
Lecture 5:
Parallel Programming Basics (part II)

Programming for Performance (part I)

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

 (CMU 15-418, Spring 2012)

Assignments
▪ Assignment 1 due tonight @ midnight

- No grace days

▪ Assignments 2, 3, 4
- Can work in pairs (optional)
- 3 total grace days per group

▪ Final project
- No grace days

 (CMU 15-418, Spring 2012)

Recall: shared address space solver

Why are there so many barriers?

 (CMU 15-418, Spring 2012)

Shared address space solver: one barrier
float&diff[3];&&//&global&diff

float&mydiff;&&&//&thread&local&variable

int&index&=&0;&&//&thread&local&variable

LOCKDEC(diff_lock);

BARDEC(bar);

diff[0]&=&0.0f;

barrier(nprocs,&bar);&&&&&&//&oneLtime&only:&just&for&init

while&(!done)&{

&&&mydiff&=&0.0f;

&&&//

&&&//&perform&computation&(accumulate&locally&into&mydiff)&

&&&//

&&&lock(diff_lock);

&&&diff[index]&+=&mydiff;&&&&//&atomically&update&global&diff

&&&unlock(diff_lock);

&&&diff[(index+1)&%&3]&=&0.0f;

&&&barrier(nprocs,&bar);

&&&if&(diff[index]/(n*n)&<&TOL)

&&&&&&break;

&&&index&=&(index&+&1)&%&3;

}

Idea:
Remove dependencies by using di!erent di!
variables in successive loop iterations

Trade o! footprint for reduced synchronization!
(common parallel programming technique)

 (CMU 15-418, Spring 2012)

Steps in creating a parallel program
Problem to solve

Sub-problems
(aka “tasks”, “work”)

Threads

Parallel program
(communicating

threads)

Execution on
parallel
machine

Decomposition

Assignment

Orchestration

Mapping

 (CMU 15-418, Spring 2012)

Solver implementation in two programming models

▪ Data-parallel programming model
- Synchronization:

- Single logical thread of control, but iterations of forall loop can be
parallelized (barrier at end of outer forall loop body)

- Communication
- Implicit in loads and stores (like shared address space)
- Special built-in primitives: e.g., reduce

 (CMU 15-418, Spring 2012)

▪ Data-parallel programming model
- Synchronization:

- Single logical thread of control, but iterations of forall loop can be
parallelized (barrier at end of outer forall loop body)

- Communication
- Implicit in loads and stores (like shared address space)
- Special built-in primitives: e.g., reduce

▪ Shared address space
- Synchronization:

- Mutual exclusion required for shared variables
- Barriers used to express dependencies (between phases of computation)

- Communication
- Implicit in loads/stores to shared variables

Solver implementation in two programming models

 (CMU 15-418, Spring 2012)

Today: message passing model

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Network

▪ No shared address space abstraction (i.e., no shared variables)

▪ Each thread has it’s own address space

▪ Threads communicate & synchronize by sending/receiving messages

One possible message passing implementation: cluster of workstations (recall lecture 3)

 (CMU 15-418, Spring 2012)

Last time: assignment in a shared address space
▪ Grid data resided in a single array in shared address space

(array was accessible to all threads)

▪ Assignment partitioned elements to processors to divide up the computation
- Performance di!erences
- Di!erent assignments may yield di!erent amounts of communication due to

implementation details (e.g., caching)

 (CMU 15-418, Spring 2012)

Message passing model
▪ Grid data stored in four separate address spaces (four private arrays)

Thread 1
Address

Space

Thread 2
Address

Space

Thread 3
Address

Space

Thread 4
Address

Space

 (CMU 15-418, Spring 2012)

Replication required to perform computation

Thread 1
Address

Space

Thread 2
Address

Space

Thread 3
Address

Space

Thread 4
Address

Space

“Ghost cells”:

Grid cells replicated from
remote address space.

