Lecture 7:
Programming for Performance (part ll)

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Assignment 2

m Assighment 2 out tonight
- We are slowly bringing up machines with the new GPUs

= (It requires cutting metal)

B Due Tuesday, Feb 21 (2 weeks)

m May work in pairs

(CMU 15-418, Spring 2012)

Assignment 2

(CMU 15-418, Spring 2012)

Rendering circles

(CMU 15-418, Spring 2012)

Renderer structure

class CircleRenderer {

public:
virtual void clearImage() = 0;
virtual void advanceAnimation() = 0;

virtual void render() = 0;

}s

(CMU 15-418, Spring 2012)

Renderer structure

if (animating)
for each circle
update position and velocity

for each circle
compute screen bounding box
for all pixels in bounding box
compute pixel center point
if center point is within the circle
compute color of circle at point

blend contribution of circle into image for this pixel

(0,1)

&

(0,0)

(1,1)

(1,0)

(CMU 15-418, Spring 2012)

Atomicity and order

Requirements:

Image update must be atomic

Image updates must occur in proper order
(Note image update math is NOT commutative)

Example:
Red, green, and blue circles (each is 50% transparent: Common to store opacity “alpha”)
Red circle is the farthest, blue closest

alpha r = .5
alpha g = .5
alpha b = .5

image color
image color
image color

alpha r * red // contribution due to red
alpha_g * green + (1-alpha_g) * image _color // due to green
alpha_ b * blue + (1-alpha b) * image color // due to blue

(CMU 15-418, Spring 2012)

Correct order: Incorrect order:
blue over green over red

(CMU 15-418, Spring 2012)

Atomicity and order

Requirements:

Image update must be atomic

Image updates must occur in proper order
(Note image update math is NOT commutative)

Proper order in this example is reverse depth order.

In this assignment we follow real time graphics systems and define order to be
triangle order: for any pixel P, contribution of triangle 1 to P must be applied to image

prior to contribution from triangle 2
(we'll hand your renderer circles in reverse depth order)

(CMU 15-418, Spring 2012)

Order

For any image pixel P, contribution of triangle 1 to P must be applied to image prior
to contribution from triangle 2

1 2 3 Threeinput triangles

pixel P

.o

Dependencies between circles No overlap: no dependencies

<« «—

(CMU 15-418, Spring 2012)

Atomicity and ordering

Starter code:
1. Fully functional sequential CPU renderer
2. GPU rendererin CUDA
Trivial parallelism over circles
Does not preserve order or atomicity
Results have artifacts

These artifacts are non-deterministic
(depend on computation schedule)

(CMU 15-418, Spring 2012)

Assignment 2: implement the fastest,
(correct) circle renderer you can

(CMU 15-418, Spring 2012)

Today: more parallel program optimization

m Recall first lecture: distributing work to processors

- Goal: minimizing overhead while also achieving a workload balance
- Staticvs. dynamic assignment, several work queue implementations

- Keep it simple, stupid (profile, analyze, then tune if required)

m Today: minimizing communication and exploiting locality

(CMU 15-418, Spring 2012)

Terminology

Latency

The amount of time needed for an operation to complete.
Example: A memory load that misses the cache has a latency of 200 cycles.
A packet takes 20 ms to be sent from my computer to Google.

Bandwidth

The rate at which operations are performed.
Example: Memory can provide data to the processor at 25 GB/sec.
A communication link can send 10 million messages per second.

Cost

The (detrimental) effect operations have on program execution time

(or some other metric, e.g, power)

“My slow program sends most of it’s time waiting on memory.” (cost of latency)
“Saxpy achieves low ALU utilization because it is bandwidth bound.” (cost of insufficient bandwidth)

(CMU 15-418, Spring 2012)

A very simple model of communication

n
T(l’l) = TO + E
T = transfer time (overall latency of the operation)
1o = start-up cost
n = bytes transferred
B = transfer rate (handwidth of the link)

Assumption: processor does no other work while waiting for transfer to complete ...
Effective bandwidth=rn / T(n)
Effective bandwidth depends on transfer size

>

time

Ty n/B To n/B To n/B

(CMU 15-418, Spring 2012)

A more general model of communication

Communication time = overhead + occupancy + network delay

Copy message to receiver’s network buffer:

