Lecture 5:
Parallel Programming Basics (part 11)
Programming for Performance (part)

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Assignments

m Assignment 1 due tonight @ midnight

- No grace days

m Assighments 2, 3, 4
- Can work in pairs (optional)

- 3 total grace days per group

m Final project
- No grace days

(CMU 15-418, Spring 2012)

Recall: shared address space solver

LOCKDEC(diff lock); /*declaration of lock to enforce mutual exclusion*/
BARDEC (barl); /*barrier declaration for global synchronization between
sweeps*/

procedure Solve (A)
float **A; /*A is entire n+2-by-n+2 shared array,
as in the sequential program*/

begin
int 1,7, pld, done = 0;
float temp, mydiff = 0; /*private variables*/
int mymin = 1 + (pid * n/nprocs); /*assume that n is exactly divisible by*/
int mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/
while (!done) do /*outer loop over all diagonal elements*/

mydiff = diff = 0; /*set global diff to 0 (okay for all to do it)*/
/*ensure all reach here before anyone modifies diff*/
Or 1 < mymin CO mymax do /*for each of my rows*/

for j « 1 to n do /*for all nonborder elements in that row*/
temp = A[i,j];
Afi,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,3]] +
Ali,j+1] + A[i+1,3]);
mydiff += abs(A[i,j] - temp);
endfor
endfor
LOCK(diff lock); /*update global diff if necessary*/
diff += mydiff;

IN LU - =

BARRIER (barl, nprocs):;

/*ensure all reach here before checking if done*/
en done = 1; /*check convergence; all get

same answer*/
BARRIER (barl, nprocs):;
enawl s

end procedure

Why are there so many barriers?

(CMU 15-418, Spring 2012)

Shared address space solver: one barrier

float diff[3]; // global diff Idea:
float mydiff; // thread local variable
int index = @; // thread local variable Remove dependencies by using different diff

variables in successive loop iterations
LOCKDEC(diff_lock);

BARDEC (bar) ;
diff[e] = 0.0f; Trade off footprint for reduced synchronization!
barrier(nprocs, bar); // one-time only: just for init (common para"el programming technique)

while (!done) {
mydiff = 0.0f;
//
// perform computation (accumulate locally into mydiff)
//
lock(diff_lock);
diff[index] += mydiff; // atomically update global diff
unlock(diff_lock);
diff[(index+1) % 3] = 0.0f;
if (diff[index]/(n*n) < TOL)
break;

index = (index + 1) % 3;

(CMU 15-418, Spring 2012)

Steps in creating a parallel program

[Problem to solve J

.v Decomposition
Sub-problems (j [J [_) [j [J D

(aka “tasks’, “work”) [J D [J [J [J

Threads
Parallel program] { * J l *
(communicating] e — — — L —
threads) Tf B R ™ T e
Execution on
parallel
machine Tl

(CMU 15-418, Spring 2012)

Solver implementation in two programming models

m Data-parallel programming model

- Synchronization:
- Single logical thread of control, but iterations of forall loop can be
parallelized (barrier at end of outer forall loop body)

- Communication
- Implicitin loads and stores (like shared address space)
- Special built-in primitives: e.g., reduce

10. procedure Solve (A) /*solve the equation system*/

i 5 float **A; /*A 1s an (n + 2-by-n + 2) array*/

" 4 4 begin

g G ant i1, 'J, done = 0;

T4 float mydiff = 0, temp;

l4a. DECOMP A [BLOCK, *, nprocs]:;

5. while (!done) do /*outermost loop over sweeps*/

" 2 5 mydiff = 0; /*initialize maximum difference to 0*/
5.0 L 1 < 1 ton do SWeep over non-border points o1 gric
18. for all § « 1 to n do

19, temp = A[i,j]; /*save old value of element™*/

20 : Af[i,j] « 0.2 * (A[i,3] + A[i,j-1] + A[i-1,3] +

20 Ali,j+1] + A[i+1,3]); /*compute average™*/

22 mydiff += abs(A[i,j] - temp);
23. end for all

24 . =11l > C

24a. REDUCE (mydiff, diff, ADD);

25. if (diff/ (n*n) < TOL) then done = 1;
26. end while

27. end procedure

(CMU 15-418, Spring 2012)

Solver implementation in two programming models

m Data-parallel programming model

- Synchronization:
- Single logical thread of control, but iterations of forall loop can be
parallelized (barrier at end of outer forall loop body)

