
Lecture 8:
Parallel Programming Case Studies

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

 (CMU 15-418, Spring 2012)

Contention example (last time)
▪ Problem: place many (e.g., 100K) point particles in a 16 cell uniform grid

- Parallel data structure manipulation problem: build a grid of lists

▪ Recall: 15 cores, up to 1024 threads per core on GTX 480 GPU

1 320

5 764

9 11108

13 151412

0

1
2

4

5

3

 (CMU 15-418, Spring 2012)

Contention example
▪ First answer from last time: partition work by cells. For each cell,

independently compute overlapping particles
- 16 parallel tasks (insufficient parallelism: need thousands of independent tasks)
- Also: performs 16 times more particle-in-cell computations than sequential algorithm

(it’s no faster)

▪ Another answer: assign one particle to each CUDA thread. Compute cell
containing particle. Atomically update list.
- Massive contention: thousands of threads contending to update 16 lists

- Also: how are you going to “update the list”?

 (CMU 15-418, Spring 2012)

Contention example
▪ Yet another answer: generate N grids in parallel, each thread updates one of

the grids.
- Example: create 15 grids on GTX 480 (one per core)
- All threads assigned to core update same grid

- Faster synchronization: contention reduced by factor of N, performed on local variables
- Extra work: merging the grids at the end of the computation

 (CMU 15-418, Spring 2012)

Data-parallel solution 1 320

5 764

9 11108

13 151412

0

1
2

4
5

3

9 6 6 4 6 4

0 1 2 3 4 5

4 4 6 6 6 9

3 5 1 2 4 0

Step 1: compute cell containing each particle

Step 2: sort by cell

Step 3: "nd start/end of each cell
cell	
 =	
 A[index]
if	
 (index	
 ==	
 0	
 ||	
 a[index]	
 !=	
 a[index-­‐1])	
 {
	
 	
 	
 	
 cell_starts[cell]	
 =	
 index;
	
 	
 	
 	
 cell_ends[A[index-­‐1]]	
 =	
 index;
}	

if	
 (index	
 ==	
 numParticles-­‐1)	
 //	
 special	
 case	
 for	
 last	
 cell
	
 	
 	
 	
 cell_ends[cell]	
 =	
 index+1;

0 2 5

2 5

0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

6

cell_starts

cell_ends 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff

0 1 2 3 4 5 6 7 8 9 10

. . .

. . .

Removes need for "ne-grained
synchronization at cost of sort
and extra passes over the data
(extra BW)

 (CMU 15-418, Spring 2012)

Common use: N-body problems
▪ Common operation is to compute interactions with neighboring particles

▪ Example: "nd all particles within radius R
- Create grid with cells of size R
- Only need to inspect particles in surrounding grid cells

R

R

 (CMU 15-418, Spring 2012)

Today
▪ Parallel application case studies!

▪ Three examples
- Ocean
- Galaxy simulation (Barnes-hut)
- Ray tracing

▪ Will be describing key aspects of the algorithms
- Focus on: optimization techniques, analysis of workload characteristics

 (CMU 15-418, Spring 2012)

Case study 1: simulating ocean currents

▪ Discretize ocean into slices represented as 2D grids

▪ Discretize time evolution: ∆t

▪ High accuracy simulation → small ∆t and high resolution grids

 (CMU 15-418, Spring 2012)

Ocean: dependencies in one time step

Potential for parallelism within a grid (data-parallelism) and across operations on the different grids.
Implementation only leverages data-parallelism. (simplicity)

Boxes
correspond to
computations
on grids

 (CMU 15-418, Spring 2012)

Ocean implementation details
▪ Static assignment: block decomposition (as previously discussed)

▪ Synchronization
- Barriers (each grid computation is a phase)
- Locks for mutual exclusion when updating shared variables

(primarily for global reductions)

▪ Critical working sets
1. Local neighborhood
2. 3 rows of local partition
3. Local partition

1.

2.

3.

