Lecture 8:
Parallel Programming Case Studies

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)



Contention example (last time)

®  Problem: place many (e.g., 100K) point particles in a 16 cell uniform grid

B Recall: 15 cores, up to 1024 threads per core on GTX 480 GPU

Parallel data structure manipulation problem: build a grid of lists
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Contention example

®  First answer from last time: partition work by cells. For each cell,
independently compute overlapping particles

- 16 parallel tasks (insufficient parallelism: need thousands of independent tasks)

- Also: performs 16 times more particle-in-cell computations than sequential algorithm

(it's no faster)

B Another answer: assign one particle to each CUDA thread. Compute cell
containing particle. Atomically update list.

- Massive contention: thousands of threads contending to update 16 lists

- Also: how are you going to “update the list"?
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Contention example

B Yet another answer: generate N grids in parallel, each thread updates one of
the grids.

- Example: create 15 grids on GTX 480 (one per core)

- All threads assigned to core update same grid
- Faster synchronization: contention reduced by factor of N, performed on local variables

- Extra work: merging the grids at the end of the computation
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Data-parallel solution o | 1] 2| s
Step 1: compute cell containing each particle 34. 5 |16 7
o 1 2 3 4 5 5¢ * 2,
9 | 6 | 6 | 4 | 6 | 4 8 9 10 | 11
Step 2: sort by cell 1 13 14 15
3 5 1 2 4 0

4 4 6 6 6 9

Removes need for fine-grained
synchronization at cost of sort

and extra passes over the data
(extra BW)

Step 3: find start/end of each cell

cell = A[index]

if (index == | a[index] !'= a[index-1]) {
cell starts[cell] = index;
cell ends[A[index-1]] = index;

}

if (index == numParticles-1) // special case for last cell
cell ends[cell] = index+1;

cell_starts | Oxff | Oxff | Oxff | Oxff 0 Oxff 2 Oxff | Oxff 5 Oxff | oo

cell ends | Oxff | Oxff | Oxff | Oxff 2 Oxff | 5 Oxff | Oxff 6 | Oxff [ «..
0 1 2 3 4 5 6 7 8 9 10
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Common use: N-body problems

B Common operation is to compute interactions with neighboring particles

B Example: find all particles within radius R

Create grid with cells of size R

Only need to inspect particles in surrounding grid cells

------
s

-
------

(CMU 15-418, Spring 2012)



Today

m Parallel application case studies!

B Three examples
- (Ocean

- Galaxy simulation (Barnes-hut)
- Raytracing

B Will be describing key aspects of the algorithms

- Focus on: optimization techniques, analysis of workload characteristics
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Case study 1: simulating ocean currents

O 0000000 O0O0
OO0 00000000

0 O: Q0 00 O O «Q: O 0
O 0000000 O0O0
O 000000 O0O0O0
OO0 O0OO0OO0O0O0OO0OO0O0
O 00000000 0
O O 0O0OO0OO0O0O0OO0O0O0
OO0 000000 O0 O
Q0 Q000 0 0.0 0 0

B Discretize ocean into slices represented as 2D grids

B Discretize time evolution: At

B High accuracy simulation — small At and high resolution grids
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Ocean: dependencies in one time step

Put Laplacian Put Laplacian Copy V4, V4 Putv,— Vv, lPut computed ¥, Initialize Boxes
of ¥, in W1, of W5in W1, into T4, T4 in W2 values in W3 Yoand Yy, correspond to
Add f values to columns Copy Y4m: Yam Put Laplacian of comp.Utatlons
of W1, and W1, into V., ¥, Wom Yamin W7, 5 on grids
Put Jacobians of (W4, T4), Copy T4, T3 Put Laplacian of
(W13, T3) in W54, W5, into Vqp. Vam W7, 3inW4, 4
Put Jacobian of Put Laplacian of
(W2,W3)in W6 W4, 3inW74 5

Update the Y expressions

Solve the equation forv,_ and put the result iny,

Compute the integral of v

Compute ¥V =y, + C(t) ¥y, (Note: v,

e : Solve the equation for® and put result in
and now VY are maintained in Y, matrix) g P Tb

Use ¥V and @ to update V4 and V¥,

Update streamfunction running sums and determine whether to end pogram

Potential for parallelism within a grid (data-parallelism) and across operations on the different grids.

