
Lecture 7:
Programming for Performance (part II)

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

 (CMU 15-418, Spring 2012)

Assignment 2

▪ Assignment 2 out tonight
- We are slowly bringing up machines with the new GPUs
- (It requires cutting metal)

▪ Due Tuesday, Feb 21 (2 weeks)

▪ May work in pairs

 (CMU 15-418, Spring 2012)

Assignment 2

 (CMU 15-418, Spring 2012)

Rendering circles

 (CMU 15-418, Spring 2012)

Renderer structure
class	
 CircleRenderer	
 {

public:

	
 	
 	
 	
 virtual	
 void	
 clearImage()	
 =	
 0;

	
 	
 	
 	
 virtual	
 void	
 advanceAnimation()	
 =	
 0;

	
 	
 	
 	
 virtual	
 void	
 render()	
 =	
 0;

};

 (CMU 15-418, Spring 2012)

Renderer structure
if	
 (animating)
	
 	
 	
 for	
 each	
 circle
	
 	
 	
 	
 	
 	
 update	
 position	
 and	
 velocity

for	
 each	
 circle
	
 	
 	
 compute	
 screen	
 bounding	
 box
	
 	
 	
 for	
 all	
 pixels	
 in	
 bounding	
 box
	
 	
 	
 	
 	
 	
 compute	
 pixel	
 center	
 point
	
 	
 	
 	
 	
 	
 if	
 center	
 point	
 is	
 within	
 the	
 circle
	
 	
 	
 	
 	
 	
 	
 	
 	
 compute	
 color	
 of	
 circle	
 at	
 point
	
 	
 	
 	
 	
 	
 	
 	
 	
 blend	
 contribution	
 of	
 circle	
 into	
 image	
 for	
 this	
 pixel

(0,0) (1,0)

(0,1) (1,1)

(x,y)
radius

 (CMU 15-418, Spring 2012)

Atomicity and order

Example:
Red, green, and blue circles (each is 50% transparent: Common to store opacity “alpha”)
Red circle is the farthest, blue closest

image_color	
 =	
 alpha_r	
 *	
 red	
 //	
 contribution	
 due	
 to	
 red
image_color	
 =	
 alpha_g	
 *	
 green	
 +	
 (1-­‐alpha_g)	
 *	
 image_color	
 //	
 due	
 to	
 green
image_color	
 =	
 alpha_b	
 *	
 blue	
 +	
 (1-­‐alpha_b)	
 *	
 image_color	
 //	
 due	
 to	
 blue

alpha_r	
 =	
 .5	

alpha_g	
 =	
 .5
alpha_b	
 =	
 .5

Requirements:
Image update must be atomic
Image updates must occur in proper order
(Note image update math is NOT commutative)

 (CMU 15-418, Spring 2012)

Order

Correct order:
blue over green over red

Incorrect order:

 (CMU 15-418, Spring 2012)

Atomicity and order

Proper order in this example is reverse depth order.

In this assignment we follow real time graphics systems and de!ne order to be
triangle order: for any pixel P, contribution of triangle 1 to P must be applied to image
prior to contribution from triangle 2

(we’ll hand your renderer circles in reverse depth order)

Requirements:
Image update must be atomic
Image updates must occur in proper order
(Note image update math is NOT commutative)

 (CMU 15-418, Spring 2012)

Order
For any image pixel P, contribution of triangle 1 to P must be applied to image prior
to contribution from triangle 2

1 2 3

pixel P

Dependencies between circles No overlap: no dependencies

Three input triangles

 (CMU 15-418, Spring 2012)

Atomicity and ordering

Starter code:
1. Fully functional sequential CPU renderer
2. GPU renderer in CUDA

Trivial parallelism over circles
Does not preserve order or atomicity
Results have artifacts

These artifacts are non-deterministic
(depend on computation schedule)

 (CMU 15-418, Spring 2012)

Assignment 2: implement the fastest,
(correct) circle renderer you can

 (CMU 15-418, Spring 2012)

Today: more parallel program optimization
▪ Recall !rst lecture: distributing work to processors

- Goal: minimizing overhead while also achieving a workload balance
- Static vs. dynamic assignment, several work queue implementations
- Keep it simple, stupid (pro!le, analyze, then tune if required)

▪ Today: minimizing communication and exploiting locality

 (CMU 15-418, Spring 2012)

Terminology
Latency

Bandwidth

Cost

The amount of time needed for an operation to complete.
Example: A memory load that misses the cache has a latency of 200 cycles.

A packet takes 20 ms to be sent from my computer to Google.

The rate at which operations are performed.
Example: Memory can provide data to the processor at 25 GB/sec.
A communication link can send 10 million messages per second.

