
Lecture 13:
Directory-Based Cache Coherence II +

Memory Consistency Models

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

 (CMU 15-418, Spring 2012)

Announcements
▪ Exam 1: Tuesday March 6th

- Covers material up through next class

▪ Supplemental readings
- On (1) GPU and SIMD architectures and (2) cache coherence
- From Henessey and Patterson, 5th edition

▪ Exam review session Sunday afternoon

▪ Assignment 3: Due Tuesday March 6th

 (CMU 15-418, Spring 2012)

Today: what you should know
▪ Understand two challenges of implementing directory-based

cache coherence
- Reducing the overhead of directory storage
- Reducing the number of messages required to implement coherence protocol

▪ How hoes memory consistency differ from memory coherence

▪ Sequential consistency vs. relaxed consistency models
- What is the motivation for relaxed consistency?

 (CMU 15-418, Spring 2012)

When we left off last time...
▪ We discussed ways to reduce the storage overhead of

the directory structure needed for scalable cache
coherence

▪ Last time: reduce P using limited pointer scheme
- Most of the time, the number of sharers is low

(rows of the directory are sparse)
- Store a "xed number of pointers to sharers per block
- Have a reasonable fallback when actual sharing

exceeds this limit

▪ What about reducing M?

. .
.

P

M

. . .

 (CMU 15-418, Spring 2012)

Limiting size of directory: sparse directories
▪ Majority of memory is NOT resident in cache. Coherence

protocol only needs sharing information for cached blocks
- So most directory entries are “idle” most of the time
- 1 MB cache, 1 GB memory per node → 99.9% of directory entries are idle

 (CMU 15-418, Spring 2012)

Sparse directories
Directory at home node maintains pointer to only one
node caching block (not a list of sharers)
Pointer to next node stored in the cache line

. .
.M

Processor cache: node 0

prev ptr

block data

Directory (home node for block)

Processor cache: node 1

next ptr

Processor cache: node 2

On read miss: add requesting node to head of list
On write miss: propagate invalidations along list
On evict: need to patch up list (linked list removal)

 (CMU 15-418, Spring 2012)

Sparse directories: scaling properties
Good:

- Low memory storage overhead (one pointer per block)

- Storage proportional to cache size (and list stored in SRAM)

- Traffic on write proportional to number of sharers
. .

.M

Processor cache: node 0

pre ptr

block data

Directory (home node for block)

Processor cache: node 1

next ptr

Processor cache: node 2

Bad:
- Latency of write proportional to number of sharers

(invalidation of lines is serial)

- Higher implementation complexity

 (CMU 15-418, Spring 2012)

Recall: write miss in full bit vector scheme

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Write to memory by processor 1: block is clean, but resident in P2’s and P3’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)
2. Response: sharer ids + data

Original bit-vector scheme sends same number of invalidation messages
as sparse directory approach, but invalidation messages can be sent to

all processors in parallel

 (CMU 15-418, Spring 2012)

Optimizing directory-based coherence

▪ Reducing storage overhead of directory data structure

▪ Reducing number of messages sent to implement
coherence protocol

 (CMU 15-418, Spring 2012)

Memory

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)

1. Request: read miss msg

Recall: read miss to dirty block

 (CMU 15-418, Spring 2012)

Memory

Recall: read miss to dirty block

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)
(Note: "gure below shows "nal state of system after operation is complete)

Five network transactions in total
Four of the transactions are on the “critical path” (transactions 4 and 5 can be done in parallel)

- Critical path: sequence of dependent operations that must occur to complete operation

2. Response: owner id

1. Request: read miss msg

3. Request: data
4. Response: data

5. Response: data+dir revision

 (CMU 15-418, Spring 2012)

Memory

Intervention forwarding

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)

1. Request: read miss msg

 (CMU 15-418, Spring 2012)

Memory

Intervention forwarding

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)

1. Request: read miss msg

3. Response: data+dir revision

2. Request: intervention read

2. Home node requests data from owner node (processor 3)
3. Owning node responds

 (CMU 15-418, Spring 2012)

