
Lecture 7:
Programming for Performance (part II)

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)
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Assignment 2

▪ Assignment 2 out tonight
- We are slowly bringing up machines with the new GPUs
- (It requires cutting metal)

▪ Due Tuesday, Feb 21  (2 weeks)

▪ May work in pairs 
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Assignment 2
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Rendering circles
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Renderer structure
class	
  CircleRenderer	
  {

public:

	
  	
  	
  	
  virtual	
  void	
  clearImage()	
  =	
  0;

	
  	
  	
  	
  virtual	
  void	
  advanceAnimation()	
  =	
  0;

	
  	
  	
  	
  virtual	
  void	
  render()	
  =	
  0;

};
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Renderer structure
if	
  (animating)
	
  	
  	
  for	
  each	
  circle
	
  	
  	
  	
  	
  	
  update	
  position	
  and	
  velocity

for	
  each	
  circle
	
  	
  	
  compute	
  screen	
  bounding	
  box
	
  	
  	
  for	
  all	
  pixels	
  in	
  bounding	
  box
	
  	
  	
  	
  	
  	
  compute	
  pixel	
  center	
  point
	
  	
  	
  	
  	
  	
  if	
  center	
  point	
  is	
  within	
  the	
  circle
	
  	
  	
  	
  	
  	
  	
  	
  	
  compute	
  color	
  of	
  circle	
  at	
  point
	
  	
  	
  	
  	
  	
  	
  	
  	
  blend	
  contribution	
  of	
  circle	
  into	
  image	
  for	
  this	
  pixel

(0,0) (1,0) 

(0,1) (1,1) 

(x,y) 
radius 



 (CMU 15-418, Spring 2012)

Atomicity and order

Example:
Red, green, and blue circles (each is 50% transparent: Common to store opacity “alpha”)
Red circle is the farthest, blue closest

image_color	
  =	
  alpha_r	
  *	
  red	
  //	
  contribution	
  due	
  to	
  red
image_color	
  =	
  alpha_g	
  *	
  green	
  +	
  (1-­‐alpha_g)	
  *	
  image_color	
  //	
  due	
  to	
  green
image_color	
  =	
  alpha_b	
  *	
  blue	
  +	
  (1-­‐alpha_b)	
  *	
  image_color	
  //	
  due	
  to	
  blue

alpha_r	
  =	
  .5	
  
alpha_g	
  =	
  .5
alpha_b	
  =	
  .5

Requirements:
Image update must be atomic
Image updates must occur in proper order
(Note image update math is NOT commutative)
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Order

Correct order:
blue over green over red

Incorrect order:
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Atomicity and order

Proper order in this example is reverse depth order.

In this assignment we follow real time graphics systems and de!ne order to be 
triangle order:  for any pixel P, contribution of triangle 1 to P must be applied to image 
prior to contribution from triangle 2

(we’ll hand your renderer circles in reverse depth order)

Requirements:
Image update must be atomic
Image updates must occur in proper order
(Note image update math is NOT commutative)
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Order
For any image pixel P, contribution of triangle 1 to P must be applied to image prior 
to contribution from triangle 2

1 2 3 

pixel P 

Dependencies between circles No overlap: no dependencies

Three input triangles
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Atomicity and ordering

Starter code:
1. Fully functional sequential CPU renderer
2. GPU renderer in CUDA

Trivial parallelism over circles
Does not preserve order or atomicity
Results have artifacts

These artifacts are non-deterministic 
(depend on computation schedule)
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Assignment 2: implement the fastest, 
(correct) circle renderer you can
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Today: more parallel program optimization
▪ Recall !rst lecture: distributing work to processors

- Goal: minimizing overhead while also achieving a workload balance
- Static vs. dynamic assignment, several work queue implementations
- Keep it simple, stupid (pro!le, analyze, then tune if required)

▪ Today: minimizing communication and exploiting locality
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Terminology
Latency

Bandwidth

Cost

The amount of time needed for an operation to complete.
Example: A memory load that misses the cache has a latency of 200 cycles.

A packet takes 20 ms to be sent from my computer to Google.

The rate at which operations are performed.
Example: Memory can provide data to the processor at 25 GB/sec.
A communication link can send 10 million messages per second.