 (CMU 15-418, Spring 2012)

Ocean: execution time breakdown

Thread Thread
0 31 0 31

▪ Static assignment is sufficient (approx. equal busy time per thread)
▪ 4D blocking of grid reduces communication

(re%ected on graph as data wait time)
▪ Synchronization cost largely due to waiting at barriers

4D Block Assignment 2D Block Assignment

Execution on 32-processor SGI Origin 2000 (1026x1026 grids)

 (CMU 15-418, Spring 2012)

Case study 2: Galaxy evolution

▪ Represent galaxy as a bunch of particles (think: particle = star)

▪ Compute forces due to gravity
- Gravity has in"nite extent: naive algorithm is O(N2)
- Magnitude of gravitational force falls off with distance

(approximate forces from groups of far away stars)
- Result is an O(NlgN) algorithm for computing gravitational forces between all stars

Barnes-Hut algorithm

 (CMU 15-418, Spring 2012)

Barnes-Hut tree

Spatial Domain Quad-Tree Representation

▪ Interior nodes store center of mass, aggregate mass of child bodies (stars)
▪ For each body, traverse tree
▪ Compute forces using aggregate interior node if L/D < ϴ, else descend
▪ Expected number of nodes touched O(lg n / ϴ2)

L
D

 (CMU 15-418, Spring 2012)

Application structure

▪ Challenges:
- Amount of work per body, and communication pattern of work is non-uniform

(depends on local density)
- The bodies move: so costs and communication patterns change over time
- Irregular, "ne-grained computation

▪ But, there is a lot of locality in the computation (bodies near in space require similar
data to compute forces -- should co-locate these computations!)

 (CMU 15-418, Spring 2012)

Assignment
▪ Challenge:

- Equal number of bodies per processor != equal work per processor
- Want equal work per processor AND assignment should preserve locality

▪ Observation: spatial distribution of bodies evolves slowly

▪ Use semi-static assignment
- Each time step, for each body, record number of interactions with other

bodies (app self-pro"les)
- Cheap to compute. Just increment local counters
- Use dynamic work costs to determine assignment

 (CMU 15-418, Spring 2012)

Assignment using cost zones
▪ Leverage locality inherent in tree

▪ Compute total work estimate W for all bodies
(computed easily from per body costs)

▪ Each processor gets W/P of the work

▪ Thread on each processor runs breath-"rst
search through tree (accumulates work seen
so far)

▪ Processor Pi responsible for processing bodies
corresponding to work: iW/P - (i+1)W/P

▪ Each processor can independently compute it’s
bodies. Only synchronization required is the
reduction to compute total work

 (CMU 15-418, Spring 2012)

Barnes-Hut: working sets

Spatial Domain Quad-Tree Representation

▪ Working set 1: data needed to compute forces between body-body (or body-node) pairs
▪ Working set 2: data encountered in an entire tree traversal

- Expected number of nodes touched for one body: O(lg n / ϴ2)
- Next body is nearby, so it touches almost exactly the same nodes

L
D

 (CMU 15-418, Spring 2012)

Barnes-hut: data distribution
▪ Cost zones approach computes a work

assignment. What about data distribution?

▪ Difficult to distribute data
- Work assignment changes with time: would

have to dynamically distribute data
- Data accessed at "ne granularity

▪ Luckily: large amounts of temporal locality
- Bodies assigned to same processor are nearby

space → tree nodes accessed during force
computation are very similar.

- Data just sits in cache (Barnes-Hut bene"ts
from large caches, smaller cache line size)

▪ Result: Unlike OCEAN, data distribution in Barnes-
Hut does not signi"cantly impact performance
- Use static distribution (interleaved)

throughout the machine

 (CMU 15-418, Spring 2012)

Barnes-hut: synchronization
▪ A few barriers between phases of

force computation

▪ Fine-grained synchronization
needed during tree build phase
- Lock per tree cell

 (CMU 15-418, Spring 2012)

Barnes-hut: execution time

Thread Thread0 31 0 31

Static assignment
(randomized)

Cost-zones assignment

Execution on 32-processor SGI Origin 2000 (512K bodies)

▪ Load balance good even with static assignment because of random assignment
- Law of averages: on average, each processor does approx. the same amount of work

▪ But random assignment yields poor locality
- Signi"cant amount of inherent communication
- Signi"cant amount of artifactual communication ("ne-grained accesses)

▪ Common tension: work balance vs. locality (cost-zones get us both!)
(similar to work balance vs. synchronization trade-offs in previous lecture)

 (CMU 15-418, Spring 2012)

Case study 3: ray tracing
▪ Synthesize images of a complex scene

- What scene geometry is intersected by each ray?
- Which intersection is closest?
- How much light reaches the camera from this surface point

Camera

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Sampling light paths

Image credit: Wann Jensen, Hanrahan

Kayvon Fatahalian, Graphics and Imaging Architectures (CMU 15-869, Fall 2011)

Types of rays

▪ Camera (a.k.a., eye rays, primary rays)
- Common origin, similar direction

▪ Shadow
- Point source: common destination, similar direction

- Area source: similar destination, similar direction (ray “coherence” breaks down
as light source increases in size: e.g., consider entire sky as an area light source)

