
Lecture 8:
Parallel Programming Case Studies

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)
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Contention example (last time)
▪ Problem: place many (e.g., 100K) point particles in a 16 cell uniform grid

- Parallel data structure manipulation problem: build a grid of lists

▪ Recall: 15 cores, up to 1024 threads per core on GTX 480 GPU
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Contention example
▪ First answer from last time: partition work by cells.  For each cell, 

independently compute overlapping particles
- 16 parallel tasks (insufficient parallelism: need thousands of independent tasks)
- Also: performs 16 times more particle-in-cell computations than sequential algorithm

(it’s no faster)

▪ Another answer: assign one particle to each CUDA thread. Compute cell 
containing particle.  Atomically update list.
- Massive contention: thousands of threads contending to update 16 lists

- Also: how are you going to “update the list”?
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Contention example
▪ Yet another answer: generate N grids in parallel, each thread updates one of 

the grids.
- Example: create 15 grids on GTX 480 (one per core)
- All threads assigned to core update same grid

- Faster synchronization: contention reduced by factor of N, performed on local variables
- Extra work: merging the grids at the end of the computation 
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Step 1: compute cell containing each particle

Step 2: sort by cell

Step 3: "nd start/end of each cell
cell	
  =	
  A[index]
if	
  (index	
  ==	
  0	
  ||	
  a[index]	
  !=	
  a[index-­‐1])	
  {
	
  	
  	
  	
  cell_starts[cell]	
  =	
  index;
	
  	
  	
  	
  cell_ends[A[index-­‐1]]	
  =	
  index;
}	
  
if	
  (index	
  ==	
  numParticles-­‐1)	
  //	
  special	
  case	
  for	
  last	
  cell
	
  	
  	
  	
  cell_ends[cell]	
  =	
  index+1;
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Removes need for "ne-grained 
synchronization at cost of sort 
and extra passes over the data 
(extra BW)
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Common use: N-body problems
▪ Common operation is to compute interactions with neighboring particles

▪ Example: "nd all particles within radius R
- Create grid with cells of size R
- Only need to inspect particles in surrounding grid cells

R

R
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Today
▪ Parallel application case studies!

▪ Three examples
- Ocean
- Galaxy simulation (Barnes-hut)
- Ray tracing

▪ Will be describing key aspects of the algorithms
- Focus on: optimization techniques, analysis of workload characteristics
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Case study 1: simulating ocean currents

▪ Discretize ocean into slices represented as 2D grids

▪ Discretize time evolution: ∆t

▪ High accuracy simulation  →  small ∆t and high resolution grids
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Ocean: dependencies in one time step

Potential for parallelism within a grid (data-parallelism) and across operations on the different grids.  
Implementation only leverages data-parallelism.  (simplicity)

Boxes 
correspond to 
computations 
on grids
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Ocean implementation details
▪ Static assignment: block decomposition (as previously discussed)

▪ Synchronization
- Barriers (each grid computation is a phase)
- Locks for mutual exclusion when updating shared variables

(primarily for global reductions)

▪ Critical working sets
1. Local neighborhood
2. 3 rows of local partition
3. Local partition

1.

2.

3.
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Ocean: execution time breakdown

Thread Thread
0 31 0 31

▪ Static assignment is sufficient (approx. equal busy time per thread)
▪ 4D blocking of grid reduces communication

(re%ected on graph as data wait time)
▪ Synchronization cost largely due to waiting at barriers

4D Block Assignment 2D Block Assignment

Execution on 32-processor SGI Origin 2000 (1026x1026 grids)
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Case study 2: Galaxy evolution

▪ Represent galaxy as a bunch of particles (think: particle = star)

▪ Compute forces due to gravity
- Gravity has in"nite extent: naive algorithm is O(N2)
- Magnitude of gravitational force falls off with distance

(approximate forces from groups of far away stars)
- Result is an O(NlgN) algorithm for computing gravitational forces between all stars

Barnes-Hut algorithm
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Barnes-Hut tree 