- Communication
- Implicitin loads and stores (like shared address space)
- Special built-in primitives: e.g., reduce

m Shared address space

- Synchronization:
= Mutual exclusion required for shared variables
- Barriers used to express dependencies (hetween phases of computation)

- Communication
- Implicit in loads/stores to shared variables

(CMU 15-418, Spring 2012)

Today: message passing model

B Noshared address space abstraction (i.e., no shared variables)

B Each thread has it’s own address space

B Threads communicate & synchronize by sending/receiving messages

One possible message passing implementation: cluster of workstations (recall lecture 3)

Processor

Memory

Local Cache

E

Processor

Memory

Local Cache

E

(

Network

)

(CMU 15-418, Spring 2012)

Last time: assignment in a shared address space

Grid data resided in a single array in shared address space
(array was accessible to all threads)

Assignment partitioned elements to processors to divide up the computation
Performance differences
Different assignments may yield different amounts of communication due to

implementation details (e.g., caching)

Blocked Assignment

Interleaved Assignment

® © ¢ ¢ & & & o & & o o ® © 6 ¢ ¢ ¢ 6 0 0 o 0 0o P
® © ¢ & & & & & & & & o P ® ¢ 6 ¢ ¢ ¢ & & 0 & & 0o P2
® 6 6 & & & ¢ o & & o o ® © ¢ ¢ ¢ ¢ 0 ¢ & & o o P
® 6 ¢ ¢ & & ¢ o & & o o ® © ¢ ¢ ¢ & & & & & o 0 p
® ¢ & ¢ & & & & & & 0 0 p ® © © 6 & & & & & & 0o 0 P
® ®© 6 & & & & 0 & & 0 o ® © ¢ 6 & & & & & & & 0o p
® © 6 & & & & o & & o o ® © ® ¢ & & & & & & & 0 p3
® 6 ¢ ¢ & & & & & & & o P ® © ®© 6 & & & & & & & & p
® 6 ¢ ¢ ¢ 6 & o & & o o ® © 6 6 ¢ & 6 6 o o 0o 0o P
® ¢ 6 ¢ & & ¢ o & & o o ® © 6 ¢ ¢ & o & & & & o P
® © © 0 0 © 0 ¢ 0 0 0 0 P4 ® © ¢ ¢ ¢ & & & 0 & & o p3
® © ¢ & & & & o & & 0o o ® © ¢ ¢ & & & o & & 0o o

P4

(CMU 15-418, Spring 2012)

Message passing model

m Grid data stored in four separate address spaces (four private arrays)

Thread 1
Address
Space

Thread 2
Address
Space

Thread 3
Address
Space

Thread 4
Address
Space

(CMU 15-418, Spring 2012)

Replication required to perform computation

Required for correctness

Thread 1
Address
Space

Send row
O O O OO OO O O O O O Thread 2
®© © 6 606 06 00 0 0 0 O Address
Space
O 6 6 ¢ 6 6 6 6 6 o o o
O 6 6 6 6 ¢ 6 6 6 & o o
O O O OO O O O O O O O
Send row
e e e oo e e e e o o o] M
Address
® 6 ¢ ¢ 6 ¢ 6 6 ¢ o o o Space
® ¢ ¢ ¢ ¢ ¢ 6 6 & ¢ o o
© 06000606000 0 0 o |hreadd
Address
® 6 6 ¢ 6 ¢ 6 6 ¢ o o o Space

Example:

Thread 1 and 3 send row to thread 2
(otherwise thread 2 cannot update its local cells)

“Ghost cells”:

Grid cells replicated from
remote address space.

Thread 2 logic:

cell t ghost row top[N+2]; // ghost row storage
cell t ghost_row_bot[N+2]; // ghost row storage

int bytes = sizeof(cell t) * (N+2);
recv(ghost_row_top, bytes, pid-1, TOP_MSG_ID);
recv(ghost_row_bot, bytes, pid+l, BOT_MSG_ID);

// Thread 2 now has data necessary to perform
// computation

(CMU 15-418, Spring 2012)

Message passing solver

1l.inE pid. n. by

/*process id, matrix dimension and number of
processors to be used*/

2. float **myA;
3. main()
4. begin
5. read(n); read(nprocs); /*read input matrix size and number of processes*/
8a. CREATE (nprocs-1, Solve);
N ote si m i Ia r stru ctu re to sha red 8b. Solve() ; /*main process becomes a worker too*/
8c. WAIT FOR_END (nprocs-1); /*wait for all child processes created to terminate*/

9. end main

address space solver, but now
communication is explicit

1l 8
Ll
L3
14.