Send row

Send row

Example:
Thread 1 and 3 send row to thread 2
(otherwise thread 2 cannot update its local cells)

Thread&2&logic:

cell_t&ghost_row_top[N+2];&//&ghost&row&storage

cell_t&ghost_row_bot[N+2];&//&ghost&row&storage

int&bytes&=&sizeof(cell_t)&*&(N+2);

recv(ghost_row_top,&bytes,&pidL1,&TOP_MSG_ID);

recv(ghost_row_bot,&bytes,&pid+1,&BOT_MSG_ID);

//&Thread&2&now&has&data&necessary&to&perform

//&computation

Required for correctness

 (CMU 15-418, Spring 2012)

Message passing solver

Send and receive ghost rows

Perform computation

All threads send local mydi! to thread 0

Thread 0 computes termination, predicate
sends result back to all other threads

Note similar structure to shared
address space solver, but now
communication is explicit

 (CMU 15-418, Spring 2012)

Notes on message passing example
▪ Computation

- Array indexing is relative to local address space (not global grid coordinates)

▪ Communication:
- Performed through messages
- En masse, not element at a time. Why?

▪ Synchronization:
- Performed through sends and receives
- Think of how to implement mutual exclusion, barriers, "ags using messages

▪ For convenience: message passing libraries often include
higher-level primitives (implemented using send and receive)

Alternative solution using
reduce/broadcast constructs

 (CMU 15-418, Spring 2012)

Send and receive variants

Synchronous Asynchronous

Blocking async Non-blocking async

Send/Recv

▪ Synchronous:
- SEND: call returns when message data resides in address space of receiver (and

sender has received ack that this is the case)
- RECV: call returns when data from message copied into address space of

receiver and ack sent)

Call SEND()
Copy data from sender’s address space bu!er into network bu!er

Call RECV()

Receive messageSend message
Copy data into receiver’s address space bu!er
Send ack
RECV() returns

Receive ack
SEND() returns

Sender: Receiver:

 (CMU 15-418, Spring 2012)

As implemented on previous slide, if our message passing
solver uses blocking send/recv it would deadlock!

Why?

How can we "x it?
(while still using blocking send/recv)

 (CMU 15-418, Spring 2012)

Message passing solver

Send and receive ghost rows

Perform computation

All threads send local mydi! to thread 0

Thread 0 computes termination, predicate
sends result back to all other threads

 (CMU 15-418, Spring 2012)

Send and receive variants

Synchronous Asynchronous

Blocking async Non-blocking async

Send/Recv

▪ Async blocking:
- SEND: call copies data from address space into system bu!ers, then returns

- Does not guarantee message has been received (or even sent)
- RECV: call returns when data copied into address space, but no ack sent

Call SEND()
Copy data from sender’s address space bu!er into network bu!er

Call RECV()

Receive messageSend message
Copy data into receiver’s address space bu!er
RECV() returns

SEND() returns

Sender: Receiver:

 (CMU 15-418, Spring 2012)

Send and receive variants

Synchronous Asynchronous

Blocking async Non-blocking async

Send/Recv

▪ Async non-blocking: (“non-blocking”)
- SEND: call returns immediately. Bu!er provided to SEND cannot be touched by called

through since message processing occurs concurrently
- RECV: call posts intent to receive, returns immediately
- Use SENDPROBE, RECVPROBE to determine actual send/receipt status

Call SEND(local_buf)

Copy data from local_buf into network bu!er

Call RECV(recv_local_buf)

Receive messageSend message
Copy data into recv_local_buf

RECV() returnsSEND() returns

Sender: Receiver:

Call SENDPROBE // if sent, now safe for thread to modify local_buf Call RECVPROBE
// if received, now safe for thread
// to access recv_local_buf

 (CMU 15-418, Spring 2012)

Send and receive variants

Synchronous Asynchronous

Blocking async Non-blocking async

Send/Recv

The variants of send/recv provide di!erent levels of
programming complexity / opportunity to optimize performance

 (CMU 15-418, Spring 2012)

1. Data-parallel model
- Synchronization:

- Single logical thread of control, but iterations of forall loop can be parallelized
(barrier at end of outer forall loop body)

- Communication
- Implicit in loads and stores (like shared address space)
- Special built-in primitives: e.g., reduce

2. Shared address space model
- Synchronization:

- Mutual exclusion required for shared variables
- Barriers used to express dependencies (between phases of computation)

- Communication
- Implicit in loads/stores to shared variables

3. Message passing model
- Synchronization:

- Implemented via messages
- Mutual exclusion by default: no shared data structures

- Communication:
- Explicit communication via send/recv needed for parallel program correctness
- Bulk communication: communicated entire rows, not single elements
- Several variants on send/recv semantics

Solver implementation in THREE programming models

 (CMU 15-418, Spring 2012)

Optimizing parallel program performance
(how to be l33t)

 (CMU 15-418, Spring 2012)

Programming for performance
▪ Optimizing the performance of parallel programs is an

iterative process of re"ning choices for decomposition,
assignment, and orchestration...