The (detrimental) effect operations have on program execution time
(or some other metric, e.g, power)

“My slow program sends most of it’s time waiting on memory.” (cost of latency)
“Saxpy achieves low ALU utilization because it is bandwidth bound.” (cost of insufficient bandwidth)

 (CMU 15-418, Spring 2012)

A very simple model of communication

T = transfer time (overall latency of the operation)
T0 = start-up cost
n = bytes transferred
B = transfer rate (bandwidth of the link)

Assumption: processor does no other work while waiting for transfer to complete ...
Effective bandwidth = n / T(n)
Effective bandwidth depends on transfer size

T0 T0 T0n/B n/B n/B
time

 (CMU 15-418, Spring 2012)

A more general model of communication

Send API call, copy message to network buffer
Routing: determine address of dest

Send data over slow link: n/Bsmall

Bridge

Send data over fast link: n/Blarge

Copy message to receiver’s network buffer:

= Overhead (time spent on the communication by a processor)

= Occupancy (time for data to pass through slowest component of system)

= Network delay (everything else)

Communication time = overhead + occupancy + network delay

Example: sending a message

 (CMU 15-418, Spring 2012)

Pipelined communication

= Overhead (time spent on the communication by a processor)

= Occupancy (time for data to pass through slowest component of system)

= Network delay (everything else)

Occupancy determines communication rate (effective bandwidth)

Messages buffered
while link is busy

buffer size = 2 time

 (CMU 15-418, Spring 2012)

Pipelined communication

Occupancy determines communication rate
(in steady state: msg/sec = 1/occupancy)

time

Max buffer size = 2

Processor sends burst of messages
(faster than 1/occupancy)

 (CMU 15-418, Spring 2012)

Communication cost

Total communication cost = frequency x (communication time - overlap)

Remember, what really matters is not the absolute cost of communication, but it’s cost
relative to the cost of the computation fundamental to the problem being solved.

Overlap: portion of communication performed concurrently with other work
“Other work” can be computation or other communication (as in the previous example)

 (CMU 15-418, Spring 2012)

Inherent communication
Communication that must occur in a
parallel algorithm. Fundamental to the
algorithm.

P3

P4

Send row

Send row

P1

P2

 (CMU 15-418, Spring 2012)

Reducing inherent communication
▪ Good assignment can reduce inherent communication

(decrease communication to computation ratio)

elements communicated

1D blocked assignment 1D interleaved assignment

elements computed
= 4 / 3

(each phase: send two rows, recv two rows)

elements communicated

elements computed
= 4 / 1

 (CMU 15-418, Spring 2012)

Reducing inherent communication

P1 P2 P3

P4 P5 P6

P7 P8 P9

N2 elements
P processors

elements computed:

elements communicated:

comm-to-comp ratio:

2D blocked assignment

Asymptotically better communication scaling than 1D blocked assignment
Communication costs increase sub-linearly with P
Assignment captures 2D locality of algorithm

 (CMU 15-418, Spring 2012)

Communication-to-computation ratio

▪ If denominator is execution time of computation, ratio gives average bandwidth
requirements

▪ Another term: “arithmetic intensity” = 1 / communication-to-computation ratio

▪ High arithmetic intensity needed on parallel processors, since the ratio of compute
capability to available bandwidth is very high (recall SAXPY)

amount of communication

amount of computation

 (CMU 15-418, Spring 2012)

Parallel system as an extended mem hierarchy
▪ Up until now: adopted notion that data was partitioned amongst processors, and

that “non-local data” required communication

▪ In reality, parallel system is multi-memory, multi-cache system. Characteristics of
data access latencies and bandwidths can have large effect on performance

Proc

Reg

Local L1

Local L2

L3 cache

Local memory

Remote memory (1 network hop)

Remote memory (N network hops)

L2 from another core

Lower latency, higher bandwidth,
smaller capacity

Higher latency, lower bandwidth,
larger capacity

View from one processor

Accesses not satis!ed in local memory
cause communication with next level

Managing locality is important at all levels
(achieving high arithmetic intensity)

 (CMU 15-418, Spring 2012)

Artifactual communication
▪ Inherent communication: assumes unlimited capacity, small

transfers, perfect knowledge of what is needed to
communicate

▪ Artifactual communication is everything else (depends on
interaction of application and system)
- System-granularity block transfers (send more then what’s needed: e.g., read

one word, load entire cache line)
- Poor allocation of data among distributed memories
- Finite replication capacity (in any level of hierarchy)

 (CMU 15-418, Spring 2012)

Review of the three (now four) Cs
▪ Cold miss

▪ Capacity miss

▪ Con$ict miss

▪ Communication miss (new)
Due to inherent communication or artifactual communication in parallel system

First time data touched. Unavoidable.

Working set larger than cache. Can be decreased by larger caches

Miss induced by cache management policy. Can reduce by changing
cache associativity, or data access pattern in application

 (CMU 15-418, Spring 2012)

Working set perspective

Increasing capacity of hierarchy level

Data
traffic

This diagram holds true at any level of the memory hierarchy in a parallel system

Question: how much capacity should an architect build for this workload?

