
Lecture 11:
Snooping Cache Coherence: Part II

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

 (CMU 15-418, Spring 2012)

Announcements
▪ Assignment 2 due tonight 11:59 PM

- Recall 3-late day policy

▪ Assignment 3 out tonight
- No rest for the weary

 (CMU 15-418, Spring 2012)

Bug!

 (CMU 15-418, Spring 2012)

Review: false sharing
What could go wrong with this code?

//	
 allocate	
 per-­‐thread	
 variable	
 for	
 local	
 accumulation

int	
 myCounter[NUM_THREADS];

Better:
//	
 allocate	
 per	
 thread	
 variable	
 for	
 local	
 accumulation

//	
 (assumes	
 64-­‐byte	
 cache	
 line)

struct	
 PerThreadState	
 {

	
 	
 int	
 myCounter;

	
 	
 char	
 padding[64	
 -­‐	
 sizeof(int)];

};

PerThreadState	
 myCounter[NUM_THREADS];

 (CMU 15-418, Spring 2012)

Review: MSI and MESI

S
(Shared)

M
(Modi!ed)

PrRd / --
PrWr / --

PrRd / BusRd

BusRd / "ush

I
(Invalid)

PrWr /
BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / "ush

BusRd / --

MESI, not Messi !

E
(Exclusive)

M
(Modi!ed)

I
(Invalid)

PrWr / --

S
(Shared)

BusRd / --

PrRd / BusRd
(no other cache
asserts shared)

Note: only showing
transitions unique to MESI

 (CMU 15-418, Spring 2012)

MSI vs. MESI performance study
Bu

s T
ra
ffi

c (
M

B/
se

c)

Barnes-Hut

MESI MSI MESI MSI MESI MSI MESI MSI MESI MSI MESI MSI

LU Ocean Radiosity Radix Ray Trace

Extra complexity of MESI does not help much in these applications (best case: about 20% bene!t for Ocean)
since E → M transitions occur infrequently

 (CMU 15-418, Spring 2012)

MSI with BusUpgr transaction
Bu

s T
ra
ffi

c (
M

B/
se

c)

Barnes-Hut

MESI MSI MESI MSI MESI MSI MESI MSI MESI MSI MESI MSI

LU Ocean Radiosity Radix Ray Trace

Data transferred on bus for E →M transition is small if “upgrade” transaction, rather than BusRdX, is used
(no need to transfer a cache line, just broadcast “upgrade”)
Here: larger bene!t achieved from adding support for upgrade to MSI than implementing full MESI protocol

MSI
+Upg

MSI
+Upg

MSI
+Upg

MSI
+Upg

MSI
+Upg

MSI
+Upg

 (CMU 15-418, Spring 2012)

A comment on Intel’s MESIF
▪ MESIF (5-stage invalidation-based protocol)

- Like MESI, but one cache holds shared line in F state rather than S (F=”forward”)
- Cache with line in F state services miss

- Reduces interconnect traffic: in basic MESI, all caches in S state respond
- Upon cache read miss (with sharing present), cache line enters F state (rather than S)

- F state migrates to last cache that loads the line
- Rationale: this cache is the least likely to evict the line

 (CMU 15-418, Spring 2012)

Today’s topics

▪ Snooping coherence evaluation:
- How does cache block size affect coherence?

▪ Upgrade-based coherence protocols
- Last time: invalidation-based protocols

▪ Coherence with multi-level cache hierarchies
- How do multi-level hierarchies complicate implementation of snooping?

 (CMU 15-418, Spring 2012)

Impact of cache block size
▪ Recall that cache coherence adds a fourth type of miss:

coherence misses

▪ How to reduce cache misses:
- Capacity miss: enlarge cache, increase block size
- Con"ict miss: increase associativity
- Cold/true sharing coherence: increase block size

▪ How can larger block size hurt? (assume: !xed-size cache)
- Increase cost of a miss (larger block to load into cache)
- Can increase misses due to con"icts
- Can increase misses due to false sharing

 (CMU 15-418, Spring 2012)

Impact of cache block size: miss rate
M

iss
 Ra

te
 %

0.6

0.5

0.4

0.3

0.2

0.1

0

Upgrade
False sharing
True sharing
Capacity/Con"ict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Barnes-Hut Radiosity

Cache Line Size

M
iss

 Ra
te

 %

12

10

8

6

4

2

0

Upgrade
False sharing
True sharing
Capacity/Con"ict
Cold

8 16 32 64 128 256 8 16 32 64 128 256
Ocean Radix Sort

Cache Line Size

Simulated 1 MB cache

 (CMU 15-418, Spring 2012)

