Lecture 11:
Snooping Cache Coherence: Part

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Announcements

m Assignment 2 due tonight 11:59 PM
- Recall 3-late day policy

B Assignment 3 out tonight
- No rest for the weary

(CMU 15-418, Spring 2012)

Bug in circleBoxTest.cu_inl

| noticed a painful | #bug in circleBoxTest.cu inl that | figured I'd st

areece:render% git diff circleBoxTest.cu inl
diff --git a/render/circleBoxTest.cu _inl b/render/cir
index 3ea865d..le0lcf3 100644

--=- a/render/circleBoxTest.cu inl
++4+ b/render/circleBoxTest.cu inl
circleInBoxConservative(

€e -12,7 +12,7 ee
if (circleX
circleX

circleY

- circleY
+ circleY

return 1;

} else {

return 0;

ICANHASGCHEEZEURGER. COM o8 2

>= (boxL -
<= (boxR +
>= (boxB -

>= (boxT +
<= (boxT +

circleRadius)
circleRadius)
circleRadius)
circleRadius)
circleRadius)

S
P .

(CMU 15-418, Spring 2012)

Review: false sharing

What could go wrong with this code?

// allocate per-thread variable for local accumulation
int myCounter[NUM_THREADS];

Better:

// allocate per thread variable for local accumulation
// (assumes 64-byte cache line)
struct PerThreadState {
int myCounter;
char padding[64 - sizeof(int)];
}s
PerThreadState myCounter[NUM_THREADS];

(CMU 15-418, Spring 2012)

Review: MSI and MESI

VLAY

(Modified) ,
MESI, not Messi !

¥
-
T T
°

—

Prr/ --
" \ (Modified) | 5
PriWr / BusRdX : BusRd/flush : :
i + BusRd / --
PrWr/ ' BusRdX/flush v
BusRdX E
A , :
PrRd/BusRd | prrd/-- BusRdX/-- I::Ei:::':cl:g Note: only showing
BusRd / -- asserts shared) transitions unique to MESI
v 5
o I @

(CMU 15-418, Spring 2012)

MSI vs. MESI performance study

2007

180 Address bus
B pata bus

160 [~

140

H
)
o

l

oo
O
l

Bus Traffic (MB/sec)
}_l
O
(-

o)}
o

N
(-
l

™o
-

MESI MSI MESI MSI MESI MSI MESI MSI MES

MSI MESI MSI

Barnes-Hut LU Ocean Radiosity Radix Ray Trace

Extra complexity of MESI does not help much in these applications (best case: about 20% benefit for Ocean)
since E — M transitions occur infrequently

(CMU 15-418, Spring 2012)

MSI with BusUpgr transaction

2007

180

160

Address bus
. Data bus

140

}_I
W)
(-

80

Bus Traffic (MB/sec)
},_l
O
(-

60

40

20

0
MESI MSI MSI MESI MSI MSI

+Upg +Upg
Barnes-Hut LU

MESI MSI MSI
+Upg

Ocean

MESI MSI MSI
+Upg

Radiosity

MESI MSI MSI
+Upg

Radix

MESI MSI MSI
+Upg

Ray Trace

Data transferred on bus for E — M transition is small if “upgrade” transaction, rather than BusRdX, is used
(no need to transfer a cache line, just broadcast “upgrade”)
Here: larger benefit achieved from adding support for upgrade to MSI than implementing full MESI protocol

(CMU 15-418, Spring 2012)

A comment on Intel’s MESIF

m MESIF (5-stage invalidation-based protocol)

- Like MESI, but one cache holds shared line in F state rather than S (F="forward")

- (Cache with line in F state services miss
- Reduces interconnect traffic: in basic MESI, all caches in S state respond

- Upon cache read miss (with sharing present), cache line enters F state (rather than 5)
- [state migrates to last cache that loads the line
- Rationale: this cache is the least likely to evict the line

(CMU 15-418, Spring 2012)

Today’s topics

® Snooping coherence evaluation:

- How does cache block size affect coherence?

m Upgrade-based coherence protocols

- Last time: invalidation-based protocols

B (Coherence with multi-level cache hierarchies

- How do multi-level hierarchies complicate implementation of snooping?