The (detrimental) effect operations have on program execution time
(or some other metric, e.g, power)

“My slow program sends most of it’s time waiting on memory.” (cost of latency)
“Saxpy achieves low ALU utilization because it is bandwidth bound.” (cost of insufficient bandwidth)
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A very simple model of communication

T = transfer time (overall latency of the operation)
T0 = start-up cost
n = bytes transferred
B = transfer rate (bandwidth of the link)

Assumption: processor does no other work while waiting for transfer to complete ...
Effective bandwidth = n / T(n) 
Effective bandwidth depends on transfer size 

T0 T0 T0n/B n/B n/B
time 
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A more general model of communication

Send API call, copy message to network buffer 
Routing: determine address of dest 

Send data over slow link: n/Bsmall

Bridge

Send data over fast link: n/Blarge

Copy message to receiver’s network buffer:

= Overhead  (time spent on the communication by a processor) 

= Occupancy (time for data to pass through slowest component of system)

= Network delay (everything else)

Communication time = overhead + occupancy + network delay

Example: sending a message
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Pipelined communication

= Overhead  (time spent on the communication by a processor) 

= Occupancy (time for data to pass through slowest component of system)

= Network delay (everything else)

Occupancy determines communication rate (effective bandwidth)

Messages buffered 
while link is busy

buffer size = 2 time 
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Pipelined communication

Occupancy determines communication rate
(in steady state: msg/sec = 1/occupancy)

time 

Max buffer size = 2

Processor sends burst of messages 
(faster than 1/occupancy) 
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Communication cost

Total communication cost = frequency  x  (communication time - overlap)

Remember, what really matters is not the absolute cost of communication, but it’s cost 
relative to the cost of the computation fundamental to the problem being solved.

Overlap: portion of communication performed concurrently with other work
“Other work” can be computation or other communication (as in the previous example)
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Inherent communication
Communication that must occur in a 
parallel algorithm.  Fundamental to the 
algorithm.

P3

P4

Send row

Send row

P1

P2
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Reducing inherent communication
▪ Good assignment can reduce inherent communication 

(decrease communication to computation ratio)

elements communicated 

1D blocked assignment 1D interleaved assignment

elements computed 
=  4 / 3 

(each phase: send two rows, recv two rows) 

elements communicated 

elements computed 
=  4 / 1 
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Reducing inherent communication

P1 P2 P3

P4 P5 P6

P7 P8 P9

N2 elements
P processors

elements computed: 

elements communicated: 
 

comm-to-comp ratio: 

2D blocked assignment

Asymptotically better communication scaling than 1D blocked assignment
Communication costs increase sub-linearly with P
Assignment captures 2D locality of algorithm
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Communication-to-computation ratio

▪ If denominator is execution time of computation, ratio gives average bandwidth 
requirements

▪ Another term: “arithmetic intensity” = 1 / communication-to-computation ratio

▪ High arithmetic intensity needed on parallel processors, since the ratio of compute 
capability to available bandwidth is very high (recall SAXPY)

amount of communication

amount of computation 
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Parallel system as an extended mem hierarchy
▪ Up until now: adopted notion that data was partitioned amongst processors, and 

that “non-local data” required communication

▪ In reality, parallel system is multi-memory, multi-cache system.  Characteristics of 
data access latencies and bandwidths can have large effect on performance

Proc

Reg

Local L1

Local L2

L3 cache

Local memory

Remote memory (1 network hop)

Remote memory (N network hops)

L2 from another core

Lower latency, higher bandwidth, 
smaller capacity

Higher latency, lower bandwidth, 
larger capacity

View from one processor

Accesses not satis!ed in local memory 
cause communication with next level

Managing locality is important at all levels 
(achieving high arithmetic intensity)
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Artifactual communication
▪ Inherent communication: assumes unlimited capacity, small 

transfers, perfect knowledge of what is needed to 
communicate

▪ Artifactual communication is everything else (depends on 
interaction of application and system)
- System-granularity block transfers (send more then what’s needed: e.g., read 

one word, load entire cache line)
- Poor allocation of data among distributed memories
- Finite replication capacity (in any level of hierarchy)
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Review of the three (now four) Cs
▪ Cold miss

▪ Capacity miss

▪ Con$ict miss

▪ Communication miss (new)
Due to inherent communication or artifactual communication in parallel system

First time data touched.  Unavoidable.