Memory

Intervention forwarding

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)

1. Request: read miss msg

3. Response: data+dir revision

2. Request: intervention read

4. Response: data

4. Home node updates directory, and responds to requesting node with data
Four network transactions in total (less traffic)
But all four of the transactions are on the “critical path”

 (CMU 15-418, Spring 2012)

Memory

Request forwarding

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)

1. Request: read miss msg

 (CMU 15-418, Spring 2012)

Memory

Request forwarding

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)

1. Request: read miss msg 2. Request: send data to requestor

 (CMU 15-418, Spring 2012)

Memory

Request forwarding

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)

1. Request: read miss msg 2. Request: send data to requestor

3/4. Response: data
(2 msgs: sent to both home node and requestor)

Four network transactions in total
Only three of the transactions are on the critical path (transactions 3 and 4 can be done in parallel)

 (CMU 15-418, Spring 2012)

Summary: directory-based coherence
▪ Primary observation: broadcast doesn’t scale, but luckily we don’t

need to broadcast to ensure coherence because often the number
of caches containing a block is small

▪ Instead of snooping, just store the list of sharers in a “directory”
and check the list as necessary

▪ One challenge: reducing overhead of directory storage
- use hierarchies of processors or larger block sizes
- limited pointer schemes: exploit fact the most processors not sharing block
- sparse directory schemes: exploit fact that most blocks are not in cache

▪ Another challenge: reducing the number of messages sent (traffic)
and critical path (latency) of message chains needed to implement
coherence operations

 (CMU 15-418, Spring 2012)

Intel Core i7 CPU
▪ Centralized directory for all

blocks in the L3 cache
(note importance of inclusion property)

▪ Directory maintains list of L2
caches containing block

▪ Instead of broadcasting
coherence traffic to all L2’s, only
send coherence messages to L2’s
that contain the block
(remember interconnect is a ring, not a bus)

▪ Directory dimensions:
- P=4
- M = number of L3 cache blocks

Core

L1 Data Cache

L2 Cache

Shared L3 Cache
(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

 (CMU 15-418, Spring 2012)

Memory Consistency

 (CMU 15-418, Spring 2012)

Terminology
How does processor 1 “observe” the result of a write by processor 2
to address A?

It reads address A

Processor 2 writes value X to address A

Processor 1 “observes” or “sees” the write if its read of address A
returns the value X

Coherent memory ensures that if processor 1’s read comes sufficiently long
after processor 2’s write, processor 1 will observe the write.

 (CMU 15-418, Spring 2012)

A	
 =	
 0;
...
A	
 =	
 1;
if	
 (B	
 ==	
 0)
{
	
 	
 	
 ...
}

B	
 =	
 0;
...
B	
 =	
 1;
if	
 (A	
 ==	
 0)
{
	
 	
 	
 ...
}

Thread 1 (on processor 1) Thread 2 (on processor 2)

Assume coherent shared memory system:
Can code enter the “if” clause in both threads?

// A and B be initialized to 0 here

 (CMU 15-418, Spring 2012)

A	
 =	
 0;

...

A	
 =	
 1;

if	
 (B	
 ==	
 0)

{

	
 	
 	
 ...

}

B	
 =	
 0;

...

B	
 =	
 1;

if	
 (A	
 ==	
 0)

{

	
 	
 	
 ...

}

Thread 1 (on processor 1) Thread 2 (on processor 2)

Attempt write (A) // can’t proceed (block not exclusive)
Send invalidate (A) to P2
Read (B) // observe value 0 from cached value of B
Recv invalidate (B), invalidate block (B), send ack
Receive ack on (A) from P2 // block now exclusive
Complete write (A) // update value in cache

Attempt write (B) // can’t proceed (block not exclusive)
Send invalidate (B) to P1
Read (A) // observe value 0 from cached value of A
Recv invalidate (A), invalidate block (A), send ack
Receive ack on (B) from P2 // block now exclusive
Complete write (B) // update value in cache

Processor 1 operations Processor 2 operations
time

Assume: processors can proceed past writes
Let: A and B be resident in shared state in both processors caches (after the “...”)

