Lecture 13:
Directory-Based Cache Coherence Il +
Memory Consistency Models

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Announcements

m Exam 1: Tuesday March 6th

- Covers material up through next class

m Supplemental readings
= 0n (1) GPU and SIMD architectures and (2) cache coherence

- From Henessey and Patterson, 5th edition

m Exam review session Sunday afternoon

m Assignment 3: Due Tuesday March 6th

(CMU 15-418, Spring 2012)

Today: what you should know

m Understand two challenges of implementing directory-based
cache coherence

- Reducing the overhead of directory storage

- Reducing the number of messages required to implement coherence protocol

m How hoes memory consistency differ from memory coherence

m Sequential consistency vs. relaxed consistency models
- What is the motivation for relaxed consistency?

(CMU 15-418, Spring 2012)

When we left off last time...

m Wediscussed ways to reduce the storage overhead of
the directory structure needed for scalable cache
coherence

B Last time: reduce P using limited pointer scheme

- Most of the time, the number of sharers is low
(rows of the directory are sparse)

- Store a fixed number of pointers to sharers per block

- Have a reasonable fallback when actual sharing
exceeds this limit

® What about reducing M?

(CMU 15-418, Spring 2012)

Limiting size of directory: sparse directories

m Majority of memory is NOT resident in cache. Coherence
protocol only needs sharing information for cached blocks

- S0 most directory entries are “idle” most of the time
= 1MB cache, 1 GB memory per node — 99.9% of directory entries are idle

(CMU 15-418, Spring 2012)

Sparse directories

Directory (home node for block)

Directory at home node maintains pointer to only one
node caching block (not a list of sharers)

Pointer to next node stored in the cache line

On read miss: add requesting node to head of list

On write miss: propagate invalidations along list

On evict: need to patch up list (linked list removal)

block data
next ptr)
prev ptr :
\““ -‘* “*
y \ A:‘

]

Processor cache: node 0

Processor cache: node 1

Processor cache: node 2

(CMU 15-418, Spring 2012)

Sparse directories: scaling properties
Good:

- Low memory storage overhead (one pointer per block)

- Storage proportional to cache size (and list stored in SRAM)
Directory (home node for block)

- Trafficon write proportional to number of sharers

M : Bad:
- Latency of write proportional to number of sharers
block data (invalidation of lines is serial)
next ptr - Higher implementation complexity

pre ptr

\“ "* “*
‘* \ A:‘ w \

Processor cache: node 0 Processor cache: node 1 Processor cache: node 2

(CMU 15-418, Spring 2012)

Recall: write miss in full bit vector scheme

Write to memory by processor 1: block is clean, but resident in P2’s and P3’s caches

Processor 1 Processor 2 Processor 3
Local Cache Local Cache Local Cache
Directory Directory
a1l Ry [o o
R o e i R DS B B . I i
""" o o o I sl ==l
f.'.'.'.'Méiiiaﬁi"" I .'.'.'.'.'Mé'.iib};i.’.’.’.’ I
p
I Scalable Interco I ect j
_

1. Request: write miss msg

2. Response: sharer ids + data

3. Request: invalidate (2 msgs)

Original bit-vector scheme sends same number of invalidation messages
as sparse directory approach, but invalidation messages can be sent to

all processors in parallel
(CMU 15-418, Spring 2012)

Optimizing directory-based coherence

B Reducing storage overhead of directory data structure

m Reducing number of messages sent to implement
coherence protocol

(CMU 15-418, Spring 2012)

Recall: read miss to dirty block

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)

Processor 1

Local Cache

Processor 2

Local Cache

Processor 3

‘ Local Cache \

Scalable Interconnect

1. Request: read miss msg

(CMU 15-418, Spring 2012)

Recall: read miss to dirty block

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)
(Note: figure below shows final state of system after operation is complete)

Processor 1 Processor 2 Processor 3
‘ Local Cache \ Local Cache ‘ Local Cache \
Directory Directory Directory
= = T e B I B e o o o T Y I N o o
U e i o O NN B N I N R o i 1\ |.. I i
----- T II Craw | o I
----Memory---- I ----Memory---- ----Memory---- I
p
I Scalable Interco I I

_

1. Request: read miss msg

2. Response: owner id

5. Response: data-+dir revision

3. Request: data

4. Response: data

Five network transactions in total
Four of the transactions are on the “critical path” (transactions 4 and 5 can be done in parallel)

