Lecture 3: Communication Architectures and Parallel Programming models:

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Announcements

Office hours

- Fatahalian: Tue/Thurs 1:30-2:30PM, GHC 7005

- Papamichael: Wed 1-2PM, HH A-312

- Mu: Mon 4-5PM, West Wing cluster

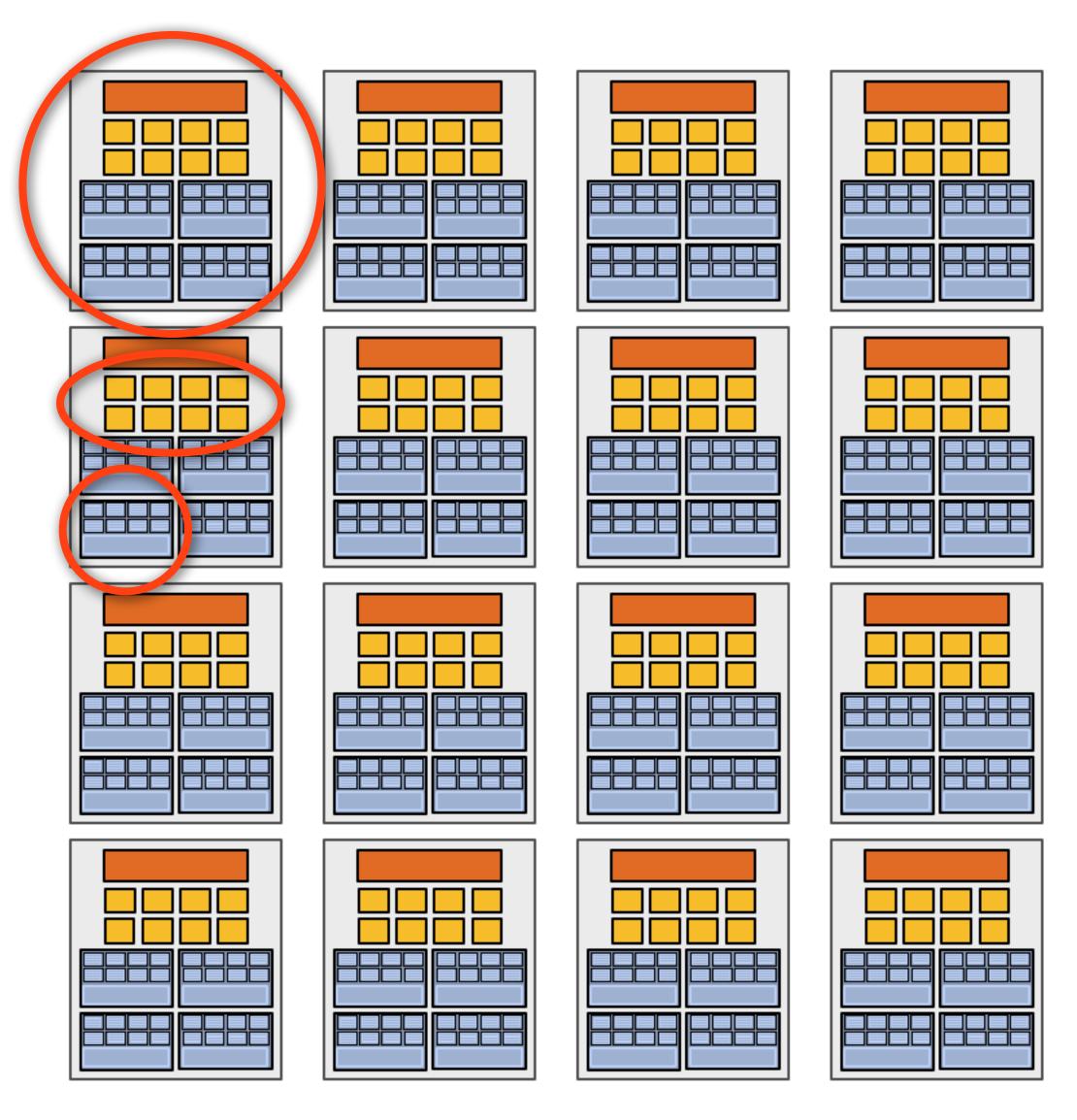
Assignment 1 out today!

- Due: Jan 31st
- No late handin (1 week is more than enough time)

■ Course discussions, message boards hosted on <u>piazza.com</u>

- I've heard good things
- Please go to piazza.com and enroll in 15-418

Review: Kayvon's fictitious multi-core chip



We talked about forms of parallel/concurrent execution.

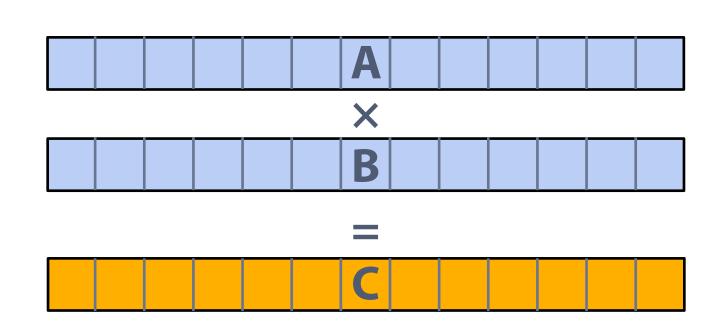
Finishing up from last time

Review: thought experiment

Task: element-wise multiplication of two vectors A and B

Assume vectors contain millions of elements

- Load input A[i]
- 2. Load input B[i]
- 3. Compute $A[i] \times B[i]$
- 4. Store result into C[i]



Three memory operations (12 bytes) for every MUL NVIDIA GTX 480 GPU can do 480 MULs per clock (1.4 GHz) Need ~8.4 TB/sec of bandwidth to keep functional units busy

~ 2% efficiency... but 8x faster than CPU! (3 GHz Core i7 quad-core CPU: similar efficiency on this computation)

Bandwidth limited!