6.

7. initialize (myA) ;

LSy,

Send and receive ghost rows

L.

18.
o R B
Perform computation 32 :
1
i W
24 .

25a.
25Db.
25¢C.
25d.

25e.
25fF .
25g.
25h.

All threads send local mydiff to thread 0

Thread 0 computes termination, predicate
sends result back to all other threads

251

26 .
27 ;

257 .
25k .
251 .
25m.

procedure Solve()
begin

int i,j, pid, n’ = n/nprocs, done = 0;
float temp, tempdiff, mydiff = 0; /*private variables*/

myA < malloc(a 2-d array of size [n/nprocs + 2] by n+2);

/*my assigned rows of A*/
initialize my rows of A, in an unspecified way™/

(pid != 0)

then SEND (&myA[1,
(pid != nprocs-1) then

SEND (&myA [n’, 0] ,n*sizeof (float) ,pid+1,ROW) ;

(pid != 0) then RECEIVE (&myA[0,0] ,n*sizeof (float),pid-1,ROW) ;
(pid != nprocs-1) then

RECEIVE (&myA[n’+1,0] ,n*sizeof (float), pid+1l, ROW);
/*border rows of neighbors have now been copied

/*for each of my (nonghost) rows*/
/*for all nonborder elements in that row*/

o 1 .1 ton® da

for g 1 o n do
temp = myA([i,j];
myA(i,j] = 0.2 * (myA([i,j] + myA[i,j-1] + myA[i-1,7] +
myA[i,j+1] + myA[i+l1,j]);
mydiff += abs(myA[i,j] - temp);
endfor
endfor
/*communicate local diff values and determine if
done; can be replaced by reduction and broadcast*/
if (pid != 0) then /*process 0 holds global total diff*/
SEND (mydiff,sizeof (float),b0,DIFF) ;
RECEIVE (done, sizeof (int), 0,DONE) ;
else /*pid 0 does this*/

for i « 1 to nprocs-1 do /*for each other process*/
RECEIVE (tempdiff, sizeof (float), * ,DIFF) ;
mydiff += tempdiff; /*accumulate into total*/
endfor
if (mydiff/(n*n) < TOL) then done = 1;
for i « 1 to nprocs-1 do /*for each other process*/
SEND (done, sizeof (int) ,i,DONE) ;
endfor
endif
endwhile
end procedure

(CMU 15-418, Spring 2012)

Notes on message passing example

m Computation
- Array indexing is relative to local address space (not global grid coordinates)

B Communication:

- Performed through messages
- Enmasse, not element at a time. Why?

m Synchronization:

- Performed through sends and receives
= Think of how to implement mutual exclusion, barriers, flags using messages

m For convenience: message passing libraries often include
higher-level primitives (implemented using send and receive)

REDUCE (0, mydiff,sizeocf (float) ,ADD) ;

if (pid == 0) then Alternative solution using
if (mydiff/(n*n) < TOL) then done = 1; reduce/broadcast constructs
endif

BROADCAST (0, done,sizeof (int) ,DONE) ;

(CMU 15-418, Spring 2012)

Send and receive variants

Send/Recv
Synchronous Asynchronous
Blocking async Non-blocking async

m Synchronous:

- SEND: call returns when message data resides in address space of receiver (and
sender has received ack that this is the case)

- RECV: call returns when data from message copied into address space of
receiver and ack sent)

Sender: Receiver:

Call SEND() Call RECV()
Copy data from sender’s address space buffer into network buffer

Send messagé ——mo— oo — o > Receive message
Copy data into receiver’s address space buffer

Receiveadk iiimonmoee-me-- o Sendack
SEND() returns RECV() returns

(CMU 15-418, Spring 2012)

As implemented on previous slide, if our message passing
solver uses blocking send/recv it would deadlock!

Why?

How can we fix it?

