Lecture 10:
Cache Coherence: Part|

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Shared memory multi-processor

Processors read and write to shared variables

- More precisely: processors issues load and store instructions

Intuitively... reading value at address should return the last value written at the
address by any processor

Processor

Processor Processor

Processor

(

Interconnect

)

Memory

/0

(CMU 15-418, Spring 2012)

The cache coherence problem

Modern processors replicate contents of memory in local caches
Result of writes: processors can have different values for the same memory location

Processor Processor Processor Processor
Cache Cache Cache Cache
(l l Interconnect l
| |
Memory /0
int foo; (stored at address X)
Action P1$ P2$ P3$ P4$ mem[X]

9

P1 load X E miss 0

P2 load X 0 ﬂ miss 0

P1 store X 1 (%) 7]

Chart shows value of foo (variable stored P3 load X 1 0 0| miss 0
at address X) stored in main memory and in P3 store X 1 %) 2 2]
each processor’s cache ** 2 load X 1 . hit 2 5
** Assumes write-back cache behavior P1 load Y 0 2 -

(say this load causes
eviction of foo)

(CMU 15-418, Spring 2012)

The cache coherence problem

B Reading value at address X should return the last value written at address X by any
processor.

B (oherence problem exists hecause there is both global state (main memory) and
local state (contents of private processor caches).

(CMU 15-418, Spring 2012)

Cache hierarchy of Intel Core i7

64 byte cache line size

Shared L3 Cache

(One bank;per core)

1 I

Ring Interconnect

1 I

L2 Cache

L2 Cache L2 Cache

L2 Cache

|

|

|

L1 Data Cache

L1 Data Cache L1 Data Cache

L1 Data Cache

I

I I

I

Core

Core Core

Core

L3: (per chip) Review: key terms
8 MB, inclusive
16-way set associative o
32B / clock per bank - cache Ime
26-31 cycle latency — write back vs. write
through policy
— inclusion

L2: (private per core)

256 KB

8-way set associative, write back
32B / clock, 12 cycle latency

16 outstanding misses

L1: (private per core)

32 KB

8-way set associative, write back

2 x 16B loads + 1 x 16B store per clock
4-6 cycle latency

10 outstanding misses

(CMU 15-418, Spring 2012)

Intuitive expectation of shared memory

B Reading value at address should return the last value written at the address by any
processor.

® Uniprocessor, providing this behavior is fairly simple, since writes typically come
from one client: the processor

- Exception: /0 via DMA

(CMU 15-418, Spring 2012)

Coherenceis an issue in a single CPU system

Consider 1/0 device performing DMA data transfer

Processor

Cache

(Interconnect

Network
Card

® Common solutions:

Case 1:

Processor writes to buffer in main memory
Tells network card to async send buffer
Network card many transfer stale data

Case 2:

Network card receives message

DMA message contents into buffer in main memory
Notifies CPU msq received, buffer ready to read

CPU may read stale data

= (PU writes using uncached stores (e.g., driver code)

- 0S support:

- mark pages containing shared buffers as uncached
= 08 flushes pages from cache when I/0 completes

B |npractice DMA transfers are infrequent compared to CPU loads/store

(slower solutions are acceptable)

(CMU 15-418, Spring 2012)

Problems with the intuition

B Reading value at address should return the last value written at the address
by any processor.

® What does “last” mean?
- What if two processors write at the same time?

- What if a write by P1 is followed by a read from P2 so close in time, it’s
impossible to communicate occurrence to other processors?

B |nasequential program, “last” is determined by program order (not time)

= Holds true within a thread of a parallel program
- But need to come up with a meaningful way to describe orders across threads

(CMU 15-418, Spring 2012)

Definition: coherence

A memory system is coherent if:

The results of a parallel program’s execution are such that for
each memory location, there is a hypothetical serial order of all
program operations to the location that is consistent with the
results of execution, and:

1. Memory operations issued by any one process occur in the
order issued by the process

2. The value returned by a read is the value written by the
last write to the location in the serial order

Chronology of
operations on
address X

i PO write: 5
P1read (5)
® P2read(5)

® POread(5)

® P1 write: 25

® POread (5)

(CMU 15-418, Spring 2012)

Definition: coherence (said differently)

A memory system is coherent if:

1. Aread by processor P to address X that follows a write by P to address X,
should return the value of the write by P (assuming no other processor wrote to X in between)

2. Aread by a processor to address X that follows a write by another
processor to X returns the written value... if the read and write are
sufﬁciently separated In time (assuming no other write to X occurs in between)

3. Writes to the same location are serialized; two writes to the same location
by any two processors are seen in the same order by all processors.

(Example: if values 1 and then 2 are written to address X, no processor observes 2 before 1)

Condition 1: program order (as expected of a uniprocessor system)

Condition 2: write propagation: The news of the write has to eventually get to the other processors. Note that
precisely when it is propagated is not defined by definition of coherence.

Condition 3: write serialization

(CMU 15-418, Spring 2012)

Write serialization

Writes to the same location are serialized; two writes to the same location by any
two processors are seen in the same order by all processors.