 (CMU 15-418, Spring 2012)

Reducing amount of communication

 (CMU 15-418, Spring 2012)

Improve temporal locality
▪ “Blocking”: reorder computation to make working sets map well to

system’s memory hierarchy

Recall matrix transpose assignment in 15-213:
Main idea: replicate block of data in local memories (cache)
Process it in its entirety (accessing many times) prior to moving only next block

Tip: how might blocking apply in a renderer?

 (CMU 15-418, Spring 2012)

Improve temporal locality
▪ Exploit sharing: co-locate tasks that operate on the same data

- Schedule threads working on the same data structure at the same time
on the same processor

- Reduces inherent communication

▪ Example: CUDA thread block
- Abstraction to localize related processing in the machine
- Threads in block often cooperate to perform an operation
- Leverage fast access to / synchronization via CUDA shared memory

 (CMU 15-418, Spring 2012)

Exploiting spatial locality
▪ Granularities can be very important

- Granularity of allocation
- Granularity of communication / data transfer
- Granularity of coherence (future lecture)

 (CMU 15-418, Spring 2012)

Artifactual communication due to comm. granularity
Shared memory system. Cache line communication granularity (four elements)
2D blocked partitioning

Good spatial locality for non-local
accesses to top-bottom rows

Poor spatial locality for non-local
accesses to left-right columns

Need one element from line. Must
communicate four.

Implication: 1D blocked layout may
perform better despite worse
inherent communication-to-
computation ratio.

 (CMU 15-418, Spring 2012)

Artifactual comm. due to comm./coherence granularity

P1 P2

Data partitioned among memories local
to processors

Processors access their assigned elements
(no inherent communication)

But data access on real machine triggers
communication (artifactual)

Also, writes by different processors
require cache coherence **

** Implementing cache coherence will be a topic of future lectures.

Cache line

 (CMU 15-418, Spring 2012)

Reducing artifactual comm: better layout
Memory layout: arrows designate

contiguous addresses

Memory page
straddles partition

boundary

Cache line straddles
partition boundary

Cache line
within partition

Page contained
within partition

2D, row-major array layout
4D array layout
(block-major)

 (CMU 15-418, Spring 2012)

Performance impact of 4D layout

Ocean (514x514 grids) Solver kernel (12K x 12K grid)

(on SGI Origin 2000 shared address space machine)

 (CMU 15-418, Spring 2012)

Structuring communication to reduce cost
Total communication cost = frequency x (communication time - overlap)

Total communication cost = frequency x (overhead + occupancy + network delay - overlap)

Total communication cost = frequency x (overhead + (n/B + contention) + network delay - overlap)

Here: occupancy dominated by time it takes to transfer message (n bytes) over slow link + delays due to
contention for link

 (CMU 15-418, Spring 2012)

Contention
▪ All resources have non-zero occupancy

- Memory, communication links, comm. controller. etc.
- Each has !xed number of transactions per unit time

▪ Contention occurs when many requests to a resource are made within a
small window of time
- Resource is a “hot spot”

Tree structured communication:
reduces contention

Flat communication:
potential for high contention

Example: updating a shared variable

 (CMU 15-418, Spring 2012)

NVIDIA GTX 480 contention example
▪ Shared memory: 32 banks

	
 	
 	
 __shared__	
 float	
 A[512];

	
 	
 	
 int	
 index	
 =	
 threadIdx.x;
	
 	
 	
 float	
 x1	
 =	
 A[0];	
 	
 //	
 single	
 cycle

	
 	
 	
 float	
 x1	
 =	
 A[index];	
 	
 //	
 single	
 cycle

	
 	
 	
 float	
 x2	
 =	
 A[3*index];	
 //	
 single	
 cycle

	
 	
 	
 float	
 x3	
 =	
 A[index	
 /	
 2];	
 	
 //	
 2	
 cycles

	
 	
 	
 float	
 x4	
 =	
 A[32	
 *	
 index];	
 //	
 32	
 cycles
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 66 3 69 6 ... 33 36

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 (CMU 15-418, Spring 2012)

Another contention example
▪ 15 cores, up to 1024 threads per core
▪ Place a bunch of point particles in a 16 cell uniform grid

 (CMU 15-418, Spring 2012)

Reducing communication costs
▪ Reduce overhead

- Send fewer messages, make messages larger
- Coalesce small messages into large ones

▪ Reduce delay
- HW implementor: improve communication architecture
- Application writer: exploit locality in data distributions

▪ Reduce contention

▪ Increase overlap
- HW implementation: multi-threading, pre-fetching, out-of-order execution
- Application: asynchronous communication
- Requires additional concurrency in application (more concurrency than

number of processors)

 (CMU 15-418, Spring 2012)

Summary: optimizing communication
▪ Inherent vs. artifactual communication

- Artifactual communication depends on the machine
- Often as important to performance as inherent communication

▪ Improving program performance:
- Identify and exploit locality: communicate less

- increase arithmetic intensity
- Reduce overhead (few, large messages)
- Reduce contention
- Maximize overlap (hide latency so as to not incur cost)