 (CMU 15-418, Spring 2012)

A	
 =	
 0;

...

A	
 =	
 1;

if	
 (B	
 ==	
 0)

{

	
 	
 	
 ...

}

B	
 =	
 0;

...

B	
 =	
 1;

if	
 (A	
 ==	
 0)

{

	
 	
 	
 ...

}

Thread 1 (on processor 1) Thread 2 (on processor 2)

Attempt write (A) // can’t proceed (block not exclusive)
Send invalidate (A) to P2
Read (B) // observe value 0 from cached value of B
Recv invalidate (B), invalidate block (B), send ack
Receive ack on (A) from P2 // block now exclusive
Complete write (A) // update value in cache

Attempt write (B) // can’t proceed (block not exclusive)
Send invalidate (B) to P1
Read (A) // observe value 0 from cached value of A
Recv invalidate (A), invalidate block (A), send ack
Receive ack on (B) from P2 // block now exclusive
Complete write (B) // update value in cache

Processor 1 operations Processor 2 operations
time

Result: both threads end up entering IF clause.
Should this behavior be allowed?

 (CMU 15-418, Spring 2012)

A	
 =	
 1;
flag	
 =	
 1;

while	
 (flag	
 ==	
 0);
print	
 A;

Thread 1 (on processor 1) Thread 2 (on processor 2)

(Let A be initialized to 0)

Another example: potentially frustrating if
you were a developer

 (CMU 15-418, Spring 2012)

A	
 =	
 1;
B	
 =	
 2;

print	
 B;
print	
 A;

Thread 1 (on processor 1) Thread 2 (on processor 2)
(Let A and B be initialized to 0)

What possible outcomes do you expect?

0	
 0	
 	
 	
 //	
 P2	
 completes	
 before	
 P1	
 starts

0	
 1	
 	
 	
 //	
 P1	
 sets	
 A,	
 but	
 not	
 B,	
 before	
 first	
 P2	
 print

2	
 1	
 	
 	
 //	
 P1	
 completes	
 before	
 P2	
 starts	
 printing

2	
 0	
 	
 	
 //	
 by	
 behavior	
 on	
 previous	
 slide,	
 this	
 could	
 happen

 (CMU 15-418, Spring 2012)

Memory consistency
▪ Memory coherence

- Ensures all processors see a consistent view of memory
- From defn. in previous lecture: all writes to SAME address should be seen by all

processors in the same order (write serialization)
- Writes to an address by one processor will eventually be observed by other

processors. But when?

▪ Memory consistency model
- De"nes constraints on the order in which memory operations must appear to

be performed (the “when”)
- Includes operations to same location, and to different locations

 (CMU 15-418, Spring 2012)

A	
 =	
 1;
B	
 =	
 2;

print	
 B;
print	
 A;

Thread 1 (on processor 1) Thread 2 (on processor 2)

(Let A and B be initialized to 0)

Sequential consistency (SC)
time time time

P1: A=1

P1: B=2

P2: print B

P2: print A

P1: A=1

P1: B=2

P2: print B

P2: print A

P2: print B

P1: A=1

P1: B=2

P2: print A

0	
 0 0	
 1 2	
 1Output:

Sequential consistency is most intuitive notion of
consistency.

It requires that the result of program execution is
consistent with an order where memory accesses
from the same processor are kept in order and
memory accesses from different processors are
arbitrarily interleaved.

(Another way of saying this is: memory accesses by different
processors are executed in some sequential order)

(Note that 2	
 0 is not an output that
is allowed by sequential consistency)

 (CMU 15-418, Spring 2012)

Another way to think about SC

Processor 1 Processor 2 Processor P. . .

Memory

Processors appear to share a single logical memory.
Memory services requests from processors one at a time.