(while still using blocking send/recv)

(CMU 15-418, Spring 2012)

1. int pid, n, b; /*process id, matrix dimension and number of

Message passing solver :

2

3. main()

4. begin

5. read(n); read(nprocs); /*read input matrix size and number of processes*/
8a. CREATE (nprocs-1, Solve);

8b. Solve() ; /*main process becomes a worker too*/

8c. WAIT FOR_END (nprocs-1); /*wait for all child processes created to terminate*/

9. end main

10. procedure Solve()

11. begin
13 int i,j, pid, n’ = n/nprocs, done = 0;
14. float temp, tempdiff, mydiff = 0; /*private variables*/
6. myA < malloc(a 2-d array of size [n/nprocs + 2] by n+2);
/*my assigned rows of A*/
7. initialize (mya) ; *initialize my rows of A, in an unspecified way™*/

15. while (!done) do

5 mydiff - 0. *set local diff to O*
.] if (pid != 0) then SEND (&myA[1l,0],n*sizeof (float),pid-1,ROW);
Send and receive ghost rows 0 e e e Fhed

SEND (&myA [n’ ,0] ,n*sizeof (float) ,pid+1,ROW) ;
if (pid != 0) then RECEIVE (&myA[0,0] ,n*sizeof (float),pid-1, ROW);

if (pid != nprocs-1) then
RECEIVE (&myA[n’+1,0] ,n*sizeof (float), pid+l1l,ROW);
/*border rows of neighbors have now been copied

L7 for 1 « 1 to n’ do /*for each of my (nonghost) rows*/
18. for § ¢« 1 to n do /*for all nonborder elements in that row*/
19 temp = myAf[i,jl;
1 20, myA[i,j] = 0.2 * (myA([i,j] + myA[i,j-1] + myA[i-1,j] +
Perform computatlon 571 . myA [Ji,j+1] + myA[i+1,jJ]) ; J :
2§ mydiff += abs(myA[i,j] - temp);
23, endfor
24 . endfor

/*communicate local diff values and determine if
done; can be replaced by reduction and broadcast*/

25a. if (pid != 0) then /*process 0 holds global total diff*/
All threads send local mydiff to thread 0 25b. SEND (mydiff, sizeof (float),0,DIFF);
250, RECEIVE (done, sizeof (int) , 0,DONE) ;
25d. else /*pid 0 does this*/
25e. for i « 1 to nprocs-1 do /*for each other process*/
25f. RECEIVE (tempdiff, sizeof (float) , * ,DIFF) ;
259g. mydiff += tempdiff; /*accumulate into total*/
: : : 25h . endfor
Thread 0 computes termination, predicate) T T S — A

sends result back to all other threads 257 . for i « 1 to nprocs-1 do /*for each other process*/
25k. SEND (done, sizeof (int) ,i,DONE) ;
251 . endfor
25m. endif

26. endwhile
27. end procedure

(CMU 15-418, Spring 2012)

Send and receive variants

Send/Recv
Synchronous Asynchronous
Blocking async Non-blocking async

m Asyncblocking:

- SEND: call copies data from address space into system buffers, then returns
- Does not guarantee message has been received (or even sent)

- RECV: call returns when data copied into address space, but no ack sent

Sender: Receiver:
Call SEND() Call RECV()
Copy data from sender’s address space buffer into network buffer

SEND() returns

Send messagé ——mo— o — o > Receive message
Copy data into receiver’s address space buffer

RECV() returns

(CMU 15-418, Spring 2012)

Send and receive variants

Send/Recv
Synchronous Asynchronous
Blocking async Non-blocking async

m Async non-blocking: (“non-blocking”)
- SEND: call returns immediately. Buffer provided to SEND cannot be touched by called
through since message processing occurs concurrently
- RECV: call posts intent to receive, returns immediately
- Use SENDPROBE, RECVPROBE to determine actual send/receipt status

Sender: Receiver:;
Call SEND(local_buf) Call RECV(recv_local buf)
SEND() returns RECV() returns

Copy data from local_buf into network buffer

Send message —m——————————————————————————» Receive message
Copy data into recv_local_buf

Call SENDPROBE // if sent, now safe for thread to modify local_buf Call RECVPROBE
// if received, now safe for thread

// to access recv_local_buf (CMU 15-418, Spring 2012)

Send and receive variants

Send/Recv

/\

Synchronous Asynchronous

— .