Example: parallel radix sort

Input:

P0 P1 P2 P3

Output:

P0 P1 P2 P3

Sort array of N, b-bit numbers
Here: radix = 24 = 16

b bits

r bits
(iter 0)

r bitsr bitsr bits
(iter [b/r]-1)

For each group of r bits (this is serial iteration)
 In parallel, sort numbers by group value
 (by placing numbers into bins)

LSB

Potential for lots of false sharing
False sharing decreases with increasing array size

 (CMU 15-418, Spring 2012)

Impact of cache block size: traffic
Simulated 1 MB cache

0.16

0.12

0.08

0.04

0

8

6

4

2

0

1.6

1.2

0.8

0.4

0

Address Bus
Data Bus

Address Bus
Data Bus

Address Bus
Data Bus

8 16 32 64 128 256
Barnes-Hut

8 16 32 64 128 256 8 16 32 64 128 256 8 16 32 64 128 256 8 16 32 64 128 256 8 16 32 64 128 256
Radiosity Ray Trace Radix Sort LU Ocean

By
te

s /
 In

str
uc

tio
n

Cache Line Size

By
te

s /
 FL

OP

 (CMU 15-418, Spring 2012)

Some thoughts
▪ In general, larger cache lines:

- Fewer misses
- But more traffic (unless spatial locality is perfect)

▪ Which should we prioritize?
- Extra traffic okay if magnitude of traffic isn’t approaching capability of interconnect
- Latency of miss okay if processor has a way to tolerate it (e.g., multi-threading)

▪ These are just notions. If you were building a system, you would
simulate on many important apps and make decisions based on
your graphs and needs

 (CMU 15-418, Spring 2012)

Update-based coherence protocols
▪ Thus far, we’ve talking only about invalidation-based protocols

- Main idea: cache obtains exclusive access to line in order to write to it
- Possible issues:

- Cache must reload entire line after invalidation
- False sharing

▪ Invalidation-based protocols most commonly used today
- But let’s talk about one update-based protocol for fun

 (CMU 15-418, Spring 2012)

Dragon write-back protocol
▪ States: (no invalid state, but can think of lines as invalid before loaded for the !rst time)

- Exclusive-clean (E): only one cache has line, memory up-to-date
- Shared-clean (Sc): multiple caches may have line, and memory may be up to date
- Shared-modi!ed (Sm): multiple caches may have line, memory not up to date

- Only one cache can be in this state for a given line (but others can be in Sc)
- Cache is owner of data. Must update memory upon replacement

- Modi!ed (M): only one cache has line, it is dirty, memory is not up to date
- Cache is owner of data. Must update memory upon replacement

▪ Processor actions:
- PrRd, PrWr, PrRdMiss, PrWrMiss

▪ Bus transactions:
- Bus read (BusRd), bus write back (BusWB), bus update (BusUpd)

 (CMU 15-418, Spring 2012)

Dragon write-back update protocol

Sc
(shared-

clean)

E
(exclusive-

clean)

M
(modi!ed)

PrRd / --

Sm
(shared-

modi!ed)

BusRd / --PrRdMiss / BusRd
(no other sharing)

PrRd / -- BusUpd / Update line

PrWr / --

PrRd / --
PrWr / --

PrWrMiss / BusRd
(no other sharing)

PrRdMiss / BusRd
(with sharing)

BusRd / Flush

PrWr/ BusUpd
(no other sharing)

PrWr/ BusUpd
(with sharing)

PrWr / BusUpd
(no other sharing)

PrRd / --
PrWr / BusUpd
(with sharing)

BusRd / Flush

BusUpd / Update line

PrWrMiss / BusRd, BusUpd
(with sharing)

Not shown: upon line replacement, cache must write line to memory if line is in Sm or M state

 (CMU 15-418, Spring 2012)

Invalidate vs. update
▪ Intuitively, upgrade would seem preferable if other

processors sharing data will continue to access it after a write

▪ Upgrades are overhead if:
- Data just sits in cache (and is never used again)
- Lots of writes before the next read

 (CMU 15-418, Spring 2012)

Invalidate vs. update evaluation: miss rate

False Sharing

True Sharing

Capacity/Con"ict

Cold

Inv Upd Inv Upd Inv Upd Inv Upd
Ray Trace Radix SortLU Ocean

0.5

0.4

0.3

0.2

0.1

0

2.0

1.5

1.0

0.5

0

M
iss

 Ra
te

 (%
)

