not a programmer responsibility:
1 . SU pe r-5Ca Ia J ILP automatically detected by processor hardware or by compiler (or both)
execution

2 S I M D In very simple cases, data parallelism is automatically detected by the compiler,
* (e.g., assignment 1 saxpy). In practice, programmer explicitly describes SIMD
o execution using vector instructions or by specifying independent executionina
EXECUtI on high-level language (e.qg., ISPC gangs, CUDA)
: Programmer defines independent threads of control.
3. multi-core 9 "

e.g., pthreads, ISPC tasks, openMP pragmas

execution

4‘ m U Iti _th re a d ed Programmer defines independent thre.ads of control. But programmer
must create more threads than processing cores.
execution

(CMU 15-418, Spring 2012)

Frequently discussed processor examples

m |ntel Corei7 GPU

- 4 cores

- Each core:
- Supports 2 threads (hyperthreading)
- (Canissue 8-wide SIMD instructions (AVX instructions)
- Can perform multiple instructions per clock

m NVIDIA GTX 480 GPU

- 15 cores

- Each core:
= Supports up to 48 warps (warp is a group of 32 “CUDA threads”)
- Issues 32-wide SIMD instructions (same instruction for all 32 “CUDA threads” in a warp)
- Also capable of issuing multiple instructions per clock, but we haven't talked about it

m Blacklight Supercomputer

- 512 (CPUs
- Each CPU: 8 cores
- Each core: supports 2 threads, issues 4-wide SIMD instructions (SSE instructions)

(CMU 15-418, Spring 2012)

Decomposition: asst 1, program 2

m You used ISPC to parallelize Mandelbrot generation
m You created a bunch of tasks. How many? Why?

uniform int rowsPerTask = height / 2;
// create a bunch of tasks

launch[2] < mandelbrot _ispc_ task(
X0, yo, x1, yl,
width, height,
rowsPerTask,
maxIterations,
output) >;

(CMU 15-418, Spring 2012)

Amdahl’s law

Let .S = the fraction of sequential execution that is inherently sequential

B Max speedup on P processors given by:

speedup <
-5
S +
5=0.01
240 P
+32
Q.
EXW
D
D
Q.
(Vo)
s
E 1lis S_OOOS
| 5=0.1
48
8 16 24 32 40 48 56 64
- + + - + + + ~ + + - + + + - + + - * + + - + + - + — =9

Processors .
(CMU 15-418, Spring 2012)

Work assignment

STATIC
ASSIGNMENT

DYNAMIC
ASSIGNMENT

[Problem to solve J
" Decomposition

Subproblems () C) () C) () Q
(frasks”) ()OO C_ D DC()

Threads (7" 77 T ¢TTRL i I

(OF Processors) ‘----- foooot bbbl bbb

Assignment of subproblems to processors is determined before (or right

at the start) of execution. Assignment does not dependent on execution
behavior.

Good: very low (almost none) run-time overhead

Bad: execution time of subproblems must be predictable (so programmer
can statically balance load)

Examples: solver kernel, OCEAN, mandlebrot in asst 1, problem 1, ISPC foreach

Assignment of subproblems to processors is determined as the program runs.

Good: can achieve balance load under unpredictable conditions
Bad: incurs runtime overhead to determine assignment

Examples: ISPC tasks, executing grid of CUDA thread blocks on GPU,
assignment 3, shared work queue

(CMU 15-418, Spring 2012)

Balancing the workload

Ideally all processors are computing all the time during program execution
(they are computing simultaneously, and they finish their portion of the work at the same time)

P1 P2 P3 P4
Recall Amdahl’s Law:
Only small amount of load imbalance can
significantly bound maximum speedup

Time

P4 does 20% more work — P4 takes 20% longer to complete

— 20% of parallel program runtime is
essentially serial execution

(clarification: work in serialized section here is about 5% of a
sequential program’s execution time: 5=.05 in Amdahl’s law eqn)

(CMU 15-418, Spring 2012)