- (Critical path: sequence of dependent operations that must occur to complete operation
(CMU 15-418, Spring 2012)

Intervention forwarding

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)

Processor 1

Local Cache

Processor 2

Local Cache

Processor 3

‘ Local Cache \

Scalable Interconnect

1. Request: read miss msg

(CMU 15-418, Spring 2012)

Intervention forwarding

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)

Processor 1

Local Cache

Processor 2

Processor 3

Local Cache

=

‘ Local Cache \

----- i

Scalable Interconnect

1. Request: read miss msg

2. Home node requests data from owner node (processor 3)

3. Owning node responds

2. Request: intervention read

3. Response: data+dir revision

(CMU 15-418, Spring 2012)

Intervention forwarding

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)

Processor 1 Processor 2 Processor 3
‘ Local Cache \ Local Cache ‘ Local Cache \
Directory i Directory
[e Y I N N (Y) o o o Y Y I o o
[o o S I [T N i I R s e (R I i
""" e B e I
f.'f.'.'Mé'.iibﬁi"" i .'.'.'.'.'Mé'.iibﬁi.’.’.’.’
p
I Scalable Interco I ect j

_

1. Request; read miss msq 2. Request: intervention read

4. Response: data 3. Response: data+dir revision

4. Home node updates directory, and responds to requesting node with data

Four network transactions in total (less traffic)
But all four of the transactions are on the “critical path”

(CMU 15-418, Spring 2012)

Request forwarding

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)

Processor 1 Processor 2 Processor 3
Local Cache Local Cache ‘ Local Cache \
Directory i Directory
[e Y Y N (Y o e Y Y I N o o
[S o o I I [(N i R R I I i
..... e ey pperey
ff.'.'.'Méiiib'.};i.'.'." .'.'.'.'.'Mé'.iibﬁi""
4
Scalable Interconnect j
_

1. Request: read miss msg

(CMU 15-418, Spring 2012)

Request forwarding

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)

Processor 1 Processor 2 Processor 3
Local Cache Local Cache ‘ Local Cache \
Directory Directory Directory
I e o T Y Y R o o o T Y I N o o
R I e i —1 | I i
""" e I B e I
f.'.'.'.'Méiiib'.};i"" .'.'.'.'.'Mé}iib};i.'.'.'.'
p
Scalable Interconnect j

_

1. Request: read miss msg 2. Request: send data to requestor

(CMU 15-418, Spring 2012)

Request forwarding

Read from main memory by processor 1 of the blue block: block is dirty (contained in P3’s cache)

Processor 1 Processor 2 Processor 3
‘ Local Cache \ Local Cache ‘ Local Cache \
Directory i Directory
[e T Y T I N (Y) o e v Y Y I o o
[S o R I NN Y R (A I I R s ma (RN I i
""" e B e I
fff.'.'Mé'.iiaﬁi"" .'.'.'.'.'Mé'.iibﬁi.’.’.’.’
p
Scalable Interconnect j

_

2. Request: send data to requestor

1. Request: read miss msg

3/4. Response: data
(2 msgs: sent to both home node and requestor)

Four network transactions in total
Only three of the transactions are on the critical path (transactions 3 and 4 can be done in parallel)

(CMU 15-418, Spring 2012)

Summary: directory-based coherence

® Primary observation: broadcast doesn’t scale, but luckily we don't
need to broadcast to ensure coherence because often the number
of caches containing a block is small

m [nstead of snooping, just store the list of sharers in a “directory”
and check the list as necessary

® One challenge: reducing overhead of directory storage

- use hierarchies of processors or larger block sizes
- limited pointer schemes: exploit fact the most processors not sharing block
- sparse directory schemes: exploit fact that most blocks are not in cache

B Another challenge: reducing the number of messages sent (traffic)
and critical path (latency) of message chains needed to implement
coherence operations

(CMU 15-418, Spring 2012)

Intel Corei7 CPU

Shared L3 Cache
(One bank; per core)
Ring Interconnect
L2 Cache L2 Cache L2 Cache L2 Cache
L1 Data Cache L1 Data Cache L1 Data Cache L1 Data Cache

Core

Core

Core

Core

Centralized directory for all
blocks in the L3 cache

(note importance of inclusion property)

Directory maintains list of L2
caches containing block

Instead of broadcasting
coherence traffic to all L2’s, only
send coherence messages to L2's
that contain the block

(remember interconnect is a ring, not a bus)

Directory dimensions:
- P=4
= M = number of L3 cache blocks

(CMU 15-418, Spring 2012)

Memory Consistency

(CMU 15-418, Spring 2012)

Terminology

How does processor 1“observe” the result of a write by processor 2
to address A?