(Example: if values 1 and then 2 are written to address X, no processor observes 2 before 1)

Example: P1 writes value a to X. Then P2 writes value b to X.
Consider situation where processors observe different order of writes:

Order observed by P1 Order observed by P2
X —a X+—Db
X+—Db X —a

In terms of first coherence definition: there is no global ordering of loads and
stores to X that is in agreement with results of this parallel program.

(CMU 15-418, Spring 2012)

Coherence vs. consistency

Coherence defines behavior of reads and writes to the same memory location

“Memory consistency” defines the behavior of reads and writes with respect
to accesses to other locations (topic of a future lecture)

- (Consistency deals with the WHEN of write propagation

For the purposes of this lecture:

- If processor writes to address X and then writes to address Y. Then any
processor that sees result of write to Y, also observes result of write to X.

(CMU 15-418, Spring 2012)

Implementing coherence

m Software-based solutions

- 0S uses page fault mechanism to propagate writes
- Implementations provide memory coherence over clusters of workstations

- We won't discuss these solutions

B Hardware-based solutions

- “Snooping” based
- Directory based
- The subject of the next couple of lectures

(CMU 15-418, Spring 2012)

Shared caches: coherence made easy

® Obvious scalability problems
- Interference / contention

B But can have benefits:

- Fine-grained sharing (overlapping working sets)

- Actions by one processor might pre-fetch for another

Processor

Processor

Processor

Processor

Cache

Memory

/0

(CMU 15-418, Spring 2012)

Snooping cache-coherence schemes

® All coherence-related activity is broadcast to all processors
(actually, cache controllers) in the system

® (Cache controllers monitor (“snoop”) memory operations, and react
accordingly to maintain memory coherence

Notice: now cache controller must respond
to actions from “both ends”: Processor Processor coe Processor
1. LD/ST requests from its processor > | |
Cache Cache Cache
2. Coherence-related activity broadcast >] | |
over-interconnect (Interconnect)
Memory

(CMU 15-418, Spring 2012)

Very simple coherence implementation

Write'thmugh caches Processor e Processor
PO P1
Granularity of coherence is cache block | |
Cache Cache
Upon write, broadcast invalidation | |
Next read from other processors will (interconnect)
trigger cache miss
(retrieve updated value due to write-through policy) Memory
Action Bus activity PO $ P15$ mem location X
0
PO load X cache miss for X %) 0
P1 load X cache miss for X 0 0 0
PO write 100 to X invalidation for X 100 100
P1 load X cache miss for X 100 100 100

(CMU 15-418, Spring 2012)

Write-through invalidation: state diagram

A/ B: if action A is observed by cache controller, action B is taken
PrRd/ --

PWr/BusWr \ | 7 » Broadcast (bus) initiated transaction

— Processor initiated transaction

Requirements of the interconnect:

PrRd / BusRd 1. All write transactions visible to all cache controllers
r us BusWr/--
o 2. All write transactions visible to all cache controllers in

the same order

Simplifying assumptions here:
1. Interconnect and memory transactions are atomic

2. Process waits until previous memory operations is
complete before issuing next memory operation

"
),

3. Invalidation applied immediately as part of receiving
*%
Prr/ BusWr invalidation broadcast

** Write no-allocate policy (for simplicity) (CMU 15-418, Spring 2012)

Write-through policy is inefficient

m Every write operation goes out to memory
- Very high bandwidth requirements

B Write-back caches absorb most write traffic as cache hits

- Significantly reduces bandwidth requirements
- But now how do we ensure write propagation/serialization?

= Require more sophisticated coherence protocols

(CMU 15-418, Spring 2012)

Review: write miss behavior of write-back cache

(uniprocessor case)

Example: code executes int X

= »w b=

1;

Processor performs write to address in line that is not resident in cache

Cache loads line from memory

One word in cache is updated
Cache line is marked as dirty

. Line state

Tag

Data (64 bytes on Intel Core i7)

N\

Dirty bit

(CMU 15-418, Spring 2012)

Cache coherence with write-back caches

Processor e Processor
PO P1
WritetoX : | | Load X
T' Cache Cache
(Interconnect)
Memory

m Dirty state of cache line now indicates exclusive ownership
- Exclusive: only cache with a valid copy
- Owner: responsible for supplying data upon request

(CMU 15-418, Spring 2012)

Invalidation-based write-back protocol

B Alinein the “exclusive” state can be modified without notifying

other caches

= Other caches don’t have the line resident, so other processors cannot read these
values [without generating a memory read transaction]

m (an only write to lines in the exclusive state

- If processor performs a write to line that is not exclusive in cache, cache controller
first broadcasts a read-exclusive transaction

- Read-exclusive tells other caches about impending write
(“you can’t read anymore, because I'm going to write”)

- Read-exclusive transaction is required even if line is valid in processor’s local cache

- Dirty state implies exclusive

B When cache controller snoops a read exclusive for a line it contains
- Must invalidate the line in its cache

(CMU 15-418, Spring 2012)

Basic MSI write-back invalidation protocol

m Key tasks of protocol

- Obtaining exclusive access for a write
- Locating most recent copy of data on cache miss

B (Cache line states

= Invalid ()
- Shared (5): line valid in one or more caches
- Modified (M): line valid in exactly one cache (a.k.a. “dirty” or “exclusive” state)

B Processor events
- PrRd (read)
= PrWr (write)

m Bus transactions
- BusRd: obtain copy of line with no intent to modify

- BusRdX: obtain copy of line with intent to modify

- BusWB: write line out to memory
(CMU 15-418, Spring 2012)

PrWr/ BusRdX

PrWr/ BusRdX

PrRd / BusRd

e
().