Implementation only leverages data-parallelism. (simplicity)
(CMU 15-418, Spring 2012)



Ocean implementation details

B Staticassignment: block decomposition (as previously discussed)

®  Synchronization
- Barriers (each grid computation is a phase)

- Locks for mutual exclusion when updating shared variables
(primarily for global reductions)

B (ritical working sets

1‘ . ® 6 6 6 o o
1. Local neighborhood coe .o e
2. 3 rows of local partition ’ R : : : : : :
3. Local partition AR ceeeee
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2D Block Assignment
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B Staticassignment is sufficient (approx. equal busy time per thread)
(reflected on graph as data wait time)

B Synchronization cost largely due to waiting at barriers

® 4D blocking of grid reduces communication



Case study 2: Galaxy evolution

Barnes-Hut algorithm

Star on which forces
are being computed o0

o | Large group far
O | enough away to
approximate

\ O | sSmall group far enough away to
Star too close to OO | approximate to center of mass

approximate

®  Represent galaxy as a bunch of particles (think: particle = star)

®m  Compute forces due to gravity

- Gravity has infinite extent: naive algorithm is O(N2)
- Magnitude of gravitational force falls off with distance
(approximate forces from groups of far away stars)
= Resultis an O(NIgN) algorithm for computing gravitational forces between all stars
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Barnes-Hut tree

— | D . L )
° .. R ’ ()
Spatial Domain Quad-Tree Representation

Interior nodes store center of mass, aggregate mass of child bodies (stars)

For each body, traverse tree
Compute forces using aggregate interior node if L/D < ©, else descend
Expected number of nodes touched O(Ig n/ ©32)
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Application structure

l Build tree
Compute
forces Compute
S | moments of cells
a) "
-.(?)‘ L
)
E
= Update
. Traverse tree
properties to compute forces

B (hallenges:
- Amount of work per body, and communication pattern of work is non-uniform
(depends on local density)
- The bodies move: so costs and communication patterns change over time
- Irregular, fine-grained computation

B But, thereis a lot of locality in the computation (bodies near in space require similar

data to compute forces -- should co-locate these computations!)
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Assignment

®  (Challenge:
- Equal number of bodies per processor = equal work per processor
- Want equal work per processor AND assignment should preserve locality

B Observation: spatial distribution of bodies evolves slowly

m  Use semi-staticassignment
- Each time step, for each body, record number of interactions with other
bodies (app self-profiles)
= Cheap to compute. Just increment local counters

- Use dynamic work costs to determine assignment
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Assignment using cost zones

B |everage locality inherentin tree 2212326 27]38] 39|42 43

B Compute total work estimate W for all bodies
(computed easily from per body costs)

B Each processor gets W/P of the work

B Thread on each processor runs breath-first
search through tree (accumulates work seen
so far)

B Processor Piresponsible for processing bodies
corresponding to work: i WW/P - (i+1) W/P

B Each processor can independently compute it's
bodies. Only synchronization required is the
reduction to compute total work
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Barnes-Hut: working sets

Spatial Domain

o

Quad-Tree Representation

B Working set 1: data needed to compute forces hetween body-body (or body-node) pairs

B Working set 2: data encountered in an entire tree traversal

Expected number of nodes touched for one body: 0(lgn/ ©?2)
Next body is nearby, so it touches almost exactly the same nodes
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Barnes-hut: data distribution

B (Cost zones approach computes a work
assignment. What about data distribution?

B Difficult to distribute data

- Work assignment changes with time: would
have to dynamically distribute data

- Data accessed at fine granularity

B Luckily: large amounts of temporal locality
- Bodies assigned to same processor are nearby

space — tree nodes accessed during force
computation are very similar.