Send data over fast link: 7/B4rge
/ /

\ Example: sending a message
\ Bridge

Send data over slow link: n/Bgmqu

Routing: determine address of dest
Send API call, copy message to network buffer

= Overhead (time spent on the communication by a processor)

= Occupancy (time for data to pass through slowest component of system)

= Network delay (everything else)

(CMU 15-418, Spring 2012)

Pipelined communication

4
7
/ —

—_— R
Messages buffered :
while link is busy .

ceeald —
buffer size =2 time

Occupancy determines communication rate (effective bandwidth)

= Overhead (time spent on the communication by a processor)

= Occupancy (time for data to pass through slowest component of system)

= Network delay (everything else)

(CMU 15-418, Spring 2012)

Pipelined communication

Processor sends burst of messages
(faster than 1/occupancy)

Max buffer size =2

time
Occupancy determines communication rate
(in steady state: msg/sec = 1/occupancy)

(CMU 15-418, Spring 2012)

Communication cost

Total communication cost = frequency X (communication time - overlap)

Overlap: portion of communication performed concurrently with other work
“Other work” can be computation or other communication (as in the previous example)

Remember, what really matters is not the absolute cost of communication, but it’s cost
relative to the cost of the computation fundamental to the problem being solved.

(CMU 15-418, Spring 2012)

Inherent communication

®© © 0000000 0 0 o P1
®© ©6 060060000 0 0 o

O
o
o
o
O

P2

Send row
eeeoeeeeeccoe P

® P4

Communication that must occurina
parallel algorithm. Fundamental to the

algorithm.

(CMU 15-418, Spring 2012)

Reducing inherent communication

m Good assignment can reduce inherent communication
(decrease communication to computation ratio)

1D blocked assignment 1D interleaved assignment
®© 6 © 06 06 0 0 0 0 0 0 ©@ ©6 @ 06 06 @ 06 0 0 O 0 P
®© @ 6 ® 6 @ ¢ @ ¢ @ © O g ® @ 6 @ 6 @ 06 @ ¢ @ © O P
© 6 © ¢ O 6 O 6 O &6 O o @ ©6 6 O © O 6 O @ O O P3
®© © 6 @ 6 0@ 6 0@ 0 0 0 O N EEEEENENENXRY
@ 6 @ 6 @ 06 0 06 0 0 0 o0) @ ©6 6 @ 6 @ 06 O 6 @ O P
® © 6 © 6 © 06 0 0 @@ 0 O ®© @ 6 06 006 00 0 0 O P
© © © 6 006 00 0 0 0 o ©@ ©6 © 6 6 06 06 O O p3
® ©®© ¢ ® ¢ ® ¢ @ ¢ ® o O P3 ® © 6 @ 6 ® 06 @ 06 @ © O py
© 6 © 6 006 0 0 0 0 0 o T EEEIXEEEX X
® © 6 ®© 06 0 6 0 0 0 0 O M EEEEENENENX®R)
@ © 6 06 @0 0 0 0 o P @ ©6 @ 6 O 6 @ ¢ @ ¢ O o p3
O © ¢ ® ¢ ® ¢ ® o ©® o O ® © 6 © 6 @ 6 @ 06 @ 0 O py

elements communicated elements communicated
=4/3 =4/1

elements computed elements computed

(each phase: send two rows, recv two rows) (CMU 15-418, Spring 2012)

Reducing inherent communication

2D blocked assignment

4 R S D G
L PR S D
N 2/ P { S DO £

N’ elements
P processors

N2
elements computed: =

. N

elements communicated: < —
JP
JP

comm-to-comp ratio: —
N

Asymptotically better communication scaling than 1D blocked assignment

Communication costs increase sub-linearly with P

Assignment captures 2D locality of algorithm

(CMU 15-418, Spring 2012)

Communication-to-computation ratio

amount of communication

amount of computation

B |f denominator is execution time of computation, ratio gives average bandwidth
requirements

B Another term: “arithmeticintensity” = 1/ communication-to-computation ratio

B High arithmetic intensity needed on parallel processors, since the ratio of compute
capability to available bandwidth is very high (recall SAXPY)

(CMU 15-418, Spring 2012)

Parallel system as an extended mem hierarchy

B Up until now: adopted notion that data was partitioned amongst processors, and
that “non-local data” required communication

B |n reality, parallel system is multi-memory, multi-cache system. Characteristics of
data access latencies and bandwidths can have large effect on performance