It reads address A
Processor 2 writes value X to address A

Processor 1 “observes” or “sees” the write if its read of address A
returns the value X

Coherent memory ensures that if processor 1's read comes sufficiently long
after processor 2's write, processor 1 will observe the write.

(CMU 15-418, Spring 2012)

Thread 1 (on processor 1) Thread 2 (on processor 2)

A = 0; B = O; // A and B be initialized to 0 here
A= 1; B = 1;

if (B == @) if (A == 0)

{ {

} }

Assume coherent shared memory system:
Can code enter the “if” clause in both threads?

(CMU 15-418, Spring 2012)

Thread 1 (on processor 1) Thread 2 (on processor 2)

A = 0; B = 0;
A= 1; B =1;

if (B == 0) if (A == 0)
{ {

} }

Assume: processors can proceed past writes
Let: A and B be resident in shared state in both processors caches (after the“...")

Processor 1 operations Processor 2 operations
time
Attempt write (A) // can’t proceed (block not exclusive) Attempt write (B) // can’t proceed (block not exclusive)
Send invalidate (A) to P2 Send invalidate (B) to P1
Read (B) // observe value 0 from cached value of B Read (A) // observe value 0 from cached value of A
Recvinvalidate (B), invalidate block (B), send ack Recvinvalidate (A), invalidate block (A), send ack
Receive ack on (A) from P2 //block now exclusive Receive ack on (B) from P2 //block now exclusive
Complete write (A) // update value in cache Complete write (B) // update value in cache
v

(CMU 15-418, Spring 2012)

Thread 1 (on processor 1) Thread 2 (on processor 2)

A = 0; B = 9;
A= 1; B = 1;
if (B == 0) if (A == 0)
{ {
} }
Processor 1 operations Processor 2 operations
time
Attempt write (A) // can’t proceed (block not exclusive) Attempt write (B) // cant proceed (block not exclusive)
Send invalidate (A) to P2 Send invalidate (B) to P1
Read (B) // observe value 0 from cached value of B Read (A) // observe value 0 from cached value of A
Recv invalidate (B), invalidate block (B), send ack Recv invalidate (A), invalidate block (A), send ack
""" Receive ackon (A) fromP2 //blocknowexclusive =~ Receiveackon (B)fromP2 //block now exdusive
Complete write (A) // update value in cache Complete write (B) // update value in cache
v

Result: both threads end up entering IF clause.
Should this behavior be allowed?

(CMU 15-418, Spring 2012)

Another example: potentially frustrating if
you were a developer

Thread 1 (on processor 1) Thread 2 (on processor 2)

(Let A be initialized to 0)

A= 1; while (flag == 0);
flag = 1; print A;

(CMU 15-418, Spring 2012)

What possible outcomes do you expect?

Thread 1 (on processor 1) Thread 2 (on processor 2)

(Let A and B be initialized to 0)

A=1; print B;
B = 2; print A;

O 0 // P2 completes before P1 starts
O 1 // Pl sets A, but not B, before first P2 print
2 1 // Pl completes before P2 starts printing

2 0 // by behavior on previous slide, this could happen

(CMU 15-418, Spring 2012)

Memory consistency

B Memory coherence

- Ensures all processors see a consistent view of memory

- From defn. in previous lecture: all writes to SAME address should be seen by all
processors in the same order (write serialization)

- Writes to an address by one processor will eventually be observed by other
processors. But when?

m Memory consistency model

- Defines constraints on the order in which memory operations must appear to
be performed (the “when”)

- Includes operations to same location, and to different locations

(CMU 15-418, Spring 2012)

Sequential consistency (5C)

(Let A and B be initialized to 0)

Thread 1 (on processor 1) Thread 2 (on processor 2)
A=1; print B;
B = 2; print A;

Sequential consistency is most intuitive notion of
consistency.

It requires that the result of program execution is
consistent with an order where memory accesses
from the same processor are kept in order and

memory accesses from different processors are
arbitrarily interleaved.

(Another way of saying this is: memory accesses by different
processors are executed in some sequential order)

time time time
P2: printB @ o
P2: printB @ P:A=19
P2: printA @ P1:B=2@
P1:A=1 @
P2:printB @
P1:A=1 @
P1:B=2 @
P1:B=2 @
P2:printA@
P2: print A I
\

Output: O 0 0 1 2 1

(Note that 2 © is not an output that

is allow ntial consisten
s allowed by sequential consistency) (CMU 15-418, Spring 2012)

Another way to think about SC

Processor 1 Processor 2 oo Processor P

Memory

Processors appear to share a single logical memory.