▪ Key goals (that are at odds with each other)
- Balance workload onto available execution resources
- Reduce communication (to avoid stalls)
- Reduce extra work done to determine/manage assignment

▪ We are going to talk about a rich space of techniques
- TIP #1: Always do the simple thing #rst, then measure/analyze
- “It scales” = it scales as much as you need it too

 (CMU 15-418, Spring 2012)

Balancing the workload
Ideally all processors are computing all the time during program execution
(they are computing simultaneously, and they "nish their portion of the work at the same time)

Recall Amdahl’s Law:
Only small amount of load imbalance can
signi"cantly bound maximum speedup

Time P1 P2 P3 P4

P4 does 20% more work → P4 takes 20% longer to complete
 → 20% of parallel program runtime is
 essentially serial execution
 (clari"cation: work in serialized section here is about 5% of a
 sequential program’s execution time: S=.05 in Amdahl’s law eqn)

 (CMU 15-418, Spring 2012)

Static assignment
▪ Assignment of work to threads is pre-determined

- Not necessarily compile-time (assignment algorithm may depend on runtime
parameters such as input data size, number of threads, etc.)

▪ Recall solver example: assign equal number of grid cells to each thread
- We discussed blocked and interleaved static assignments

▪ Good properties: simple, low runtime overhead
(here: extra work to implement mapping is a little bit of indexing math)

 (CMU 15-418, Spring 2012)

Static assignment
▪ When is static assignment applicable?

- When cost (execution time) of work is predictable
- Simplest example: it known that all work is the same cost
- When statistics about execution time are known (e.g., same on average)

Time P1 P2 P3 P4

 (CMU 15-418, Spring 2012)

Semi-static assignment
▪ Cost of work predictable over near-term horizon

- Recent past good predictor of near future
▪ Periodically pro#le application and re-adjust assignment

- Assignment is static during interval between re-adjustment

Adaptive mesh:

Re"ne mesh as object moves or #ow over object changes

Particle simulation:

Redistribute particles as they move
over course of simulation
(if motion is slow, redistribution
need not occur often)

 (CMU 15-418, Spring 2012)

Dynamic assignment
▪ Program logic adapts at runtime to ensure well distributed

load (execution time of tasks is unpredictable)

int&N&=&1024;

int*&x&=&new&int[N];

bool*&prime&=&new&bool[N];

//&initialize&elements&of&x

for&(int&i=0;&i<N;&i++)

{

&&&&//&unknown&execution&time

&&&&prime[i]&=&test_primality(x[i]);

}

LOCK&counter_lock;

int&counter&=&0;&&&&//&shared&variable&(assume

&&&&&&&&&&&&&&&&&&&&//&initialization&to&0;

int&N&=&1024;&

int*&x&=&new&int[N];

bool*&prime&=&new&bool[N];

//&initialize&elements&of&x

while&(1)&{

&&int&i;

&&lock(counter_lock);

&&i&=&counter++;

&&unlock(counter_lock);

&&if&(i&>=&N)

&&&&&break;

&&prime[i]&=&test_primality(x[i]);

}

Sequential program
(independent loop iterations)

Parallel program
(SPMD execution, shared address space model)

atomic_incr(counter);

 (CMU 15-418, Spring 2012)

Dynamic assignment using work queues

Worker threads:
Pull data from work queue
Push new work to queue as it’s created

T1 T2 T3 T4

Sub-problems
(aka “tasks”, “work”)

Shared work queue: a list of work to do
(for now, let’s assume each piece of work is independent)

 (CMU 15-418, Spring 2012)

What constitutes a piece of work?
▪ What is a potential problem with this implementation?
LOCK&counter_lock;

int&counter&=&0;&&&&//&shared&variable&(assume

&&&&&&&&&&&&&&&&&&&&//&initialization&to&0;

const&int&N&=&1024;&

float*&x&=&new&float[N];

bool*&prime&=&new&bool[N];

//&initialize&elements&of&x

while&(1)&{

&&int&i;

&&lock(counter_lock);

&&i&=&counter++;

&&unlock(counter_lock);

&&if&(i&>=&N)

&&&&&break;

&&prime[i]&=&test_primality(x[i]);

}

Fine granularity partitioning:
1 task = 1 element

Likely good workload balance (many small tasks)
Potential for high synchronization cost
(serialization at critical section)

Time in critical section

This is overhead that
does not exist in serial
program

And.. it’s serial execution
Recall Amdahl’s law:
What is S here?