- Datajust sits in cache (Barnes-Hut benefits
from large caches, smaller cache line size)

B Result: Unlike OCEAN, data distribution in Barnes-
Hut does not significantly impact performance
- Use static distribution (interleaved)

throughout the machine |
(CMU 15-418, Spring 2012)



Barnes-hut: synchronization

®  Afew barriers between phases of
force computation

B Fine-grained synchronization
needed during tree build phase
— Lock per tree cell

Time-steps

'

Build tree

Compute
forces

;

i

Compute
moments of cells

Update
properties

:

Traverse tree
to compute forces
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Cost-zones assignment
Thread
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Static assignment

Thread

Law of averages: on average, each processor does approx. the same amount of work

Significant amount of artifactual communication (fine-grained accesses)

Significant amount of inherent communication
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Load balance good even with static assignment because of random assignment
(similar to work balance vs. synchronization trade-offs in previous lecture)

But random assignment yields poor locality

B Common tension: work balance vs. locality (cost-zones get us both!)

Barnes-hut

Execution on 32-processor SGI Origin 2000 (512K bodies)
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Case study 3: ray tracing

m Synthesize images of a complex scene

- What scene geometry is intersected by each ray?
=  Which intersection is closest?

= How much light reaches the camera from this surface point

(CMU 15-418, Spring 2012)



Sampling light paths

Image credit: Wann Jensen, Hanrahan i Kayvon Fatahalian, Graphics and Imaging Architectures (CMUL1 -, Fall 2011)



Types of rays

Point Ilght

m  (amera (a.k.a., eye rays, primary rays) Area Light

=  Common origin, similar direction
® Shadow

=  Point source: common destination, similar direction

=  Area source: similar destination, similar direction (ray “coherence” breaks down
as light source increases in size: e.g., consider entire sky as an area light source)

\ \

Mirror Surface
Glossy Surface

B Indirect illumination
=  Mirror surface

-  Glossy surface

=  Diffuse surface

Diffuse Surface

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)



Problem

Given ray, find first intersection with scene geometry **

** Another common query: determine if any intersection exists
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Acceleration structures

Preprocess scene to build data structure to accelerate ray-scene visibility queries

e.g., bounding volume hierarchy (BVH)

Idea: nodes group objects with spatial proximity (like quad-tree in Barnes-hut)
Adapts to non-uniform density of scene objects

N\ N Ny Box

A NN
A A | A 2tris| [ 2AS)

Three different bounding volume hierarchies for the same scene

Image credit: Wald et al. TOG 2004 (CMU 15-418, Spring 2012)



High-throughput ray tracing

m Work efficiency of algorithms

- High quality acceleration structures (minimize ray-box, ray-primitive tests)

- Smart traversal algorithms (early termination, etc.)

m Parallelism: multi-core, SIMD execution efficiency

m Bandwidth efficiency (caching, memory access characteristics)
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Simple ray tracer (using BVH)

// stores information about closest hit found so far
struct ClosestHitInfo {

Primitive primitive;

float distance;

}s
trace(Ray ray, BVHNode node, ClosestHitInfo hitInfo)
{
if (lintersect(ray, node.bbox) || (closest point on box is farther than hitInfo.distance))
return;
if (node.leaf) {
for (each primitive in node) {
(hit, distance) = intersect(ray, primitive);
if (hit && distance < hitInfo.distance) {
hitInfo.primitive = primitive;
hitInfo.distance = distance;
}
} v Box
} else {
trace(ray, node.leftChild, hitInfo); 13 Br‘
trace(ray, node.rightChild, hitInfo); 2 tris 2 tris
}
}
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Decomposition and assignment

B Spatial decomposition of image (2D blocks)
— 2D blocks maximize spatial locality of rays

B (reate many more tiles than processors (just like assignment 1, problem 2)
m  Usesimple work queue to dynamically assign work to processors

= (Cost torender a block is large — synchronization cost trivial
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Ray packet tracing

Program explicitly intersects a collection of rays against BVH at once

RayPacket

{
Ray rays[PACKET_SIZE];

bool active[PACKET SIZE];

}s5
trace(RayPacket rays, BVHNode node, ClosestHitInfo packetHitInfo)
{
if (!'ANY_ACTIVE intersect(rays, node.bbox) ||
(closest point on box (for all active rays) is farther than hitInfo.distance))
return;
update packet active mask
if (node.leaf) {
for (each primitive in node) {
for (each ACTIVE ray r in packet) {
(hit, distance) = intersect(ray, primitive);
if (hit && distance < hitInfo.distance) {
hitInfo[r].primitive = primitive;
hitInfo[r].distance = distance;
}
}
}
} else {
trace(rays, node.leftChild, hitInfo);
trace(rays, node.rightChild, hitInfo);
}
}
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Ray packet tracing
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Advantages of packets

m SIMD execution
- Onevector lane per ray

B Amortize fetch: all rays in packet visit node at same time
- Load BVH node once for all rays in packet
- Note: value to making packets much bigger than SIMD width!
- Contrast with SPMD approach