Memory services requests from processors one at a time.

(CMU 15-418, Spring 2012)

Sufficient conditions™ for sequential consistency

1. Every process issues memory operations in program order

2. Each processor waits for its own writes to complete before
continuing to next operation

3. When a processor reads, it waits for the write producing the value
returned by the read to complete before continuing to next

operation
- Inother words: if a processor observes a write, it waits for all processors to
observe the write before continuing.

* sufficient, but not necessary (optimizations do exist)
(CMU 15-418, Spring 2012)

Performance implications

m Sequential consistency provides intuitive semantics to the
programmer, but incurs a performance penalty

- Example 1: processor must wait for write to complete before issuing
next operation (write completion can take a long time: send
invalidations, receive acks, etc.)

- Example 2: common compiler optimizations (instruction reordering,
loop unrolling, common subexpression elimination) can cause
sequential consistency to be violated even if hardware implements
sequential consistency

(CMU 15-418, Spring 2012)

Example: write miss in directory coherence protocol

Write to memory by processor 1: block is clean, but resident in P2’s and P3’s caches

Processor 1

‘ Local Cache \

Processor 2

Local Cache

Processor 3

Local Cache

Scalable Interco ! ect

1. Request: write miss msg

2. Response: sharer ids + data

3. Request: invalidate (2 msgs)

4h. Response: ack from P2

Consider P1 performing two different writes.
After receiving both invalidation acks from first write, then P1 can perform write, then issue second write

Why wait for acks? Why not just wait for directory to be updated? (2)

4a. Response: ack from P3

(CMU 15-418, Spring 2012)

Example:

A= 1; while (A==0); while (B==0);
B=1; print A;
Processor 1 Processor 2 Processor 3
Local Cache Local Cache Local Cache
Directory Directory Directory
A e [[(N i A o I Y R 0 Y
.. - ! .. arr 1 |__ I N

[A=1 rconneCW]

A=1
[message suffers network delay]

Assume P1 does not wait for A=1 acks from P2 and P3 before sending B=1
Due to network delay, B=1 arrives at P3 before A=1

(CMU 15-418, Spring 2012)

Original program code After compiler register allocation

Thread 1(onP1) Thread 2 (on P2) Thread 1(onP1) Thread 2 (on P2)
B = 0O; A = 0; ri = 0; r2 = 0;
A= 1; B = 1; A= 1; = 1;

X = B; y = A; X = rl; Yy = r2;
B =rl; A =r2;

Code shown above-right is the result of very reasonable compiler optimizations:
reordering operations on different memory locations

SCspecifies original program cannot result in state x=0, y=0

SCspecifies that modified program *must* result in x=0, y=0

(CMU 15-418, Spring 2012)

Relaxed consistency models

m Allow reads and writes to complete out of order
(for increased performance)

B Assumption is that in most programs, reads and writes to shared variables
are ordered by explicit synchronization operations* rather than regular
loads/stores to shared variables

- Asaresult, program behaves as if the machine was sequentially consistent

P1: P2: P1: P2:
lock() lock() A=1; barrier();
A =1; print A; barrier(); print A;

unlock(); unlock();

* and that synchronization operations trigger flush of relevant outstanding memory operations

(CMU 15-418, Spring 2012)

Relaxing memory operation orderings

® W-RR2RR2WW—-W
m Sequential consistency maintains all four orderings
B Relaxed memory consistency allows certain ordering to be violated

= Relaxing W— R: Allows reads to just ahead of writes, but retains ordering among writes.
“Total store ordering” (TS0), “processor consistency (PC)". Programs that operate under SC
often also operate under TS0/PC without needing additional synchronization

= Relaxing W— W: partial store ordering

= QOthervariants thatrelax R>Wand R—R

(CMU 15-418, Spring 2012)

Summary

B Memory consistency models define constraints on the order in
which memory operations must appear to be performed

B Sequential consistency

- All processors share a single memory, memory services processors one at a time
= Most intuitive (simple)

- But has performance cost

B Relaxed memory consistency models gain performance be
reducing constraints on order

- Typically synchronization primitives used by application when specific
orderings are required

(CMU 15-418, Spring 2012)