If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

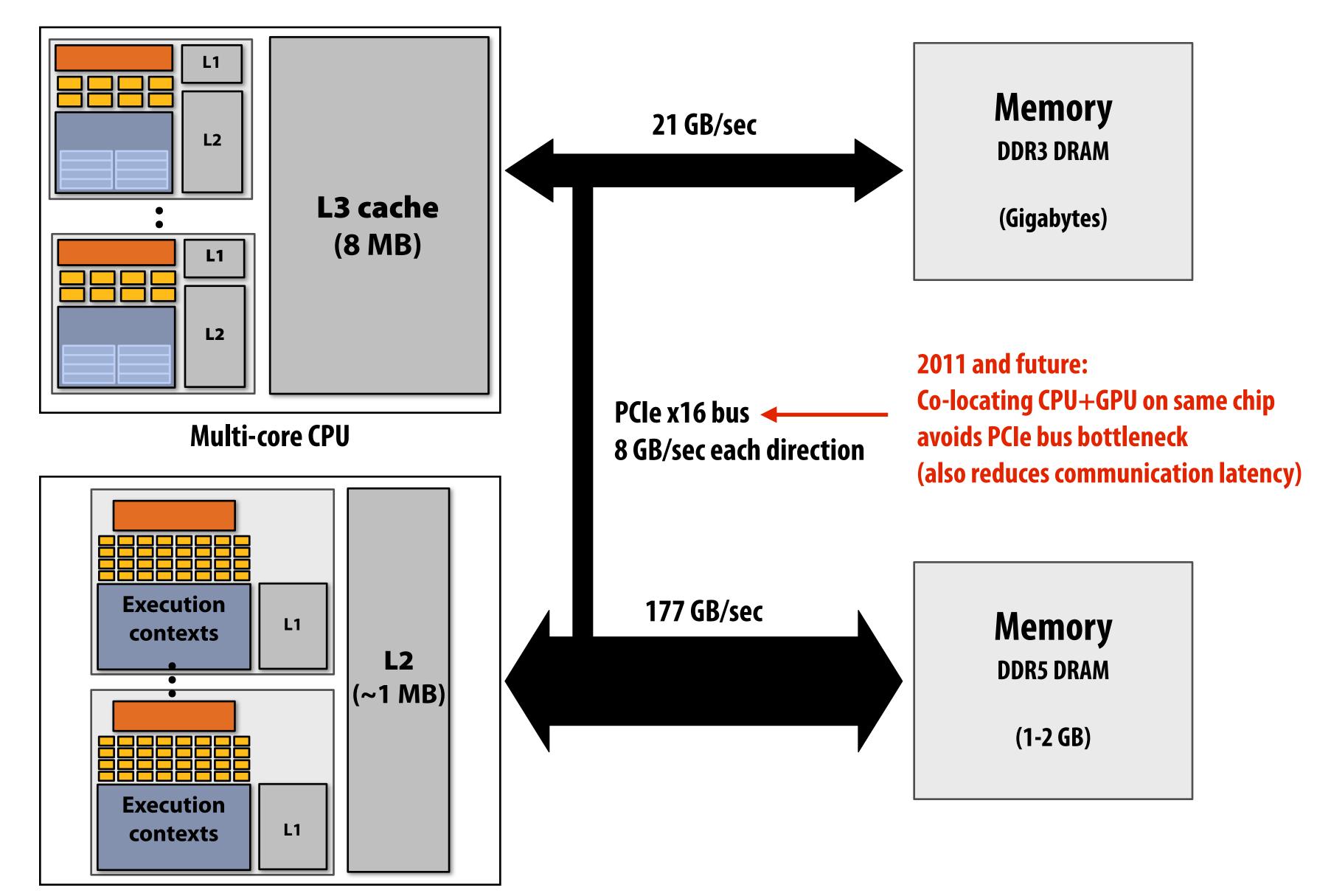
Overcoming bandwidth limits are a common challenge for application developers on throughput-optimized systems.

Bandwidth is a critical resource

Performant parallel programs will:

- Fetch data from <u>memory</u> less often
 - Reuse data in a thread (traditional locality optimizations)
 - Share data across threads (cooperation)
- Request data less often (instead, do more math: it is "free")
 - Term: "arithmetic intensity" ratio of math to data access

Entire system view: CPU + discrete GPU



Multi-core GPU

Programming with ISPC (quick tutorial for assignment 1)

ISPC

- Intel SPMD Program Compiler (ISPC)
- SPMD: single *program* multiple data

http://ispc.github.com/

Compute sin(x) using Tailor expansion: $sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...$

C++ code: main.cpp

```
#include "sinx_ispc.h"

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);
```

SPMD abstraction:

Spawn "gang" of ISPC program instances
All instances run ISPC code in parallel
Upon return, all instances have completed

```
export void sinx(
   uniform int N,
   uniform int terms,
   uniform float* x,
   uniform float* result)
  // assume N % programCount = 0
   for (uniform int i=0; i<N; i+=programCount)</pre>
      int idx = i + programIndex;
      float value = x[idx];
      float numer = x[idx] * x[idx] * x[idx];
      uniform int denom = 6; // 3!
      uniform int sign = -1;
      for (uniform int j=1; j<=terms; j++)</pre>
         value += sign * numer / denom
         numer *= x[idx] * x[idx];
         denom *= (j+3) * (j+4);
         sign *= -1;
      result[i] = value;
```

Compute sin(x) using Tailor expansion: $sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...$

C++ code: main.cpp

```
#include "sinx_ispc.h"
int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

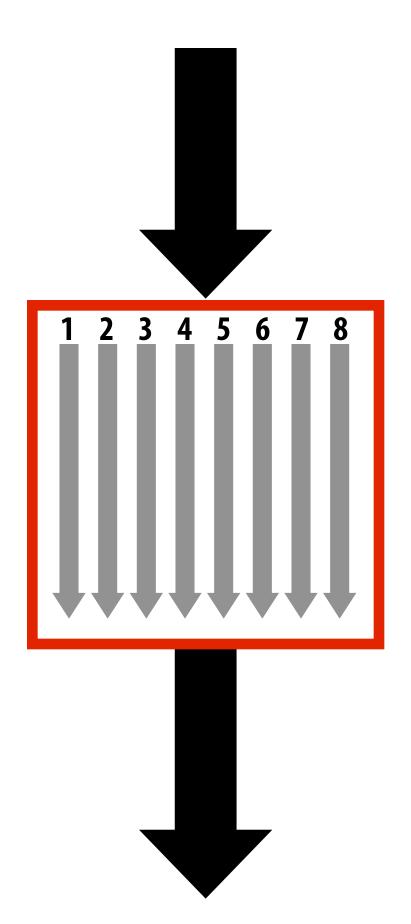
// execute ISPC code
sinx(N, terms, x, result);
```

SPMD abstraction:

Spawn "gang" of ISPC program instances
All instances run ISPC code in parallel
Upon return, all instances have completed

SIMD implementation:

Number of instances in a gang is the SIMD width (or a small multiple of)
ISPC compiler generates binary (.o) with SIMD instructions
C++ code links against object as usual



Sequential execution (C code)

Call to sinx()
Begin executing programCount
instances of sinx() (ISPC code)

sinx() returns.