Working set larger than cache. Can be decreased by larger caches

Miss induced by cache management policy.  Can reduce by changing 
cache associativity, or data access pattern in application
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Working set perspective

Increasing capacity of hierarchy level

Data 
traffic

This diagram holds true at any level of the memory hierarchy in a parallel system

Question: how much capacity should an architect build for this workload?
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Reducing amount of communication
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Improve temporal locality
▪ “Blocking”: reorder computation to make working sets map well to 

system’s memory hierarchy 

Recall matrix transpose assignment in 15-213:
Main idea: replicate block of data in local memories (cache)
Process it in its entirety (accessing many times) prior to moving only next block

Tip: how might blocking apply in a renderer?  
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Improve temporal locality
▪ Exploit sharing: co-locate tasks that operate on the same data

- Schedule threads working on the same data structure at the same time 
on the same processor

-  Reduces inherent communication

▪ Example: CUDA thread block
- Abstraction to localize related processing in the machine
- Threads in block often cooperate to perform an operation
- Leverage fast access to / synchronization via CUDA shared memory



 (CMU 15-418, Spring 2012)

Exploiting spatial locality
▪ Granularities can be very important

- Granularity of allocation
- Granularity of communication / data transfer
- Granularity of coherence (future lecture)
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Artifactual communication due to comm. granularity
Shared memory system. Cache line communication granularity (four elements)
2D blocked partitioning

Good spatial locality for non-local 
accesses to top-bottom rows

Poor spatial locality for non-local 
accesses to left-right columns 

Need one element from line. Must 
communicate four.

Implication: 1D blocked layout may 
perform better despite worse 
inherent communication-to-
computation ratio.
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Artifactual comm. due to comm./coherence granularity

P1 P2

Data partitioned among memories local 
to processors

Processors access their assigned elements 
(no inherent communication)

But data access on real machine triggers 
communication (artifactual)

Also, writes by different processors 
require cache coherence **

** Implementing cache coherence will be a topic of future lectures.

Cache line
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Reducing artifactual comm: better layout
Memory layout: arrows designate 

contiguous addresses

Memory page 
straddles partition 

boundary

Cache line straddles 
partition boundary

Cache line 
within partition

Page contained 
within partition

2D, row-major array layout
4D array layout
(block-major)
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Performance impact of 4D layout

Ocean (514x514 grids) Solver kernel (12K x 12K grid)

(on SGI Origin 2000 shared address space machine)
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Structuring communication to reduce cost
Total communication cost = frequency  x  (communication time - overlap)

Total communication cost = frequency  x  (overhead + occupancy  + network delay - overlap)

Total communication cost = frequency  x  (overhead + (n/B + contention) + network delay - overlap)

Here: occupancy dominated by time it takes to transfer message (n bytes) over slow link + delays due to 
contention for link
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Contention
▪ All resources have non-zero occupancy

- Memory, communication links, comm. controller. etc.
- Each has !xed number of transactions per unit time

▪ Contention occurs when many requests to a resource are made within a 
small window of time
- Resource is a “hot spot”

Tree structured communication:
reduces contention

Flat communication:
potential for high contention

Example: updating a shared variable
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NVIDIA GTX 480 contention example
▪ Shared memory: 32 banks

	
  	
  	
  __shared__	
  float	
  A[512];

	
  	
  	
  int	
  index	
  =	
  threadIdx.x;
	
  	
  	
  float	
  x1	
  =	
  A[0];	
  	
  //	
  single	
  cycle

	
  	
  	
  float	
  x1	
  =	
  A[index];	
  	
  //	
  single	
  cycle

	
  	
  	
  float	
  x2	
  =	
  A[3*index];	
  //	
  single	
  cycle

	
  	
  	
  float	
  x3	
  =	
  A[index	
  /	
  2];	
  	
  //	
  2	
  cycles

	
  	
  	
  float	
  x4	
  =	
  A[32	
  *	
  index];	
  //	
  32	
  cycles
0 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

0 66 3 69 6 ... 33 36 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
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Another contention example
▪ 15 cores, up to 1024 threads per core
▪ Place a bunch of point particles in a 16 cell uniform grid
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Reducing communication costs
▪ Reduce overhead

- Send fewer messages, make messages larger
- Coalesce small messages into large ones

▪ Reduce delay
- HW implementor: improve communication architecture
-  Application writer: exploit locality in data distributions

▪ Reduce contention

▪ Increase overlap
- HW implementation: multi-threading, pre-fetching, out-of-order execution
- Application: asynchronous communication
- Requires additional concurrency in application (more concurrency than 

number of processors)
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Summary: optimizing communication
▪ Inherent vs. artifactual communication

- Artifactual communication depends on the machine
- Often as important to performance as inherent communication

▪ Improving program performance:
- Identify and exploit locality: communicate less

- increase arithmetic intensity
- Reduce overhead (few, large messages)
- Reduce contention
- Maximize overlap (hide latency so as to not incur cost)