Accesses not satisfied in local memory
cause communication with next level

Managing locality is important at all levels

(achieving high arithmetic intensity)

Reg

Local L1

Local L2

L2 from another core

L3 cache

Local memory

View from one processor

Lower latency, higher bandwidth,
smaller capacity

Higher latency, lower bandwidth,
larger capacity

Remote memory (1 network hop)

Remote memory (N network hops)

(CMU 15-418, Spring 2012)

Artifactual communication

B Inherent communication: assumes unlimited capacity, small
transfers, perfect knowledge of what is needed to
communicate

m Artifactual communication is everything else (depends on
interaction of application and system)

- System-granularity block transfers (send more then what’s needed: e.g., read
one word, load entire cache line)

- Poor allocation of data among distributed memories

- Finite replication capacity (in any level of hierarchy)

(CMU 15-418, Spring 2012)

Review of the three (now four) Cs

m Cold miss
First time data touched. Unavoidable.

m (apacity miss
Working set larger than cache. Can be decreased by larger caches

m Conflict miss
Miss induced by cache management policy. Can reduce by changing
cache associativity, or data access pattern in application

m Communication miss (new)
Due to inherent communication or artifactual communication in parallel system

(CMU 15-418, Spring 2012)

Working set perspective

%\\\\\\\\ /

ﬁ\\\\\\\\\\\ifiiia{a?§q{5\3§§§§§¥§3§{§a§ T

o -

Data
traffic

i

W

Increasing capacity of hierarchy level >

This diagram holds true at any level of the memory hierarchy in a parallel system

Question: how much capacity should an architect build for this workload?

(CMU 15-418, Spring 2012)

Reducing amount of communication

(CMU 15-418, Spring 2012)

Improve temporal locality

B “Blocking”: reorder computation to make working sets map well to
system’s memory hierarchy

DG o D0 000 0D nn OO0 0 0O 0D aD 000000
00 D0 OO0 00 000D OO0 O 0 0 0 0 00D OO O LODDO
O O =0 O O O O /\”\/ >0 O O
O 0| & =@ |0 O O O /} / O O
OO0 |6 90009900 0O O O —o—0-¢ > O O
O 0| 6= —0—0=20 |0 O O o | c% > é’/% O O
O O | o >0 |0 O O O O O
O O OO0 00D O O
o0 55 O 0 O O
O 0O OO0 o0 O O
O 0 OO O O O O
O 0O 0N O 0 B0
520 O 00 OO0 0000 OCG0DO0O OO0 0 O 0 0 00 00 0 0D0C0C
MY D 00 0D 000G 0D ooen 20 O O 0 O 0 0 0 O 0 DoOo°

Recall matrix transpose assignment in 15-213:
Main idea: replicate block of data in local memories (cache)
Process it in its entirety (accessing many times) prior to moving only next block

Tip: how might blocking apply in a renderer?

(CMU 15-418, Spring 2012)

Improve temporal locality

m Exploit sharing: co-locate tasks that operate on the same data

- Schedule threads working on the same data structure at the same time
on the same processor

- Reduces inherent communication

m Example: CUDA thread block

- Abstraction to localize related processing in the machine
- Threads in block often cooperate to perform an operation
- Leverage fast access to / synchronization via CUDA shared memory

(CMU 15-418, Spring 2012)

Exploiting spatial locality

m Granularities can be very important
- Granularity of allocation
- Granularity of communication / data transfer
- Granularity of coherence (future lecture)

(CMU 15-418, Spring 2012)

Artifactual communication due to comm. granularity

Shared memory system. Cache line communication granularity (four elements)

2D blocked partitioning

e b OO0 O

Good spatial locality for non-local

@ CF 2 © £ O O O
®© 06 06(9 © © o]0 o o accesses to top-bottom rows
O—O0—6O6—6—66—F—F—F—6—9 |0 O
o0 000 0—90—6—9 9 O | |
——0—9 90 0 90 0 0 990 0 O PoorspattlallI:tca!ltlylrti'orlnon-local
-6 o6 o 66690 O / accesses to left-right columns
OO0 CC220[0 0 |
O O O O O O O O O O|e O

Need one element from line. Must
O O O O O O O O O 0O|e O .

communicate four.
O O O 0O 0 O 0 0 0 O|$:-0
©C 0 0 00000 0 0|60 Implication: 1D blocked layout may
O O O OO O O O O 0|eo perform better despite worse
® 6 © 6 © ¢ © © o o inherent communication-to-
O 0O 0 006G 0 0 O 6 computation ratio.