M
iss

 Ra
te

 (%
)

Simulated 1 MB cache, 64 B lines

 (CMU 15-418, Spring 2012)

Invalidate vs. update evaluation: traffic

Inv Upd Inv Upd Inv Upd Inv Upd
Ray Trace Radix SortLU Ocean

2.5

2.0

1.5

1.0

0.5

0

8

7

6

5

4

3

2

1

0

Up
gr

ad
e r

at
e,

 u
pd

at
e r

at
e (

%
)

Simulated 1 MB cache, 64 B lines

Up
gr

ad
e r

at
e,

 up
da

te
 ra

te
 (%

)
▪ Update can suffer from high traffic due to multiple writes before the next read by another processor

▪ Current AMD and Intel implementations of cache coherence are invalidation based

 (CMU 15-418, Spring 2012)

Reality: multi-level cache hierarchies

Core

L1 Data Cache

L2 Cache

Shared L3 Cache
(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Recall Intel Core i7 hierarchy

▪ Challenge: changes made at !rst level
cache may not be visible to second level
cache controller than snoops the
interconnect.

▪ How might Snooping work for a cache
hierarchy?
1. All caches snoop interconnect

independently? (inefficient)
2. Maintain “inclusion”

 (CMU 15-418, Spring 2012)

Inclusion property of caches
▪ All lines in closer [to processor] cache are in farther cache

- e.g., contents of L1 are a subset of contents of L2
- Thus, all transactions relevant to L1 are also relevant to L2, so it is

sufficient for only the L2 to snoop the interconnect

▪ If line is in owned state (M in MESI, M or O in MOESI) in L1, it must also be in
owned state in L2
- Allows L2 to determine if a bus transaction is requesting a modi!ed block

in L1 without requiring information from L1

 (CMU 15-418, Spring 2012)

Is inclusion maintained automatically if L2 is
larger than L1? No.
▪ Simple example:

- Let L2 cache be twice as large as L1 cache
- L1 an L2 have the same block size, are 2-way set associative, and use a LRU replacement policy
- Let blocks B1, B2, B3 map to the same set of the L1 cache
- B1 and B2 are resident in the L1 and L2 caches

B1
B2

B1
B2

L2
Cache

L1
Cache

Processor references to B1 and B2 are
serviced by L1 cache. The access history to
B1 and B2 are different in the L1 than in
the L2!

Say processor accesses B1 (L1+L2 miss).
Then B2 (L1+L2 miss). Then B1 many times
(L1 hits).

Now access B3. L1 and L2 might choose to
evict different blocks, because access
histories differ.

Inclusion no longer holds!

✘

✘

 (CMU 15-418, Spring 2012)

Maintaining inclusion: handling invalidations

L1
Cache

L2
Cache

Processor

Interconnect

BusRdX / --

Block invalidated in L2 cache due to
BusRdX from another cache.

Must also invalidate block in L1

Invalidate

B1

B1

✘

✘

“in L1” bit
One solution: each L2 block maintains a bit
indicating if block also exists in L1

This bit tells the L2 cache coherence
invalidations of the line need to be
propagated to L1.

 (CMU 15-418, Spring 2012)

Maintaining inclusion: L1 write hit

L1
Cache

L2
Cache

Processor

Interconnect

Assume L1 is a write-back cache. Processor
writes to block B1. (L1 write hit)

Block B1 in L2 cache is in modi!ed state in
the coherence protocol, but it has stale
data!

When coherence protocol requires B1 to be
"ushed from L2 (e.g., another processor
loads B1), L2 cache must request the data
from L1.

Add another bit for “modi!ed-but-stale”

Flush B1

B1

B1

“in L1” bit

“modi!ed-but-
stale” bit

BusRd / Flush B1

 (CMU 15-418, Spring 2012)

Snooping based cache coherence summary
▪ Main idea: cache operations that effect coherence are broadcast to all other caches

▪ Caches listen (“snoop”) for these messages, react accordingly

▪ Multi-level cache hierarchies add complexity to implementations

▪ Workload driven evaluation: Larger cache block sizes...
- Decrease cold, capacity, true sharing misses
- Can increase false sharing misses
- Increase interconnect traffic

▪ Scalability of snooping implementations limited by ability to broadcast coherence
messages to all caches
- Snooping used in smaller-scale multiprocessors

(such as the multi-core chips in all our machines today)
- Next time: scaling cache coherence via directory-based approaches