Completion of ISPC program instances.

Resume sequential execution

Sequential execution (C code)

Interleaved assignment of elements to instances

C++ code: main.cpp

```
#include "sinx_ispc.h"

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);
```

ISPC Keywords:

programCount: number of simultaneously executing instances in the gang (uniform value)

programIndex: id of the current instance in the gang. (a non-uniform value: "varying")

uniform: A type modifier. All instances have the same value for this variable. Its use is purely an optimization. Not needed for correctness.

```
export void sinx(
   uniform int N,
   uniform int terms,
   uniform float* x,
   uniform float* result)
  // assumes N % programCount = 0
   for (uniform int i=0; i<N; i+=programCount)</pre>
      int idx = i + programIndex;
      float value = x[idx];
      float numer = x[idx] * x[idx] * x[idx];
      uniform int denom = 6; // 3!
      uniform int sign = -1;
      for (uniform int j=1; j<=terms; j++)</pre>
         value += sign * numer / denom
         numer *= x[idx] * x[idx];
         denom *= (j+3) * (j+4);
         sign *= -1;
      result[i] = value;
```

Blocked assignment of elements to instances

C++ code: main.cpp

```
#include "sinx_ispc.h"
int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);
```

```
export void sinx(
   uniform int N,
   uniform int terms,
   uniform float* x,
   uniform float* result)
   // assume N % programCount = 0
   uniform int count = N / programCount;
   int start = programIndex * count;
   for (uniform int i=0; i<count; i++)</pre>
      int idx = start + i;
      float value = x[idx];
      float numer = x[idx] * x[idx] * x[idx];
      uniform int denom = 6; // 3!
      uniform int sign = -1;
      for (uniform int j=1; j<=terms; j++)</pre>
         value += sign * numer / denom
         numer *= x[idx] * x[idx];
         denom *= (j+3) * (j+4);
         sign *= -1;
      result[i] = value;
```

Compute sin(x) using tailor expansion: $sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...$

C++ code: main.cpp

```
#include "sinx_ispc.h"
int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);
```

foreach: key language construct

Declares parallel loop iterations

ISPC assigns iterations to program instances in gang

(ISPC implementation will perform static assignment, but nothing in the abstraction prevents a dynamic assignment)

```
export void sinx(
   uniform int N,
   uniform int terms,
   uniform float* x,
   uniform float* result)
   foreach (i = 0 ... N)
      float value = x[i];
      float numer = x[i] * x[i] * x[i];
      uniform int denom = 6; // 3!
      uniform int sign = -1;
      for (uniform int j=1; j<=terms; j++)</pre>
         value += sign * numer / denom
         numer *= x[i] * x[i];
         denom *= (j+3) * (j+4);
         sign *= -1;
      result[i] = value;
```

ISPC: abstraction vs. implementation

- Single program, multiple data (SPMD) programming model
 - This is the programming <u>abstraction</u>

- Single instruction, multiple data (SIMD) implementation
 - Compiler emits vector instructions
 - Handles mapping of conditional control flow to vector instructions

Semantics of ISPC can be tricky {

- SPMD abstraction + uniform values (allows implementation details to peak through abstraction a bit)
- What does sumall1 do?
- What does sumall2 do?
- Which one is correct?

```
export uniform float sumall1(
    uniform int N,
    uniform float* x)
{
    uniform float sum = 0.0f;
    foreach (i = 0 ... N)
    {
        sum += x[i];
    }
    return sum;
}
```

```
export uniform float sumall2(
    uniform int N,
    uniform float* x)
{
    uniform float sum;
    float partial = 0.0f;
    foreach (i = 0 ... N)
    {
        partial += x[i];
    }

    // from ISPC math library
    sum = reduceAdd(partial);
    return sum;
}
```

Today

- Three parallel programming models
 - Abstractions presented to the programmer
 - Influence how programmers think when writing programs
- Three machine architectures
 - Abstraction presented by the HW to low-level software
 - Typically reflect implementation

Focus on communication and cooperation

Reading: Textbook section 1.2

System layers: interface, implementation, interface, ...

Parallel Applications

Abstractions for describing parallel computation

Abstractions for describing communication

"Programming model" (way of thinking about things)

primitives/mechanisms

Compiler and/or runtime

System call API

Language or API

Operating system support

Hardware Architecture (HW/SW boundary)

Micro-architecture (HW implementation)