Dynamic assignment using work queues

Sub-problems [j [j [] [j [] []
eta sy ot . OCIC I)

l

Shared work queue: a list of work to do
(for now, let’s assume each piece of work is independent)

Worker threads: T1 T2 T3 T4
Pull data from work queue TR T mmemmen T
Push new work to queue as it’s created

(CMU 15-418, Spring 2012)

Decomposition in assignhment 2

m Most solutions decomposed the problem in several ways
- Decomposed screen into tiles (“task” per tile)
- Decomposed tile into per circle “tasks”
- Decomposed tile into per pixel “tasks”

(CMU 15-418, Spring 2012)

Structure?

Programming model abstractions

Communication?

Sync?

1. shared

Multiple processors
sharing an address

Implicit: loads and stores to

shared variables

Synchronization primitives
such as locks and barriers

address space swace
2 . M essage Multiple processors, Explicit: send and receive Build synchronization out
. eachwithownmemory messages of messages.
paSS| n g address space.
3. data -para I IEI Rigid program Typically not allowed Implicit barrier at the

structure: single logical
thread containing
map(f, collection)
where “iterations” of
the map can be
executed concurrently

within map except

through special built-in

primitives (like
“reduce”). Comm
implicit through loads
and stores to address
space

beginning and end of
the map.

(CMU 15-418, Spring 2012)

Artifactual vs. inherent communication

Cacheline

INHERENT

COMMUNICATION e oo :/ ce oo

® o o 00 ® o6 o
ARTIFACTUAL Ml [l e | el
COMMUNICATION DRI DA
FALSE SHARING

Problem assignment as shown. Each processor
reads/writes only from its local data.

(CMU 15-418, Spring 2012)

Cache coherence

Why cache coherence?

Hand wavy answer: would like shared memory to behave “intuitively” when two
processors read and write to a shared variable. Reading a value after another processor
writes to it should return the new value. (despite replication due to caches)

Requirements of a coherent address space

1. Aread by processor P to address X that follows a write by P to address X, should return the value of the
write by P (assuming no other processor wrote to X in between)

2. Aread by a processor to address X that follows a write by another processor to X returns the written value...
if the read and write are sufficiently separated in time (assuming no other write to X occurs in between)

3. Writes to the same location are serialized; two writes to the same location by any two processors are seen
in the same order by all processors.

(Example: if values 1 and then 2 are written to address X, no processor observes 2 before 1)

Condition 1: program order (as expected of a uniprocessor system)

Condition 2: write propagation: The news of the write has to eventually get to the other processors. Note that
precisely when it is propagated is not defined by definition of coherence.

Condition 3: write serialization
(CMU 15-418, Spring 2012)

Implementing cache coherence

Main idea of invalidation-based protocols: before
writing to a cache line, obtain exclusive access to it

SNOOPING

DIRECTORIES

Each cache broadcasts its cache misses to all other caches. Waits for other
caches to react before continuing.

Good: simple, low latency
Bad: broadcast traffic limits scalability

Information about location of cache line and number of shares is stored in a
centralized location. On a miss, requesting cache queries the directory to
find sharers and communicates with these nodes using point-to-point
messages.

Good: coherence traffic scales with number of sharers, and number of

sharers is usually low
Bad: higher complexity, overhead of directory storage, additional latency

due to longer critical path
(CMU 15-418, Spring 2012)

PrWr/ BusRdX

PriWr / BusRdX

PrRd / BusRd

©
()

(Modified)

BusRd / flush

MSI state transition diagram

A/ B: if action A is observed by cache controller, action B is taken

----- » Broadcast (bus) initiated transaction

—> Processor initiated transaction

BusRdX/ flush

PrRd/-- ' BusRdX/--

BusRd/--

(CMU 15-418, Spring 2012)

CPU vs. GPU

m What would you say is the most notable architectural

difference you observe when programming the CPU vs. the
GPU?

(CMU 15-418, Spring 2012)