Time in task 1

So... IS this a problem?

 (CMU 15-418, Spring 2012)

Increasing task granularity
LOCK&counter_lock;

int&counter&=&0;&&&&//&shared&variable&(assume

&&&&&&&&&&&&&&&&&&&&//&initialization&to&0;

const&int&N&=&1024;&

const&int&GRANULARITY&=&10;

float*&x&=&new&float[N];

bool*&prime&=&new&bool[N];

//&initialize&elements&of&x

while&(1)&{

&&int&i;

&&lock(counter_lock);

&&i&=&counter;

&&counter&+=&GRANULARITY;

&&unlock(counter_lock);

&&if&(i&>=&N)

&&&&&break;

&&int&end&=&min(i&+&GRANULARITY,&N);

&&for&(int&j=i;&j<end;&j++)

&&&&&prime[i]&=&test_primality(x[i]);

Coarse granularity partitioning:
1 task = 10 elements

Decreased synchronization cost
(Critical section entered 10 times less)

Time in critical section
What is S now?

Time in task 1

So... have we done better?

 (CMU 15-418, Spring 2012)

Rule of thumb
▪ Want many more tasks than processors

(many small tasks enable a partitioning that achieves good workload balance)

- Motivates small granularity tasks

▪ But want as few tasks as possible to minimize overhead of
managing the assignment
- Motivates large granularity tasks

▪ Ideal granularity depends on many factors
(must know your workload, and your machine)

 (CMU 15-418, Spring 2012)

Decreasing synchronization overhead
▪ Distributed work queues

- Replicate data to remove synchronization
- Reoccurring theme: recall barrier example at the start of the lecture

Worker threads:
Pull data from OWN work queue
Push work to OWN work to queue
When idle...
STEAL work from another work queue

T1 T2 T3 T4

Subproblems
(aka “tasks”, “work”)

Set of work queues
(In general, one per thread)

Steal!

 (CMU 15-418, Spring 2012)

Distributed work queues

▪ Costly synchronization/communication occurs during stealing
- But not every time a thread takes on new work
- Stealing occurs only when necessary to ensure good load balance

▪ Leads to increased locality
- Common case: threads work on tasks they create (producer-consumer locality)

▪ Implementation challenges
- Who to steal from?
- How much to steal?
- How to detect program termination?
- Ensuring local queue access is fast

(while preserving mutual exclusion)
T1 T2 T3 T4

Steal

 (CMU 15-418, Spring 2012)

Task scheduling

16 TasksCost

What happens if scheduler runs the long task last?

 (CMU 15-418, Spring 2012)

Task scheduling
What happens if scheduler runs the long task last?

Time P1 P2 P3 P4

One possible solution to imbalance problem:
Divide work into a larger number of smaller tasks
- “Long pole” gets shorter relative to overall execution time
- May increase synchronization overhead
- May not be possible (perhaps long task is fundamentally sequential)

Done!

 (CMU 15-418, Spring 2012)

Task scheduling
Schedule long task #rst to reduce “slop” at end of computation

Time P1 P2 P3 P4

Another solution: better scheduling
Schedule long task #rst
- Thread performing long task performs fewer tasks
- Requires some knowledge of workload (some predictability of cost)

Done!

 (CMU 15-418, Spring 2012)

Work in task queues need not be independent

T1 T2 T3 T4

= dependency

Worker threads:
Assigned tasks only when dependencies are satis"ed
Can submit new tasks (with optional explicit
dependencies) to task system

Task management system:
Scheduler manages dependencies

 (CMU 15-418, Spring 2012)

Summary
▪ Challenge: achieving good workload balance

- Want all processors working at all times
- But want low cost to achieve this balance

- Minimize computational overhead (e.g., scheduling logic)
- Minimize synchronization costs

▪ Static assignment vs. dynamic assignment (really, it’s a
continuum)
- Use up front knowledge about workload as much as possible to reduce task

management/synchronization costs (in the limit, fully static)

▪ Issues discussed span decomposition, assignment, and
orchestration