Spatial Domain Quad-Tree Representation

▪ Interior nodes store center of mass, aggregate mass of child bodies (stars)
▪ For each body, traverse tree
▪ Compute forces using aggregate interior node if L/D < ϴ, else descend
▪ Expected number of nodes touched O(lg n / ϴ2)

L
D
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Application structure

▪ Challenges:
- Amount of work per body, and communication pattern of work is non-uniform 

(depends on local density)
- The bodies move: so costs and communication patterns change over time
- Irregular, "ne-grained computation

▪ But, there is a lot of locality in the computation (bodies near in space require similar 
data to compute forces -- should co-locate these computations!)
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Assignment
▪ Challenge:

- Equal number of bodies per processor != equal work per processor
- Want equal work per processor AND assignment should preserve locality 

▪ Observation: spatial distribution of bodies evolves slowly

▪ Use semi-static assignment 
- Each time step, for each body, record number of interactions with other 

bodies (app self-pro"les)
- Cheap to compute. Just increment local counters
- Use dynamic work costs to determine assignment
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Assignment using cost zones
▪ Leverage locality inherent in tree

▪ Compute total work estimate W for all bodies
(computed easily from per body costs)

▪ Each processor gets W/P of the work

▪ Thread on each processor runs breath-"rst 
search through tree (accumulates work seen 
so far)

▪ Processor Pi responsible for processing bodies 
corresponding to work: iW/P - (i+1)W/P

▪ Each processor can independently compute it’s 
bodies. Only synchronization required is the 
reduction to compute total work
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Barnes-Hut: working sets 

Spatial Domain Quad-Tree Representation

▪ Working set 1: data needed to compute forces between body-body (or body-node) pairs
▪ Working set 2: data encountered in an entire tree traversal

- Expected number of nodes touched for one body: O(lg n / ϴ2)
- Next body is nearby, so it touches almost exactly the same nodes

L
D
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Barnes-hut: data distribution
▪ Cost zones approach computes a work 

assignment. What about data distribution?

▪ Difficult to distribute data
- Work assignment changes with time: would 

have to dynamically distribute data
- Data accessed at "ne granularity

▪ Luckily: large amounts of temporal locality
- Bodies assigned to same processor are nearby 

space → tree nodes accessed during force 
computation are very similar.

- Data just sits in cache (Barnes-Hut bene"ts 
from large caches, smaller cache line size)

▪ Result: Unlike OCEAN, data distribution in Barnes-
Hut does not signi"cantly impact performance
- Use static distribution (interleaved) 

throughout the machine  
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Barnes-hut: synchronization
▪ A few barriers between phases of 

force computation

▪ Fine-grained synchronization 
needed during tree build phase
- Lock per tree cell
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Barnes-hut: execution time

Thread Thread0 31 0 31

Static assignment
(randomized)

Cost-zones assignment

Execution on 32-processor SGI Origin 2000 (512K bodies)

▪ Load balance good even with static assignment because of random assignment
- Law of averages: on average, each processor does approx. the same amount of work

▪ But random assignment yields poor locality
- Signi"cant amount of inherent communication
- Signi"cant amount of artifactual communication ("ne-grained accesses)

▪ Common tension: work balance vs. locality (cost-zones get us both!)
(similar to work balance vs. synchronization trade-offs in previous lecture)
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Case study 3: ray tracing
▪ Synthesize images of a complex scene

- What scene geometry is intersected by each ray?
- Which intersection is closest?
- How much light reaches the camera from this surface point

Camera



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Sampling light paths

Image credit: Wann Jensen, Hanrahan



Kayvon Fatahalian, Graphics and Imaging Architectures  (CMU 15-869, Fall 2011)

Types of rays

▪ Camera (a.k.a., eye rays, primary rays)
- Common origin, similar direction

▪ Shadow
- Point source: common destination, similar direction

- Area source: similar destination, similar direction (ray “coherence” breaks down 
as light source increases in size: e.g., consider entire sky as an area light source)

▪ Indirect illumination
- Mirror surface

- Glossy surface

- Diffuse surface Mirror Surface

Glossy Surface

Diffuse Surface

Point light
Area Light
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Problem
Given ray, "nd "rst intersection with scene geometry **