▪ Indirect illumination
- Mirror surface

- Glossy surface

- Diffuse surface Mirror Surface

Glossy Surface

Diffuse Surface

Point light
Area Light

 (CMU 15-418, Spring 2012)

Problem
Given ray, "nd "rst intersection with scene geometry **

** Another common query: determine if any intersection exists

 (CMU 15-418, Spring 2012)

Acceleration structures
Preprocess scene to build data structure to accelerate ray-scene visibility queries

e.g., bounding volume hierarchy (BVH)
Idea: nodes group objects with spatial proximity (like quad-tree in Barnes-hut)
Adapts to non-uniform density of scene objects

Image credit: Wald et al. TOG 2004

Three different bounding volume hierarchies for the same scene

 (CMU 15-418, Spring 2012)

High-throughput ray tracing

▪ Work efficiency of algorithms
- High quality acceleration structures (minimize ray-box, ray-primitive tests)
- Smart traversal algorithms (early termination, etc.)

▪ Parallelism: multi-core, SIMD execution efficiency

▪ Bandwidth efficiency (caching, memory access characteristics)

 (CMU 15-418, Spring 2012)

Simple ray tracer (using BVH)
//	
 stores	
 information	
 about	
 closest	
 hit	
 found	
 so	
 far
struct	
 ClosestHitInfo	
 {
	
 	
 	
 Primitive	
 primitive;
	
 	
 	
 float	
 distance;
};

trace(Ray	
 ray,	
 BVHNode	
 node,	
 ClosestHitInfo	
 hitInfo)
{
	
 	
 	
 if	
 (!intersect(ray,	
 node.bbox)	
 ||	
 (closest	
 point	
 on	
 box	
 is	
 farther	
 than	
 hitInfo.distance))
	
 	
 	
 	
 	
 	
 return;

	
 	
 	
 if	
 (node.leaf)	
 {
	
 	
 	
 	
 	
 	
 for	
 (each	
 primitive	
 in	
 node)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 (hit,	
 distance)	
 =	
 intersect(ray,	
 primitive);
	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (hit	
 &&	
 distance	
 <	
 hitInfo.distance)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hitInfo.primitive	
 =	
 primitive;
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hitInfo.distance	
 =	
 distance;
	
 	
 	
 	
 	
 	
 	
 	
 	
 }
	
 	
 	
 	
 	
 	
 }
	
 	
 	
 }	
 else	
 {

trace(ray,	
 node.leftChild,	
 hitInfo);
	
 	
 	
 	
 	
 trace(ray,	
 node.rightChild,	
 hitInfo);
	
 	
 	
 }
}

 (CMU 15-418, Spring 2012)

Decomposition and assignment

▪ Spatial decomposition of image (2D blocks)
- 2D blocks maximize spatial locality of rays

▪ Create many more tiles than processors (just like assignment 1, problem 2)
▪ Use simple work queue to dynamically assign work to processors

- Cost to render a block is large → synchronization cost trivial

 (CMU 15-418, Spring 2012)

Ray packet tracing
Program explicitly intersects a collection of rays against BVH at once
RayPacket
{
	
 	
 	
 	
 Ray	
 rays[PACKET_SIZE];
	
 	
 	
 	
 bool	
 active[PACKET_SIZE];
};

trace(RayPacket	
 rays,	
 BVHNode	
 node,	
 ClosestHitInfo	
 packetHitInfo)
{
	
 	
 	
 if	
 (!ANY_ACTIVE_intersect(rays,	
 node.bbox)	
 ||
	
 	
 	
 	
 	
 	
 	
 (closest	
 point	
 on	
 box	
 (for	
 all	
 active	
 rays)	
 is	
 farther	
 than	
 hitInfo.distance))
	
 	
 	
 	
 	
 	
 return;

	
 	
 	
 update	
 packet	
 active	
 mask

	
 	
 	
 if	
 (node.leaf)	
 {
	
 	
 	
 	
 	
 	
 for	
 (each	
 primitive	
 in	
 node)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 (each	
 ACTIVE	
 ray	
 r	
 in	
 packet)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (hit,	
 distance)	
 =	
 intersect(ray,	
 primitive);
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (hit	
 &&	
 distance	
 <	
 hitInfo.distance)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hitInfo[r].primitive	
 =	
 primitive;
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hitInfo[r].distance	
 =	
 distance;
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }
	
 	
 	
 	
 	
 	
 	
 	
 	
 }
	
 	
 	
 	
 	
 	
 }
	
 	
 	
 }	
 else	
 {
	
 	
 	