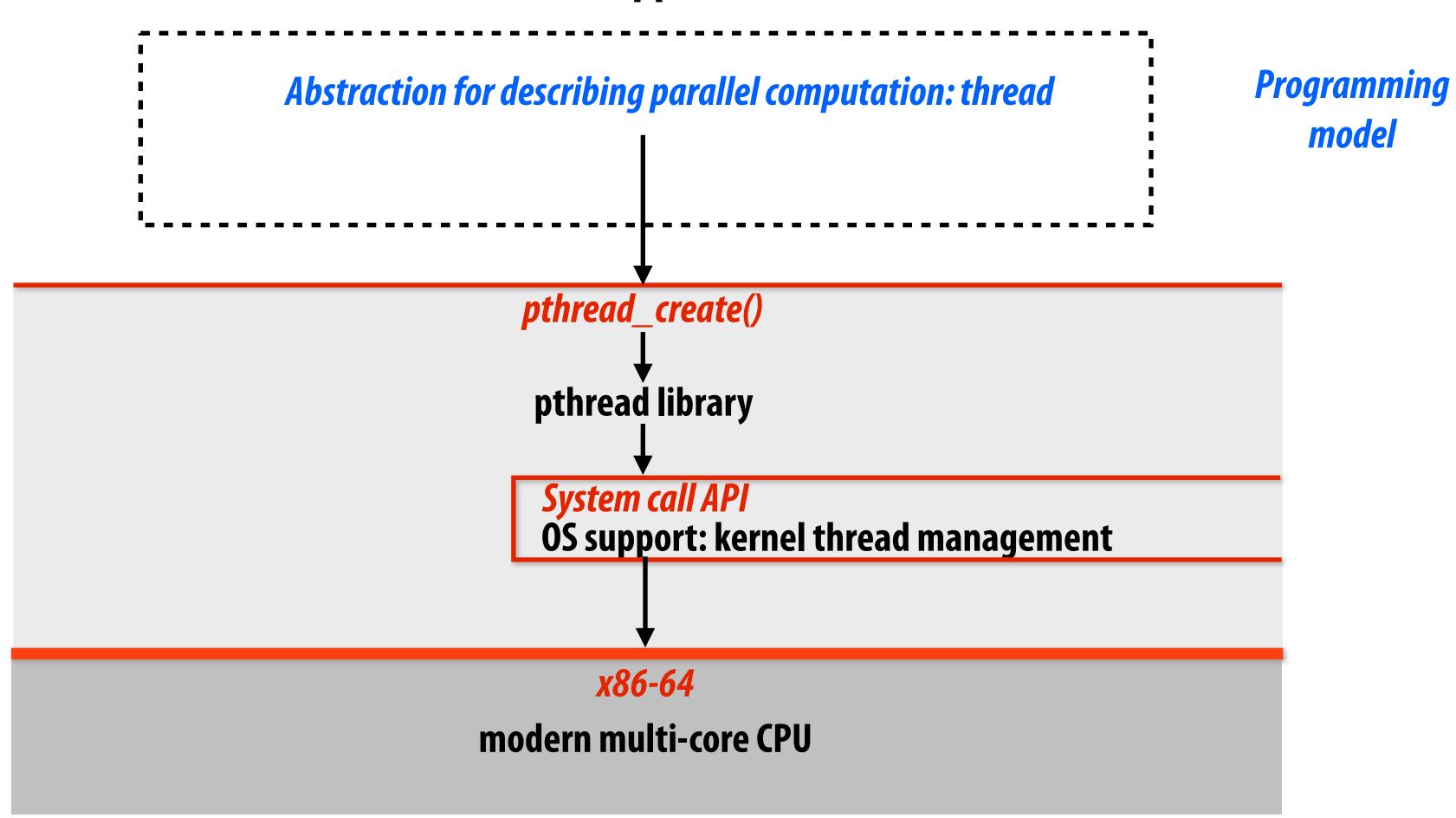
Blue italic text: concept

Red italic text: system abstraction

Black text: system implementation

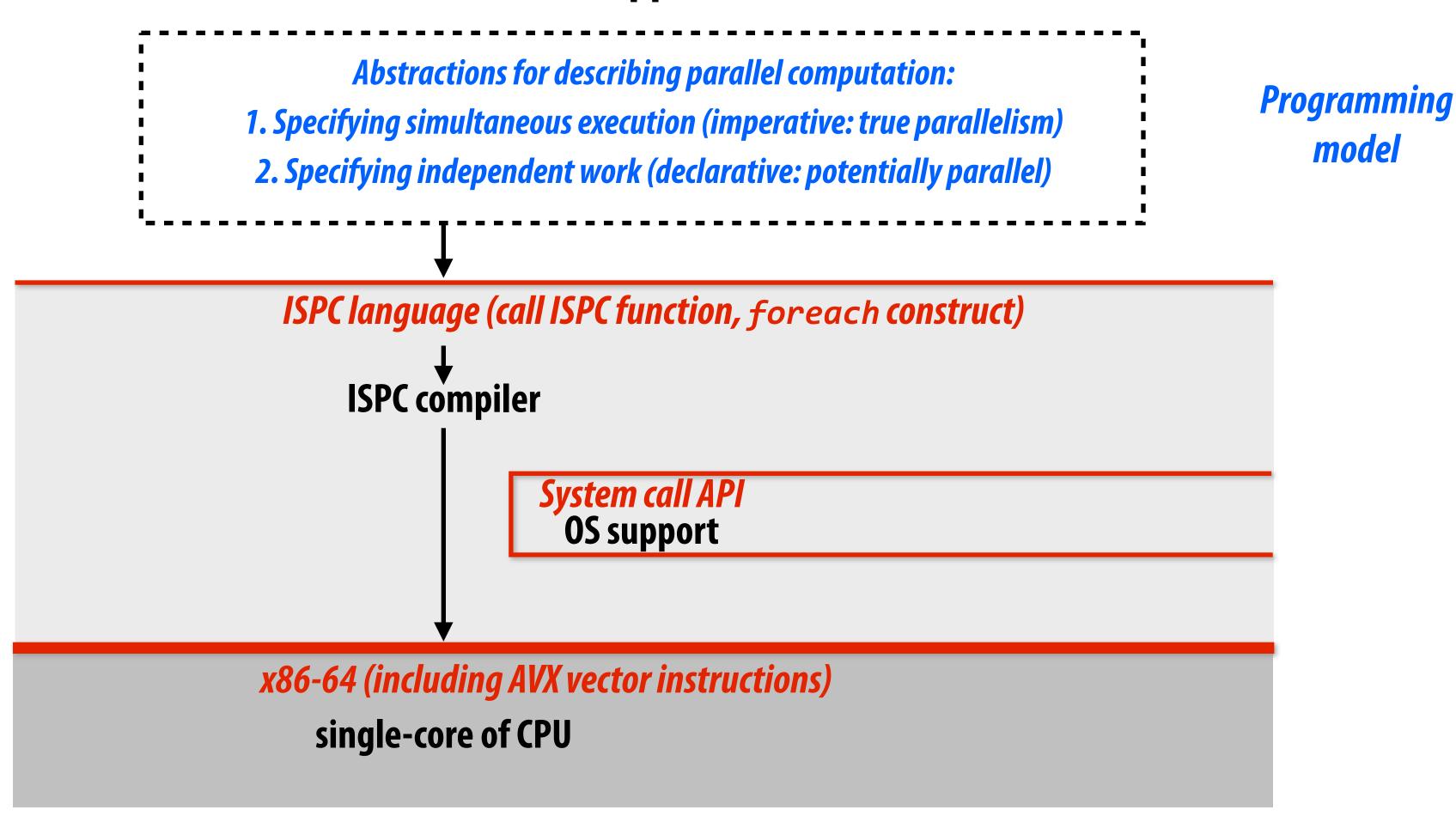
Example: expressing parallelism (pthreads)

Parallel Applications



Example: expressing parallelism (ISPC)

Parallel Applications



Note: ISPC has additional language primitives for multi-core execution (not discussed here)