** Another common query: determine if any intersection exists
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Acceleration structures 
Preprocess scene to build data structure to accelerate ray-scene visibility queries

e.g., bounding volume hierarchy (BVH)
Idea: nodes group objects with spatial proximity (like quad-tree in Barnes-hut)
Adapts to non-uniform density of scene objects

Image credit: Wald et al. TOG 2004 

Three different bounding volume hierarchies for the same scene
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High-throughput ray tracing

▪ Work efficiency of algorithms
- High quality acceleration structures (minimize ray-box, ray-primitive tests)
- Smart traversal algorithms (early termination, etc.)

▪ Parallelism: multi-core, SIMD execution efficiency

▪ Bandwidth efficiency (caching, memory access characteristics) 
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Simple ray tracer (using BVH)
//	
  stores	
  information	
  about	
  closest	
  hit	
  found	
  so	
  far
struct	
  ClosestHitInfo	
  {
	
  	
  	
  Primitive	
  primitive;
	
  	
  	
  float	
  distance;
};

trace(Ray	
  ray,	
  BVHNode	
  node,	
  ClosestHitInfo	
  hitInfo)
{
	
  	
  	
  if	
  (!intersect(ray,	
  node.bbox)	
  ||	
  (closest	
  point	
  on	
  box	
  is	
  farther	
  than	
  hitInfo.distance))
	
  	
  	
  	
  	
  	
  return;

	
  	
  	
  if	
  (node.leaf)	
  {
	
  	
  	
  	
  	
  	
  for	
  (each	
  primitive	
  in	
  node)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  (hit,	
  distance)	
  =	
  intersect(ray,	
  primitive);
	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  (hit	
  &&	
  distance	
  <	
  hitInfo.distance)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  hitInfo.primitive	
  =	
  primitive;
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  hitInfo.distance	
  =	
  distance;
	
  	
  	
  	
  	
  	
  	
  	
  	
  }
	
  	
  	
  	
  	
  	
  }
	
  	
  	
  }	
  else	
  {

trace(ray,	
  node.leftChild,	
  hitInfo);
	
  	
  	
  	
  	
  trace(ray,	
  node.rightChild,	
  hitInfo);
	
  	
  	
  }
}
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Decomposition and assignment

▪ Spatial decomposition of image (2D blocks)
- 2D blocks maximize spatial locality of rays

▪ Create many more tiles than processors (just like assignment 1, problem 2)
▪ Use simple work queue to dynamically assign work to processors

- Cost to render a block is large → synchronization cost trivial
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Ray packet tracing
Program explicitly intersects a collection of rays against BVH at once 
RayPacket
{
	
  	
  	
  	
  Ray	
  rays[PACKET_SIZE];
	
  	
  	
  	
  bool	
  active[PACKET_SIZE];
};

trace(RayPacket	
  rays,	
  BVHNode	
  node,	
  ClosestHitInfo	
  packetHitInfo)
{
	
  	
  	
  if	
  (!ANY_ACTIVE_intersect(rays,	
  node.bbox)	
  ||
	
  	
  	
  	
  	
  	
  	
  (closest	
  point	
  on	
  box	
  (for	
  all	
  active	
  rays)	
  is	
  farther	
  than	
  hitInfo.distance))
	
  	
  	
  	
  	
  	
  return;

	
  	
  	
  update	
  packet	
  active	
  mask

	
  	
  	
  if	
  (node.leaf)	
  {
	
  	
  	
  	
  	
  	
  for	
  (each	
  primitive	
  in	
  node)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  (each	
  ACTIVE	
  ray	
  r	
  in	
  packet)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (hit,	
  distance)	
  =	
  intersect(ray,	
  primitive);
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  (hit	
  &&	
  distance	
  <	
  hitInfo.distance)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  hitInfo[r].primitive	
  =	
  primitive;
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  hitInfo[r].distance	
  =	
  distance;
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }
	
  	
  	
  	
  	
  	
  	
  	
  	
  }
	
  	
  	
  	
  	