 	
 	
 trace(rays,	
 node.leftChild,	
 hitInfo);
	
 	
 	
 	
 	
 trace(rays,	
 node.rightChild,	
 hitInfo);
	
 	
 	
 }
}

 (CMU 15-418, Spring 2012)

Ray packet tracing

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

Blue = active ray after node box test

r0
r1 r2 r3 r4 r5 r6

r7

r6 does not pass node F box test
due to closest-so-far check

 (CMU 15-418, Spring 2012)

Advantages of packets
▪ SIMD execution

- One vector lane per ray

▪ Amortize fetch: all rays in packet visit node at same time
- Load BVH node once for all rays in packet
- Note: value to making packets much bigger than SIMD width!
- Contrast with SPMD approach

▪ Amortize work
- Packets are an algorithmic improvement: (help sequential algorithm as well)
- Use interval arithmetic to conservatively test entire set of rays against node bbox

(e.g., think of a packet as a beam)
- Further optimizations possible when all rays share origin
- Note: value to making packets much bigger than SIMD width!

 (CMU 15-418, Spring 2012)

Disadvantages of packets

B

C D

E F

1 2

3 4 5

G
6

A

Blue = active ray after node box test

▪ If any ray must visit a node, it drags all
rays in the packet along with it
(note contrast with SPMD version: each ray only
visits BVH nodes it is required to)

▪ Loss of efficiency: node traversal,
intersection, etc. amortized over less
than a packet’s worth of rays

▪ Not all SIMD lanes doing useful work

 (CMU 15-418, Spring 2012)

Ray packet tracing: incoherent rays

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

Blue = active ray after node box test

r0

r1

r3

r3

r4

r5

r6

r7

When rays are incoherent, bene"t of packets can decrease
signi"cantly. This example: packet visits all tree nodes.
(All rays visit all tree nodes)

 (CMU 15-418, Spring 2012)

Improving packet tracing with ray reordering

16-ray packet: 7 of 16 rays active

Reorder rays
Recompute intervals/bounds for active rays

Continue tracing with 8-ray packet:
7 of 8 rays active
(Now: single instruction to perform operation
on active rays)

Example: 8-wide SIMD processor, 16-ray packets
(2 SIMD instructions required to perform operation on all rays in full packet)

Idea: when packet utilization drops below threshold, resort rays and
continue with smaller packet
- Increases SIMD utilization
- Still loses amortization bene"ts of large packets

 (CMU 15-418, Spring 2012)

Giving up on packets
▪ Even with reordering, ray coherence during BVH traversal will diminish

- Little bene"t to packets (can decrease performance compared to single ray code)

▪ Idea: exploit SIMD execution within single ray-BVH intersection query
- Interior: use wider-branching BVH

(test single ray against multiple node bboxes in parallel)
- Leaf: test ray against multiple triangles in parallel

 (CMU 15-418, Spring 2012)

Packet tracing best practices

▪ Use large packets for higher levels of BVH
- Ray coherence always high at the top of the tree (visited by all rays)

▪ Switch to single ray (intra-ray SIMD) when packet
utilization drops below threshold

▪ Can use dynamic reordering to postpone time of switch
- Reordering allows packets to provide bene"t deeper into tree

 (CMU 15-418, Spring 2012)

Ray tracing data access
▪ BVH traversal requires a lot of jumping through memory

- Not predictable by de"nition (or you have a bad tree)
- Fine-granularity data access (like Barnes-Hut)
- Packets amortize cost of node fetches over many rays (fetch data less)

▪ In form of ray tracing discussed today: tree is read-only during ray traversal
- Each ray packet processed independently → no synchronization needed

between cores
- Parts of tree replicated in each processor’s cache

▪ Top of tree: high locality (touched by all rays)

▪ Incoherent ray traversal suffers from poor cache behavior
- Ray-scene intersection becomes bandwidth bound
- Large caches typical provide large bene"t

 (CMU 15-418, Spring 2012)

Global ray reordering
Idea: batch up rays in the same part of the scene. Process these rays
together to increase locality

Partition BVH into treelets
(treelets sized for L1 or L2 cache)

1. When ray (or packet) enters
treelet, add rays to treelet queue

2. When treelet queue is
sufficiently deep, intersect
enqueued rays with treelet

Costs: global synchronization, extra footprint to store buffered rays
Bene"ts: increases SIMD coherence, increases locality of tree data access

 (CMU 15-418, Spring 2012)

Summary
▪ Today: three examples of parallel program optimization
▪ Key issues when discussing the applications

- How to balance the work?
- How to exploit locality inherent in the problem?
- What synchronization is necessary?