Blocking async Non-blocking async

The variants of send/recv provide different levels of
programming complexity / opportunity to optimize performance

(CMU 15-418, Spring 2012)

Solver implementation in THREE programming models

1. Data-parallel model

- Synchronization:
- Single logical thread of control, but iterations of forall loop can be parallelized
(barrier at end of outer forall loop body)
- Communication
- Implicit in loads and stores (like shared address space)
- Special built-in primitives: e.g., reduce

2. Shared address space model

- Synchronization:

- Mutual exclusion required for shared variables

- Barriers used to express dependencies (hetween phases of computation)
- Communication

- Implicit in loads/stores to shared variables

3. Message passing model

- Synchronization:
- Implemented via messages
- Mutual exclusion by default: no shared data structures
- Communication:
- Explicit communication via send/recv needed for parallel program correctness
- Bulk communication: communicated entire rows, not single elements
- Several variants on send/recv semantics

(CMU 15-418, Spring 2012)

Optimizing parallel program performance

(how to be I33t)

(CMU 15-418, Spring 2012)

Programming for performance

m Optimizing the performance of parallel programs is an
iterative process of refining choices for decomposition,
assignment, and orchestration...

B Key goals (that are at odds with each other)

- Balance workload onto available execution resources
- Reduce communication (to avoid stalls)
- Reduce extra work done to determine/manage assignment

m We are going to talk about a rich space of techniques

- TIP #1: Always do the simple thing first, then measure/analyze
- “ltscales” =it scales as much as you need it too

(CMU 15-418, Spring 2012)

Balancing the workload

Ideally all processors are computing all the time during program execution
(they are computing simultaneously, and they finish their portion of the work at the same time)

P1 P2 P3 P4
Recall Amdahl’s Law:
Only small amount of load imbalance can
significantly bound maximum speedup

Time

P4 does 20% more work — P4 takes 20% longer to complete

— 20% of parallel program runtime is
essentially serial execution

(clarification: work in serialized section here is about 5% of a
sequential program’s execution time: 5=.05 in Amdahl’s law eqn)

(CMU 15-418, Spring 2012)

Static assignment

B Assignment of work to threads is pre-determined

- Not necessarily compile-time (assignment algorithm may depend on runtime

parameters such as input data size, number of threads, etc.)

B Recall solver example: assign equal number of grid cells to each thread
- We discussed blocked and interleaved static assignments

Blocked Assignment

P1

Interleaved Assignment

P1

P2

P3

P2

P4

P1

P2

P3

P3

P4

P1

P4

P2

P3

B Good properties: simple, low runtime overhead

(here: extra work to implement mapping is a little bit of indexing math)

P4

(CMU 15-418, Spring 2012)

Static assignment

B Whenis static assignment applicable?

- When cost (execution time) of work is predictable
- Simplest example: it known that all work is the same cost
- When statistics about execution time are known (e.g., same on average)

Time P1 P2 P3 P4

(CMU 15-418, Spring 2012)

Semi-static assignment

B (ost of work predictable over near-term horizon
- Recent past good predictor of near future

® Periodically profile application and re-adjust assignment
- Assignment is static during interval between re-adjustment

Particle simulation: Adaptive mesh:

Redistribute particles as they move Refine mesh as object moves or flow over object changes
over course of simulation
(if motion is slow, redistribution

need not occur often)
(CMU 15-418, Spring 2012)

Dynamic assignment

m Program logic adapts at runtime to ensure well distributed
load (execution time of tasks is unpredictable)

Sequential program Parallel program
(independent loop iterations) (SPMD execution, shared address space model)
int N = 1024; LOCK counter_lock;
int* x = new int[N]; int counter = 0; // shared variable (assume
bool* prime = new bool[N]; // initialization to ©;
int N = 1024;
// initialize elements of x int* x = new int[N];

bool* prime = new bool[N];
for (int i=0; i<N; i++)
{ // initialize elements of x
// unknown execution time
prime[i] = test primality(x[i]); while (1) {
} int i;

lock(counter_lock);
i = counter++; atomic_incr(counter);
unlock(counter_lock);

if (1 >= N)
break;
prime[i] = test_primality(x[i]);

(CMU 15-418, Spring 2012)

Dynamic assignment using work queues

Sub-problems [j [j [] [j [] []
eta sy ot . OCIC I)

l

Shared work queue: a list of work to do
(for now, let’s assume each piece of work is independent)

Worker threads: T1 T2 T3 T4
Pull data from work queue TR T mmemmen T
Push new work to queue as it’s created

(CMU 15-418, Spring 2012)

What constitutes a piece of work?

m Whatis a potential problem with this implementation?