 (CMU 15-418, Spring 2012)

Sufficient conditions* for sequential consistency

1. Every process issues memory operations in program order

2. Each processor waits for its own writes to complete before
continuing to next operation

3. When a processor reads, it waits for the write producing the value
returned by the read to complete before continuing to next
operation
- In other words: if a processor observes a write, it waits for all processors to

observe the write before continuing.

* sufficient, but not necessary (optimizations do exist)

 (CMU 15-418, Spring 2012)

Performance implications
▪ Sequential consistency provides intuitive semantics to the

programmer, but incurs a performance penalty

- Example 1: processor must wait for write to complete before issuing
next operation (write completion can take a long time: send
invalidations, receive acks, etc.)

- Example 2: common compiler optimizations (instruction reordering,
loop unrolling, common subexpression elimination) can cause
sequential consistency to be violated even if hardware implements
sequential consistency

 (CMU 15-418, Spring 2012)

Example: write miss in directory coherence protocol

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Write to memory by processor 1: block is clean, but resident in P2’s and P3’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)

2. Response: sharer ids + data

4a. Response: ack from P3

4b. Response: ack from P2

Consider P1 performing two different writes.
After receiving both invalidation acks from "rst write, then P1 can perform write, then issue second write
Why wait for acks? Why not just wait for directory to be updated? (2)

 (CMU 15-418, Spring 2012)

Example:

Scalable Interconnect

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Processor 3

Local Cache

Memory

Directory

. . .

Assume P1 does not wait for A=1 acks from P2 and P3 before sending B=1
Due to network delay, B=1 arrives at P3 before A=1

A	
 =	
 1; while	
 (A==0);

B=1;

while	
 (B==0);

print	
 A;

A=1
B=1

A=1
[message suffers network delay]

 (CMU 15-418, Spring 2012)

B	
 =	
 0;

A	
 =	
 1;

x	
 =	
 B;

Thread 1 (on P1)

Code shown above-right is the result of very reasonable compiler optimizations:
reordering operations on different memory locations

SC speci"es original program cannot result in state x=0, y=0
SC speci"es that modi"ed program *must* result in x=0, y=0

Original program code

A	
 =	
 0;

B	
 =	
 1;

y	
 =	
 A;

Thread 2 (on P2)
r1	
 =	
 0;

A	
 =	
 1;

x	
 =	
 r1;

B	
 =	
 r1;

Thread 1 (on P1)
r2	
 =	
 0;

B	
 =	
 1;

y	
 =	
 r2;

A	
 =	
 r2;

Thread 2 (on P2)

After compiler register allocation

 (CMU 15-418, Spring 2012)

Relaxed consistency models
▪ Allow reads and writes to complete out of order

(for increased performance)
▪ Assumption is that in most programs, reads and writes to shared variables

are ordered by explicit synchronization operations* rather than regular
loads/stores to shared variables
- As a result, program behaves as if the machine was sequentially consistent

lock()

A	
 =	
 1;

unlock();

lock()

print	
 A;

unlock();

P1: P2: P1:
A	
 =	
 1;

barrier();

P2:
barrier();

print	
 A;

* and that synchronization operations trigger $ush of relevant outstanding memory operations

 (CMU 15-418, Spring 2012)

Relaxing memory operation orderings
▪ W→R, R→R, R→W, W→W
▪ Sequential consistency maintains all four orderings
▪ Relaxed memory consistency allows certain ordering to be violated

- Relaxing W→R: Allows reads to just ahead of writes, but retains ordering among writes.
“Total store ordering” (TSO), “processor consistency (PC)”. Programs that operate under SC
often also operate under TSO/PC without needing additional synchronization

- Relaxing W→W: partial store ordering

- Other variants that relax R→W and R→R

 (CMU 15-418, Spring 2012)

Summary
▪ Memory consistency models de"ne constraints on the order in

which memory operations must appear to be performed

▪ Sequential consistency
- All processors share a single memory, memory services processors one at a time
- Most intuitive (simple)
- But has performance cost

▪ Relaxed memory consistency models gain performance be
reducing constraints on order
- Typically synchronization primitives used by application when speci"c

orderings are required