B Amortize work

- Packets are an algorithmicimprovement: (help sequential algorithm as well)

- Useinterval arithmetic to conservatively test entire set of rays against node bhox
(e.g., think of a packet as a beam)

- Further optimizations possible when all rays share origin
- Note: value to making packets much bigger than SIMD width!
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Disadvantages of packets |
Blue = active ray after node hox test

m |f any ray must visit a node, it drags all uuuu
rays in the packet along with it [ j
A

(note contrast with SPMD version: each ray only

visits BVH nodes it is required to) UUU%l

B Loss of efficiency: node traversal, [ B [ x J
intersection, etc. amortized over less
than a packet’s worth of rays uu luu
c L0
m  Not all SIMD lanes doing useful work [AAJ l l l l l l
E F
[A AJ { A ]
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Ray packet tracing: incoherent rays
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When rays are incoherent, benefit of packets can decrease

significantly. This example: packet visits all tree nodes.
(All rays visit all tree nodes) (CMU 15418, Spring 2012




Improving packet tracing with ray reordering

ldea: when packet utilization drops below threshold, resort rays and
continue with smaller packet

— Increases SIMD utilization
— Still loses amortization benefits of large packets

Example: 8-wide SIMD processor, 16-ray packets
(2 SIMD instructions required to perform operation on all rays in full packet)

16-ray packet: 7 of 16 rays active l l u l l l

$

Reorder rays
Recompute intervals/bounds for active rays uuul

Continue tracing with 8-ray packet: \ 4
7 of 8 rays active luuu
(Now: single instruction to perform operation

on active rays
ys) (CMU 15-418, Spring 2012)



Giving up on packets

®  Even with reordering, ray coherence during BVH traversal will diminish
- Little benefit to packets (can decrease performance compared to single ray code)

B |dea: exploit SIMD execution within single ray-BVH intersection query

- Interior: use wider-branching BVH
(test single ray against multiple node bhoxes in parallel)
- Leaf: test ray against multiple triangles in parallel

(CMU 15-418, Spring 2012)



Packet tracing best practices

m Use large packets for higher levels of BVH
- Ray coherence always high at the top of the tree (visited by all rays)

m Switch to single ray (intra-ray SIMD) when packet
utilization drops below threshold

m (Can use dynamicreordering to postpone time of switch
- Reordering allows packets to provide benefit deeper into tree
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Ray tracing data access

BVH traversal requires a lot of jumping through memory

Not predictable by definition (or you have a bad tree)
Fine-granularity data access (like Barnes-Hut)
Packets amortize cost of node fetches over many rays (fetch data less)

In form of ray tracing discussed today: tree is read-only during ray traversal

Each ray packet processed independently — no synchronization needed

between cores
Parts of tree replicated in each processor’s cache

Top of tree: high locality (touched by all rays)

Incoherent ray traversal suffers from poor cache behavior

Ray-scene intersection becomes bandwidth bound
Large caches typical provide large benefit
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Global ray reordering

Idea: batch up rays in the same part of the scene. Process these rays
together to increase locality

() internal node Partition BVH into treelets
leaf node . \ (treelets sized for L1 or L2 cache)

)
\Ii) treelet |

= \ 1. When ray (or packet) enters

‘ |/ ‘ \ / ® x.\ treelet, add rays to treelet queue
!\ h ‘ T2 ‘| “." ‘ TS .\"]
\______,/ / e 2. When treelet queueis

/ & |. / \ sufficiently deep, intersect

[ Ta i \/ Is "'~, enqueued rays with treelet

I\ : '.. }

- e

Costs: global synchronization, extra footprint to store buffered rays

Benefits: increases SIMD coherence, increases locality of tree data access
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Summary

m Today: three examples of parallel program optimization
m Keyissues when discussing the applications

- How to balance the work?

- How to exploit locality inherent in the problem?

- What synchronization is necessary?
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