(CMU 15-418, Spring 2012)

Impact of cache block size

m Recall that cache coherence adds a fourth type of miss:
coherence misses

B How to reduce cache misses:

- Capacity miss: enlarge cache, increase block size
= Conflict miss: increase associativity

- Cold/true sharing coherence: increase block size

m How can larger block size hurt? (assume: fixed-size cache)

- Increase cost of a miss (larger block to load into cache)

- Can increase misses due to conflicts

- (Canincrease misses due to false sharing

(CMU 15-418, Spring 2012)

Miss Rate %

Impact of cache block size: miss rate

Simulated 1 MB cache

0.6

0.5

0.4

o
W

0.2

0.1

= 12
Upgrade
False sharing
: 10
True sharing
B Capacity/Conflict
B Cold
= 8
X
@
wd
&
w 6
2
=
— 4
- 2
| e | ! 1 | | | 1._1_-_1__1 | | 0
8 16 32 64 128 256 8 16 32 64 128 256
Barnes-Hut Radiosity
Cache Line Size

Upgrade

False sharing

True sharing
B Capacity/Conflict

B Cold

8

16 32 64 128 256 8 16

Ocean

Cache Line Size

32 64 128 256
Radix Sort

(CMU 15-418, Spring 2012)

Example: parallel radix sort

Sort array of N, b-bit numbers h PR
Here: radix = 24 = 16 For each group of r bits (this is serial iteration)

In parallel, sort numbers by group value
b bits (by placing numbers into bins)

rbits _ rbits _ rbits _ rbits
(iter [b/r]-1) (iter 0)

PO P1 P2 P3

| -

)
Output: « =] 4 4 r |

PO P1 P2 P3

Potential for lots of false sharing

False sharing decreases with increasing array size (CMU 15-418, Spring 2012)

Impact of cache block size: traffic

0.16

Simulated 1 MB cache

| (] Address Bus
B Data Bus

[)
d
N

=)
oo

Bytes / Instruction
(=

g
S
=

("] Address Bus —
M DataBus

8 16 32 64 128 256
Radiosity

8 16 32 64 128 256
Barnes-Hut

8 16

32 64 128 256 8
Ray Trace

Cache Line Size

16 32 64 128 256
Radix Sort

es/FLOP

S
o

—
(=)

] Address Bus
B DataBus

—
N

Byt

S
'

8 16 32 64 128256
LU

8 16 32 64 128 256
Ocean

(CMU 15-418, Spring 2012)

Some thoughts

m |n general, larger cache lines:

- Fewer misses

- But more traffic (unless spatial locality is perfect)

® Which should we prioritize?

- Extra traffic okay if magnitude of trafficisn’t approaching capability of interconnect

- Latency of miss okay if processor has a way to tolerate it (e.g., multi-threading)

B These are just notions. If you were building a system, you would
simulate on many important apps and make decisions based on
your graphs and needs

(CMU 15-418, Spring 2012)

Update-based coherence protocols

® Thus far, we've talking only about invalidation-based protocols

- Main idea: cache obtains exclusive access to line in order to write to it
- Possible issues:

- (Cache must reload entire line after invalidation
- False sharing

B |nvalidation-based protocols most commonly used today

- Butlet’s talk about one update-based protocol for fun

(CMU 15-418, Spring 2012)

Dragon write-back protocol

States: (noinvalid state, but can think of lines as invalid before loaded for the first time)

Exclusive-clean (E): only one cache has line, memory up-to-date
Shared-clean (Sc): multiple caches may have line, and memory may be up to date

Shared-modified (Sm): multiple caches may have line, memory not up to date

- Only one cache can be in this state for a given line (but others can be in Sc)

- (Cacheis owner of data. Must update memory upon replacement

Modified (M): only one cache has line, it is dirty, memory is not up to date

- (Cacheis owner of data. Must update memory upon replacement

Processor actions:

PrRd, PrWr, PrRdMiss, PrWrMiss

Bus transactions:

Bus read (BusRd), bus write back (BusWB), bus update (BusUpd)

(CMU 15-418, Spring 2012)

Dragon write-back update protocol

(exclusive-
clean)

(shared-
clean)

PrRdMiss / BusRd
(no other sharing)

PrRdMiss / BusRd
(with sharing)

PrWr/ BusUpd
(with sharing)

PrWr/ BusUpd
(no other sharing)

v
---------------------------------- M p
> (shared- BusRd / Flush ' .

PrWrMiss / BusRd, BusUpd modified) > (modified) PrWrMiss / BusRd
(with sharing) PrWr / BusUpd (no other sharing)

PrRd /- U V: (no other sharing) U PrRd /-

PrWr /BusUpd \>._/.-" BusRd/Flush Prilir/ -

(with sharing)

Not shown: upon line replacement, cache must write line to memory if line is in Sm or M state
(CMU 15-418, Spring 2012)

Invalidate vs. update

m Intuitively, upgrade would seem preferable if other
processors sharing data will continue to access it after a write

m Upgrades are overhead if:
- Data just sits in cache (and is never used again)
- Lots of writes before the next read

(CMU 15-418, Spring 2012)