  	
  }
	
  	
  	
  }	
  else	
  {
	
  	
  	
  	
  	
  trace(rays,	
  node.leftChild,	
  hitInfo);
	
  	
  	
  	
  	
  trace(rays,	
  node.rightChild,	
  hitInfo);
	
  	
  	
  }
}
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Ray packet tracing
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r6 does not pass node F box test 
due to closest-so-far check
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Advantages of packets
▪ SIMD execution

- One vector lane per ray

▪ Amortize fetch: all rays in packet visit node at same time
- Load BVH node once for all rays in packet
- Note: value to making packets much bigger than SIMD width!
- Contrast with SPMD approach 

▪ Amortize work
- Packets are an algorithmic improvement: (help sequential algorithm as well)
- Use interval arithmetic to conservatively test entire set of rays against node bbox 

(e.g., think of a packet as a beam)
- Further optimizations possible when all rays share origin 
- Note: value to making packets much bigger than SIMD width!
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Disadvantages of packets
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▪ If any ray must visit a node, it drags all 
rays in the packet along with it
(note contrast with SPMD version: each ray only 
visits BVH nodes it is required to)

▪ Loss of efficiency: node traversal, 
intersection, etc. amortized over less 
than a packet’s worth of rays

▪ Not all SIMD lanes doing useful work
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Ray packet tracing: incoherent rays
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When rays are incoherent, bene"t of packets can decrease 
signi"cantly.  This example: packet visits all tree nodes.  
(All rays visit all tree nodes) 
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Improving packet tracing with ray reordering

16-ray packet: 7 of 16 rays active

Reorder rays
Recompute intervals/bounds for active rays

Continue tracing with 8-ray packet: 
7 of 8 rays active
(Now: single instruction to perform operation 
on active rays)

Example: 8-wide SIMD processor, 16-ray packets
(2 SIMD instructions required to perform operation on all rays in full packet)

Idea: when packet utilization drops below threshold, resort rays and 
continue with smaller packet
- Increases SIMD utilization
- Still loses amortization bene"ts of large packets 
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Giving up on packets
▪ Even with reordering, ray coherence during BVH traversal will diminish

- Little bene"t to packets (can decrease performance compared to single ray code)

▪ Idea: exploit SIMD execution within single ray-BVH intersection query
- Interior: use wider-branching BVH

(test single ray against multiple node bboxes in parallel)
- Leaf: test ray against multiple triangles in parallel
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Packet tracing best practices

▪ Use large packets for higher levels of BVH
- Ray coherence always high at the top of the tree (visited by all rays)

▪ Switch to single ray (intra-ray SIMD) when packet 
utilization drops below threshold

▪ Can use dynamic reordering to postpone time of switch
- Reordering allows packets to provide bene"t deeper into tree 
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Ray tracing data access
▪ BVH traversal requires a lot of jumping through memory

- Not predictable by de"nition (or you have a bad tree)
- Fine-granularity data access (like Barnes-Hut)
- Packets amortize cost of node fetches over many rays (fetch data less)

▪ In form of ray tracing discussed today: tree is read-only during ray traversal
- Each ray packet processed independently → no synchronization needed 

between cores
- Parts of tree replicated in each processor’s cache

▪ Top of tree: high locality (touched by all rays)

▪ Incoherent ray traversal suffers from poor cache behavior
- Ray-scene intersection becomes bandwidth bound
- Large caches typical provide large bene"t
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Global ray reordering
Idea: batch up rays in the same part of the scene.  Process these rays 
together to increase locality

Partition BVH into treelets
(treelets sized for L1 or L2 cache)

1. When ray (or packet) enters 
treelet, add rays to treelet queue

2. When treelet queue is 
sufficiently deep, intersect 
enqueued rays with treelet

Costs: global synchronization, extra footprint to store buffered rays
Bene"ts: increases SIMD coherence, increases locality of tree data access
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Summary
▪ Today: three examples of parallel program optimization
▪ Key issues when discussing the applications

- How to balance the work?
- How to exploit locality inherent in the problem?
- What synchronization is necessary?