(Modified)

BusRd / flush

MSI state transition diagram

A/ B: if action A is observed by cache controller, action B is taken

----- » Broadcast (bus) initiated transaction

—> Processor initiated transaction

BusRdX/ flush

PrRd/-- ' BusRdX/--

BusRd/--

Alternative state names:

- E (exclusive, read/write access)
— S (potentially shared, read-only access)

— | (invalid, no access)

(CMU 15-418, Spring 2012)

Does MSI satisfy coherence?

m Write propagation
- Viainvalidation

m Write serialization
- Writes that appear on bus are ordered by the order they appear on bus (BusRdX)

- Reads that appear on bus are ordered by order they appear on bus (BusRd)

- Writes that don’t appear on the bus (PrWr to line already in M state):

Sequence of writes to line comes between two bus transactions for the line

All writes in sequence performed by same processor, P (that processor certainly observes them in
correct sequential order)

All other processors observe notification of these writes only after a bus transaction for the line. So
all the writes come before the transaction.

So all processors see writes in the same order.

(CMU 15-418, Spring 2012)

MESI invalidation protocol

m MSI requires two bus transactions for the common case of
reading data, then writing to it

- Transaction 1: BusRd to move from | to S state

- Transaction 2: BusRdX to move from S to M state

B This inefficiency exists even if application has no sharing at all

m Solution: add additional state E (“exclusive clean”)

- Line not modified, but only this cache has copy

- Decouples exclusivity from line ownership (line not dirty, so copy in memory is
valid copy of data)

- Upgrade from E to M does not require a bus transaction

(CMU 15-418, Spring 2012)

PrWr/ BusRdX

MESI state transition diagram

PrRd /- m
PrWr/ --

>

PriWr / BusRdX

°

Prir/ --

PrRd / BusRd

(no other cache
asserts shared)

>\ (Modified) J ~-"""""""""-

|

> semmsssmeee-- BusRd / flush
U BusRd/-- 5
PrRd/-- :
s 5
T ECEEEEE
PrRd / BusRd w : BusRdX/ -- BusRdX / --

(another cache PrRd/-- . :
asserts shared) BusRd/ -- E :
= 5
* ------------ 1

* ----------------------------------

BusRdX / flush

(CMU 15-418, Spring 2012)

Lower-level choices

® Who should supply data on a cache miss when line is in the E
or S state of another cache?

- (Can get data from memory or can get data from another cache

- If source is another cache, which one should provide it?

m (ache-to-cache transfers add complexity, but commonly used
today to reduce both latency of access and memory
bandwidth requires

(CMU 15-418, Spring 2012)

Increasing efficiency (and complexity)

MOESI (5-stage invalidation-based protocol)

In MESI protocol, transition from M to S requires flush to memory

Instead transition from M to 0 (0="owned, but not exclusive”) and do not flush to
memory

Other processors maintain shared line in S state, one processor maintains line in 0 state
Data in memory is stale, so cache with line in 0 state must service cache misses
Used in AMD Opteron

MESIF (5-stage invalidation-based protocol)

Like MESI, but one cache holds shared line in F state rather than S (F="forward”)
Cache with line in F state services miss

Simplifies decision of which cache should service miss (basic MESI: all caches respond)
Used by Intel

(CMU 15-418, Spring 2012)

Implications of implementing coherence

B Each cache must listen and react to all coherent traffic

broadcast on interconnect

- Duplicate cache tags so that tag lookup in response to coherence actions does
not interfere with processor loads and stores

m Additional trafficon interconnect
- (Can be significant when scaling to higher core counts

m To date, GPUs do not implement cache coherence
- Thus far, overhead of coherence deemed not worth it for graphics applications

(CMU 15-418, Spring 2012)

Implications to software developer

What could go wrong with this code?

// allocate per thread variable for local accumulation
int myCounter[NUM_THREADS];

Better:

// allocate per thread variable for local accumulation
struct PerThreadState {

int myCounter;
char padding[64 - sizeof(int)];
}s
PerThreadState myCounter[NUM THREADS];

(CMU 15-418, Spring 2012)

False sharing

B (ondition where two threads write to different variables, but
variable’s addresses map to same cache line

m (ache line ping-pongs between caches of writing processors,
generating significant amounts of communication due to
coherence protocol

B Noinherent communication, all artifactual communication

m (Can be a factor in when programming for cache coherent
architectures (assignment 3)

(CMU 15-418, Spring 2012)