Three models of communication

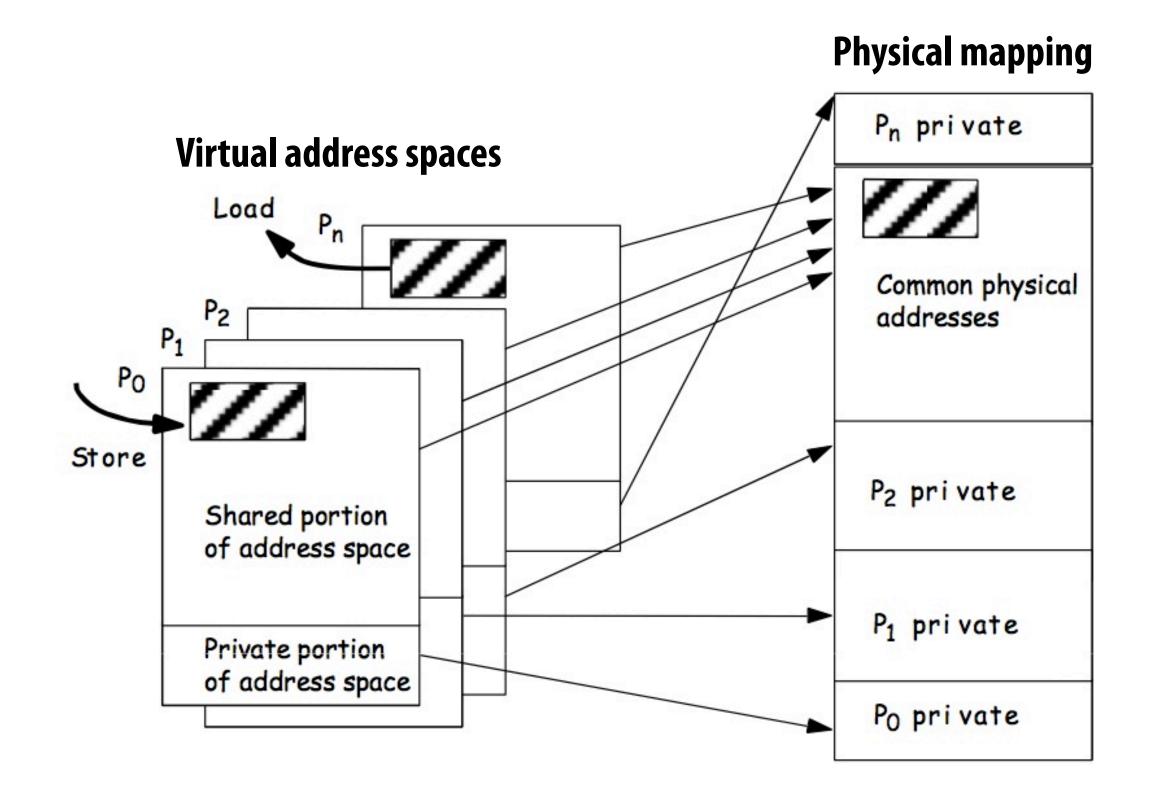
- 1. Shared address space
- 2. Message passing
- 3. Data parallel

Shared address space model (abstraction)

- Threads communicate by:
 - Reading/writing to shared variables
 - Interprocessor communication is implicit in memory operations
 - Thread 1 stores to X. Thread 2 reads X (observes update)
 - Manipulating synchronization primitives
 - e.g., mutual exclusion using locks
- Natural extension of sequential programming model
 - In fact, all our discussions have assumed a shared address space so far
- Think: shared variables are like a big bulletin board
 - Any thread can read or write

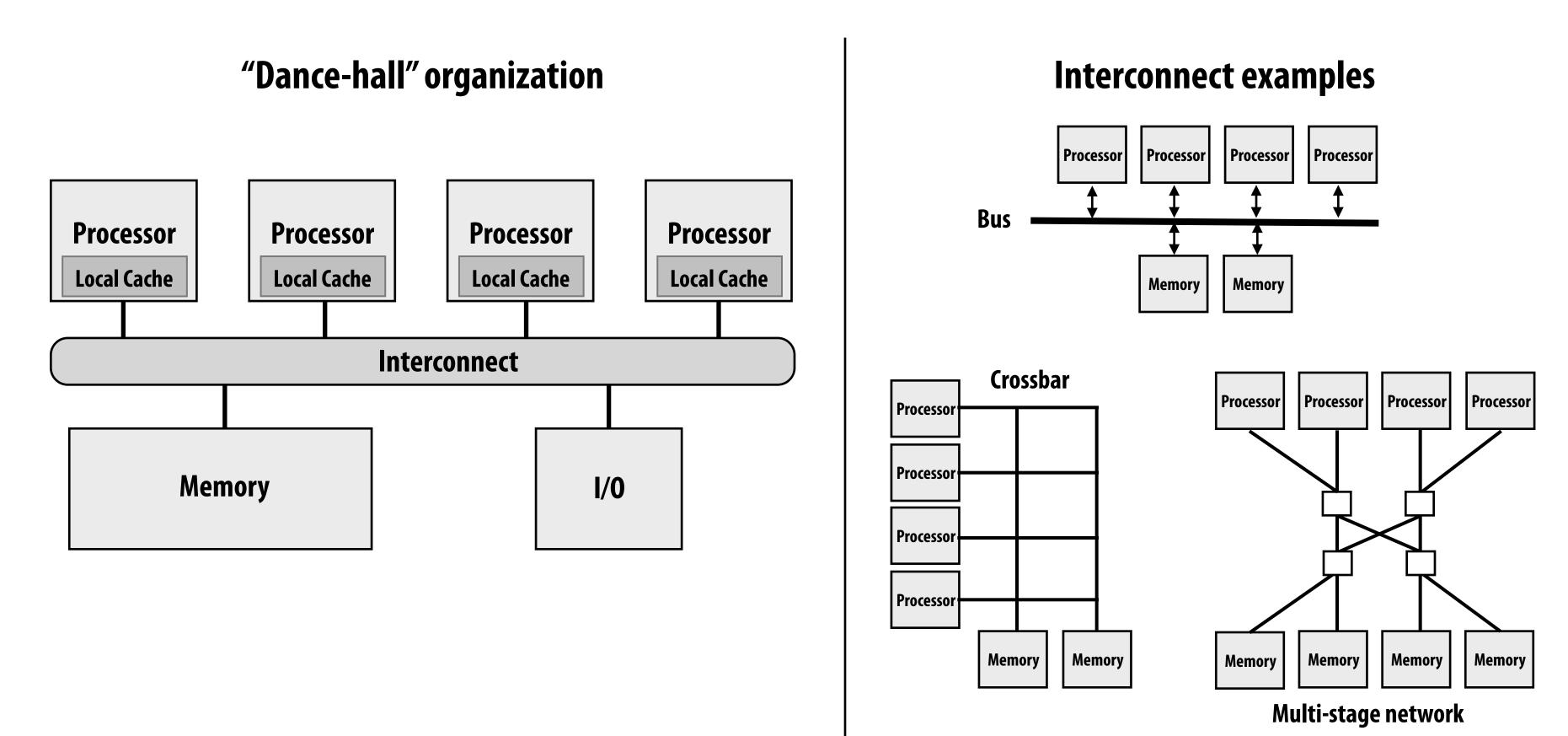
Shared address space (implementation)