LOCK counter_lock;
int counter = @; // shared variable (assume Timein task 1
// initialization to 0;

-

const int N = 1024;
float* x = new float[N];

bool* prime = new bool[N]; Time in critical section I
// initialize elements of x This is overhead that
while (1) { does not exist in serial

int i; program

lock(counter_lock);
i = counter++;

r :
unlock(counter lock); And.. it’s serial execution

if (i >= N) Recall Amdahl’s law:
break; . What is.S here?
prime[i] = test_primality(x[i]);

}

Fine granularity partitioning:
1task =1 element

Likely good workload balance (many small tasks)

Potential for high synchronization cost So. .o IS this d prOblem?

(serialization at critical section) _
(CMU 15-418, Spring 2012)

Increasing task granularity

LOCK counter_lock;
int counter = 0; // shared variable (assume

// initialization to 0; Time in task 1
const int N = 1024;

const int GRANULARITY = 10; L. . 1
float* x = new float[N]; Time in critical section T

bool* prime = new bool[N]; Whatis .S now?

// initialize elements of Xx

while (1) {
int i;
lock(counter_lock);
i = counter;
counter += GRANULARITY;
unlock(counter_lock);
if (i >= N)
break;
int end = min(i + GRANULARITY, N);
for (int j=i; j<end; j++)
prime[i] = test _primality(x[i]);

Coarse granularity partitioning:
1 task =10 elements

Decreased synchronization cost

(Critical section entered 10 times less) So“. h ave we done better?

(CMU 15-418, Spring 2012)

Rule of thumb

m Want many more tasks than processors
(many small tasks enable a partitioning that achieves good workload balance)

- Motivates small granularity tasks

m But want as few tasks as possible to minimize overhead of

managing the assignment
- Motivates large granularity tasks

m |deal granularity depends on many factors
(must know your workload, and your machine)

(CMU 15-418, Spring 2012)

Decreasing synchronization overhead

m Distributed work queues

- Replicate data to remove synchronization
- Reoccurring theme: recall barrier example at the start of the lecture

))
) \
l l l l

Subproblems
(aka “tasks”, “work”)

N)

-
-
-
-

N\)
N A
N\)

J

Set of work queues
(In general, one per thread)

Steal!
Worker threads: l l l l

Pull data from OWN work queue . . pooneeeey
Push work to OWN work to queue T . T2 T3 ' T4
When idle... oo
STEAL work from another work queue

(CMU 15-418, Spring 2012)

Distributed work queues

m (ostly synchronization/communication occurs during stealing

- But not every time a thread takes on new work
- Stealing occurs only when necessary to ensure good load balance

B Leads to increased locality
- Common case: threads work on tasks they create (producer-consumer locality)

. CHOCOOCOHC OO
® Implementation challenges COOCOHC()

- Who to steal from? Il Il Il Il
- How much to steal?

- How to detect program termination?
- Ensuring local queue access is fast

(while preserving mutual exclusion) I~ ! '

(CMU 15-418, Spring 2012)

Task scheduling

What happens if scheduler runs the long task last?

Cost 16 Tasks

(CMU 15-418, Spring 2012)

Task scheduling

What happens if scheduler runs the long task last?

Time P1 P2

One possible solution to imbalance problem:

Divide work into a larger number of smaller tasks
— “Long pole” gets shorter relative to overall execution time
— May increase synchronization overhead

— May not be possible (perhaps long task is fundamentally sequential)
(CMU 15-418, Spring 2012)

Task scheduling

Schedule long task first to reduce “slop” at end of computation

Time P1 P2 P3

Another solution: better scheduling

Schedule long task first
— Thread performing long task performs fewer tasks
— Requires some knowledge of workload (some predictability of cost)

(CMU 15-418, Spring 2012)

Work in task queues need not be independent

----+ = dependency D
o o I

D)

COOCD ©

Task management system:
Scheduler manages dependencies

Worker threads: A// \\A

Assigned tasks only when dependencies are satisfied 1
Can submit new tasks (with optional explicit ' '
dependencies) to task system

(CMU 15-418, Spring 2012)

Summary

m (Challenge: achieving good workload balance

- Want all processors working at all times

- But want low cost to achieve this balance
- Minimize computational overhead (e.g., scheduling logic)
- Minimize synchronization costs

m Staticassignment vs. dynamic assignment (really, it's a
continuum)

= Use up front knowledge about workload as much as possible to reduce task
management/synchronization costs (in the limit, fully static)

m [ssues discussed span decomposition, assignment, and
orchestration

(CMU 15-418, Spring 2012)