(CMU 15-418, Spring 2012)

Artifactual comm. due to comm./coherence granularity

1

® © © © © /™9 o o o o o

Cacheline
® 06,60 o o o
® 06,0 /0 o o
® 0,6, 06 o o
o ole oo o
O 06,60 & o o
O 0|0 o .P @
O 0/ o o A
O 06,60 o o o
O 06,0 & o o
O 06,60 & o o
O 06,60 & o o
O 06,60 & o o

Data partitioned among memories local
to processors

Processors access their assigned elements
(no inherent communication)

But data access on real machine triggers
communication (artifactual)

Also, writes by different processors
require cache coherence **

** Implementing cache coherence will be a topic of future lectures.

(CMU 15-418, Spring 2012)

Reducing artifactual comm: better layout

Memory layout: arrows designate

contiguous addresses
——— -
P9 | P8
| - = -
P PS A P
5 |
/
/ A
| / | \\
/ \
Memory page Cache line straddles Page contained Cache line
straddles partition partition boundary within partition within partition
boundary

4D array layout

2D, row-major array layout (block-major)

(CMU 15-418, Spring 2012)

Performance impact of 4D layout

(on SGI Origin 2000 shared address space machine)

30

25

20

Speedup

0

—— Rows

—8— 2D

S 5 I S N Y S 5 N O (O 0 Y O O

1357 9111315171921232527 29 31

Number of processors

Ocean (514x514 grids)

50 —
—@— 4D
45
—@— 4D-rr
40 — | —=— Rows
35 —&— Rows-IT
—— 2D |
= 30 |- —8— 2D-rr
B 25
()
Q.
7)) 20
15
10
5
oL LLL L Ll L b L

13857 9111315171921 232527 29 31

Number of processors

Solver kernel (12K x 12K grid)

(CMU 15-418, Spring 2012)

Structuring communication to reduce cost

Total communication cost = frequency X (communication time - overlap)
Total communication cost = frequency X (overhead + occupancy + network delay - overlap)

Total communication cost =frequency X (overhead + (72/B + contention) + network delay - overlap)

Here: occupancy dominated by time it takes to transfer message (7 bytes) over slow link + delays due to
contention for link

(CMU 15-418, Spring 2012)

Contention

® All resources have non-zero occupancy
- Memory, communication links, comm. controller. etc.
- Each has fixed number of transactions per unit time

® (Contention occurs when many requests to a resource are made withina
small window of time

- Resourceis a“hot spot”

Example: updating a shared variable

% é‘% f‘g ;O\Q

Flat communication:

potential for high contention Tree structured communication:

reduces contention

(CMU 15-418, Spring 2012)

NVIDIA GTX 480 contention example

__shared__ float A[512];

m Shared memory: 32 banks

int index = threadIdx.x;
float x1 = A[@]; // single cycle

float x1 = A[index]; // single cycle
float x2 = A[3*index]; // single cycle
float x3 = A[index / 2]; // 2 cycles

i float x4 = A[32 * index]; // 32 cycles

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
7 8 10 11 12 13 14 15

EERERR

(CMU 15-418, Spring 2012)

Another contention example

m 15 cores, up to 1024 threads per core
m Place a bunch of point particles in a 16 cell uniform grid

Cell Count Particle
id id

0

1

2

3

4 3,5

5

6 1,2,4
7

8

CICICICI QIO O ICWIOINICIC|O|D

(CMU 15-418, Spring 2012)

Reducing communication costs

Reduce overhead

Send fewer messages, make messages larger
Coalesce small messages into large ones

Reduce delay

HW implementor: improve communication architecture
Application writer: exploit locality in data distributions

Reduce contention

Increase overlap
HW implementation: multi-threading, pre-fetching, out-of-order execution

Application: asynchronous communication

Requires additional concurrency in application (more concurrency than
number of processors)

(CMU 15-418, Spring 2012)

Summary: optimizing communication

B |nherent vs. artifactual communication
- Artifactual communication depends on the machine

- (Often as important to performance as inherent communication

B Improving program performance:
- Identify and exploit locality: communicate less
- increase arithmetic intensity
- Reduce overhead (few, large messages)
- Reduce contention
- Maximize overlap (hide latency so as to not incur cost)

(CMU 15-418, Spring 2012)