- Option 1: threads share an address space (all data is sharable)
- Option 2: each thread has its own virtual address space, shared portion of address spaces maps to same physical location (like processes, described this way in book)



Shared address space HW implementation

Any processor can directly reference any memory location

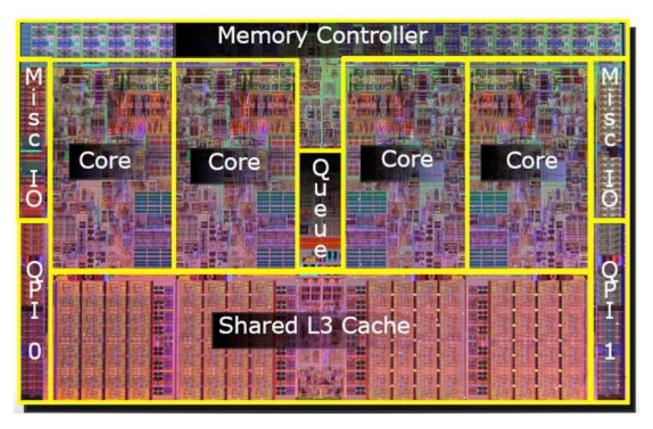


- Symmetric (shared-memory) multi-processor (SMP):
 - Uniform memory access time: cost of accessing an uncached* memory address is the same for all processors

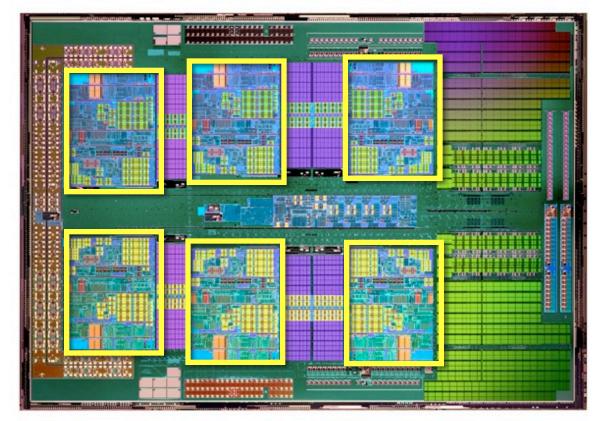
(* caching introduces non-uniform access times, but we'll talk about that later)