Invalidate vs. update evaluation: miss rate

Simulated 1 MB cache, 64 B lines

False Sharing
. True Sharing
[] Capacity/Conflict 2.0
B Cold
—_ 15
@ @
v v
S S
oc o
2 2 1.0
= =
0.5
| 1 0
Inv Upd Inv Upd Inv Upd Inv Upd
LU Ocean Ray Trace Radix Sort

(CMU 15-418, Spring 2012)

Invalidate vs. update evaluation: traffic

Simulated 1 MB cache, 64 B lines

25 b e

g
o

—
U

—
Q

Upgrade rate, update rate (%)
Upgrade rate, update rate (%)

S
tn

Inv Upd Inv

Inv Upd
LU Ocean Ray Trace Radix Sort

B Update can suffer from high traffic due to multiple writes before the next read by another processor

B Current AMD and Intel implementations of cache coherence are invalidation based

(CMU 15-418, Spring 2012)

Reality: multi-level cache hierarchies

Recall Intel Core i7 hierarchy

Shared L3 Cache

(One bank;per core)

1

1 I

1

Ring Interconnect

) m

1

1 I

1

L2 Cache L2 Cache L2 Cache L2 Cache
L1 Data Cache L1 Data Cache L1 Data Cache L1 Data Cache
Core Core Core Core

2. Maintain“inclusion”

Challenge: changes made at first level
cache may not be visible to second level
cache controller than snoops the
interconnect.

How might Snooping work for a cache
hierarchy?

. All caches snoop interconnect
independently? (inefficient)

(CMU 15-418, Spring 2012)

Inclusion property of caches

B Alllines in closer [to processor] cache are in farther cache
- e.g., contents of L1 are a subset of contents of L2

- Thus, all transactions relevant to L1 are also relevantto L2, so it is
sufficient for only the L2 to snoop the interconnect

B [flineisin owned state (M in MESI, M or O in MOESI) in L1, it must also be in
owned state in L2

- Allows L2 to determine if a bus transaction is requesting a modified block
in L1 without requiring information from L1

(CMU 15-418, Spring 2012)

s inclusion maintained automatically if L2 is
larger than L1? No.

Simple example:

Let L2 cache be twice as large as L1 cache

L1 an L2 have the same block size, are 2-way set associative, and use a LRU replacement policy
Let blocks B1, B2, B3 map to the same set of the L1 cache

B1and B2 are resident in the L1 and L2 caches

BT X 11

B2 Cache

B1 |2

B2)¢ Cache

Processor references to B1 and B2 are
serviced by L1 cache. The access history to
B1and B2 are different in the L1 than in
the L2!

Say processor accesses B1 (L1+L2 miss).
Then B2 (L1+L2 miss). Then B1 many times
(L7 hits).

Now access B3. L1 and L2 might choose to
evict different blocks, because access
histories differ.

Inclusion no longer holds!
(CMU 15-418, Spring 2012)

Maintaining inclusion: handling invalidations

Processor

L1
B1 XJ Cache

T Invalidate

in L1” bit ~

L

L2
O
h
T x‘ Cache
A

+ BusRdX /-

Interconnect

Block invalidated in L2 cache due to
BusRdX from another cache.

Must also invalidate block in L1

One solution: each L2 block maintains a bit
indicating if block also exists in L1

This bit tells the L2 cache coherence
invalidations of the line need to be
propagated to L1.

(CMU 15-418, Spring 2012)

Processor
L1
B1 Cache
“modified-but-
stale” bit l Flush B1
“in L1” bit \%AD 12
Cache
B1
A
+ BusRd / Flush B1
Interconnect

Maintaining inclusion: L1 write hit

Assume L1 is a write-back cache. Processor
writes to block B1. (L1 write hit)

Block B1in L2 cache is in modified state in
the coherence protocol, but it has stale
data!

When coherence protocol requires B1 to be
flushed from L2 (e.g., another processor
loads B1), L2 cache must request the data
from L1.

Add another bit for “modified-but-stale”

(CMU 15-418, Spring 2012)

Snooping based cache coherence summary

B Mainidea: cache operations that effect coherence are broadcast to all other caches
m (Caches listen (“snoop”) for these messages, react accordingly
B Multi-level cache hierarchies add complexity to implementations
B Workload driven evaluation: Larger cache block sizes...
- Decrease cold, capacity, true sharing misses
- (Canincrease false sharing misses

- Increase interconnect traffic

m Scalability of snooping implementations limited by ability to broadcast coherence
messages to all caches

- Snooping used in smaller-scale multiprocessors

(such as the multi-core chips in all our machines today)

- Next time: scaling cache coherence via directory-based approaches

(CMU 15-418, Spring 2012)