Shared address space architectures

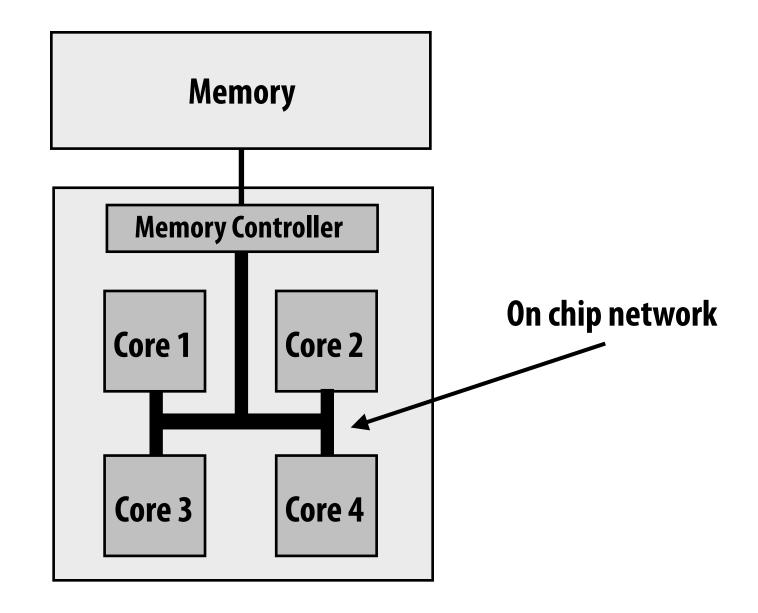
Commodity x86 examples



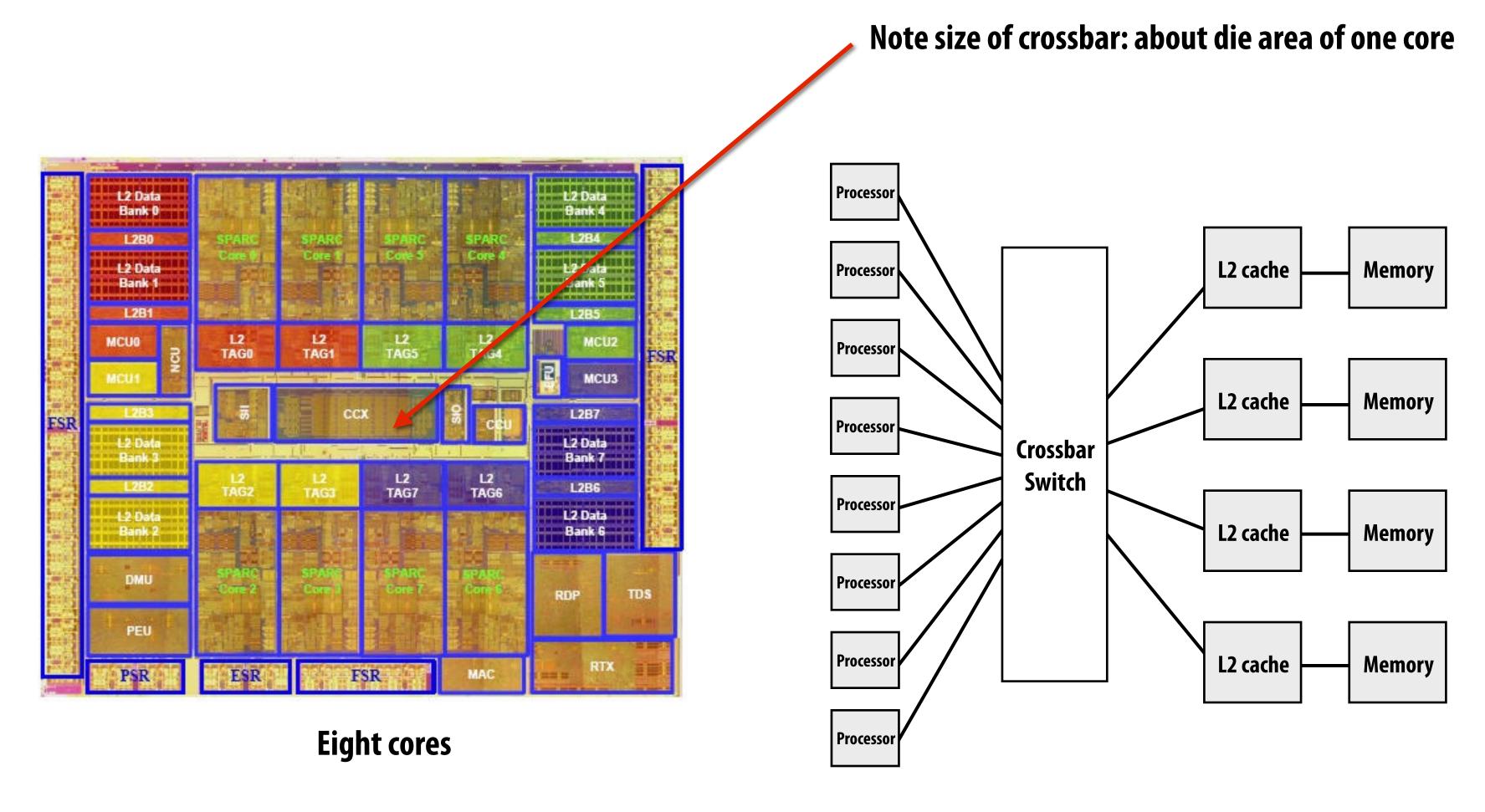
Intel Core i7 (quad core) (network is a ring)



AMD Phenom II (six core)

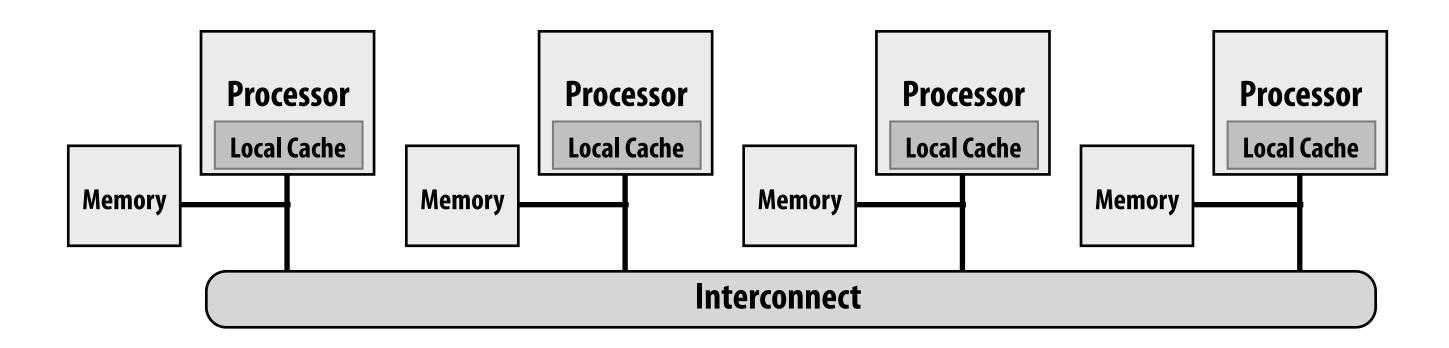


SUN Niagara 2



Non-uniform memory access (NUMA)

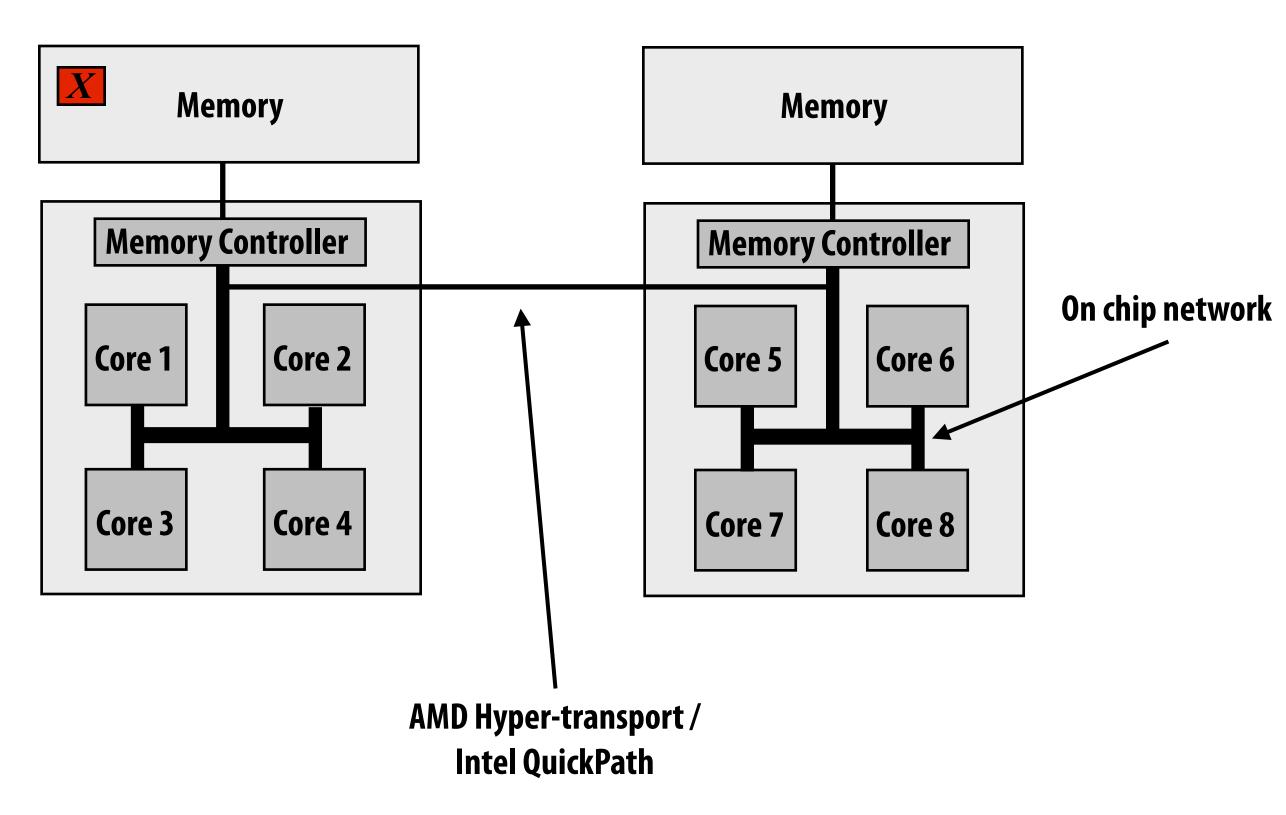
All processors can access any memory location, but cost of memory access is different for different processors



- Problem with preserving uniform access time: scalability
 - Costs are uniform, but memory is uniformly far away
- NUMA designs are more scalable
 - High bandwidth to local memory; BW scales with number of nodes if most accesses local
 - Low latency access to local emory
- Increased programmer effort: performance tuning
 - Finding, exploiting locality

Non-uniform memory access (NUMA)

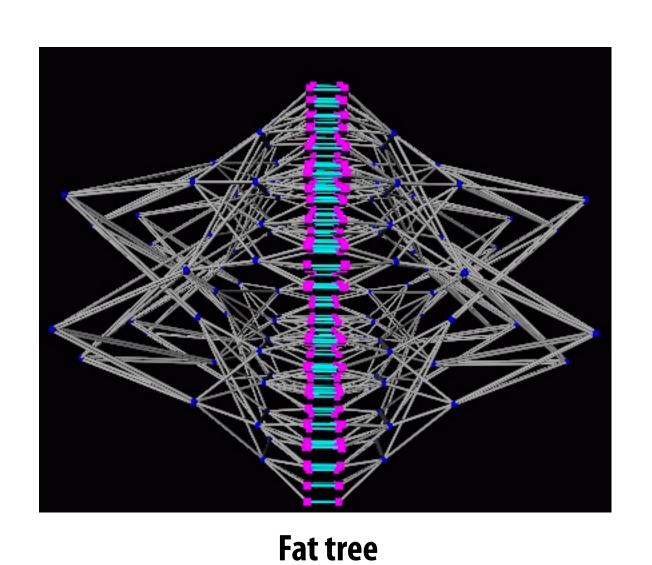
Example: latency to access location X is higher from cores 5-8 than cores 1-4

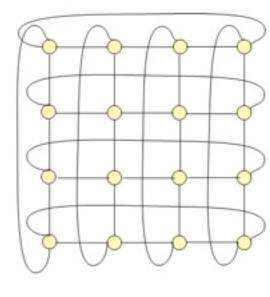


SGI Altix UV 1000 (PSC Blacklight)

- 256 blades, 2 CPUs per blade, 8 cores per CPU = 4K cores
- Single shared address space
- Interconnect
 - Fat tree of 256 CPUs (15 GB/sec links)

- 2D torus to scale up another factor





Shared address space summary

Communication abstraction

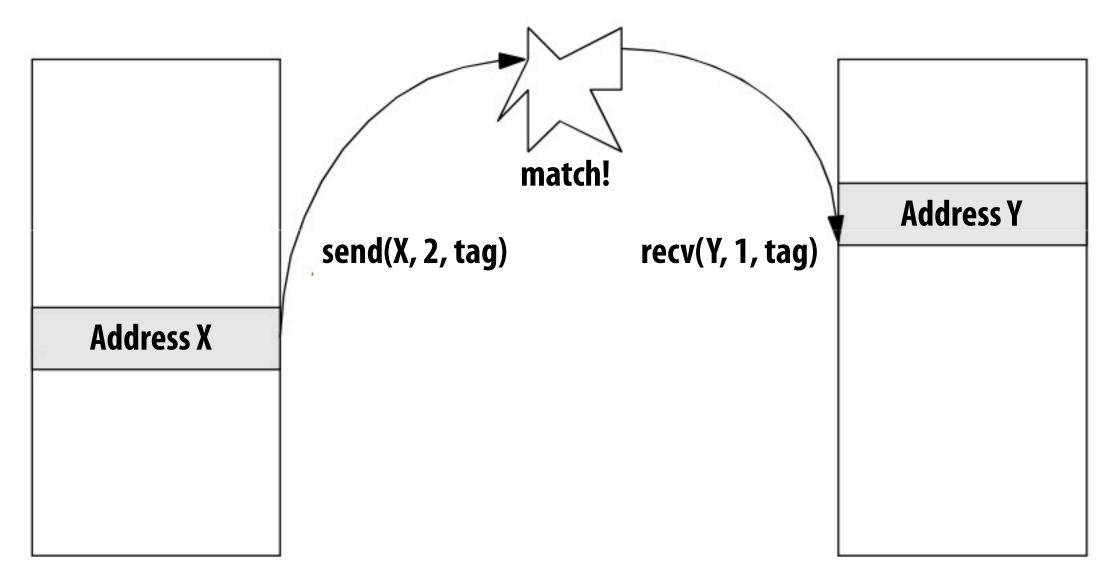
- Threads read/write shared variables
- Manipulate synchronization primitives: locks, semaphors, etc.
- Extension of uniprocessor programming
 - But NUMA implementation requires reasoning about locality for perf

Hardware support

- Any processor can load and store from any address
- NUMA designs more scalable than uniform memory access
 - Even so, costly to scale (see cost of Blacklight)

Message passing model (abstraction)

- Threads operate within independent address spaces
- Threads communicate by sending/receiving messages
 - Explicit, point-to-point
 - <u>send</u>: specifies buffer to be transmitted, recipient, optional message "tag"
 - <u>receive</u>: specifies buffer to store data, sender, and (optional) message tag
 - May be synchronous or asynchronous

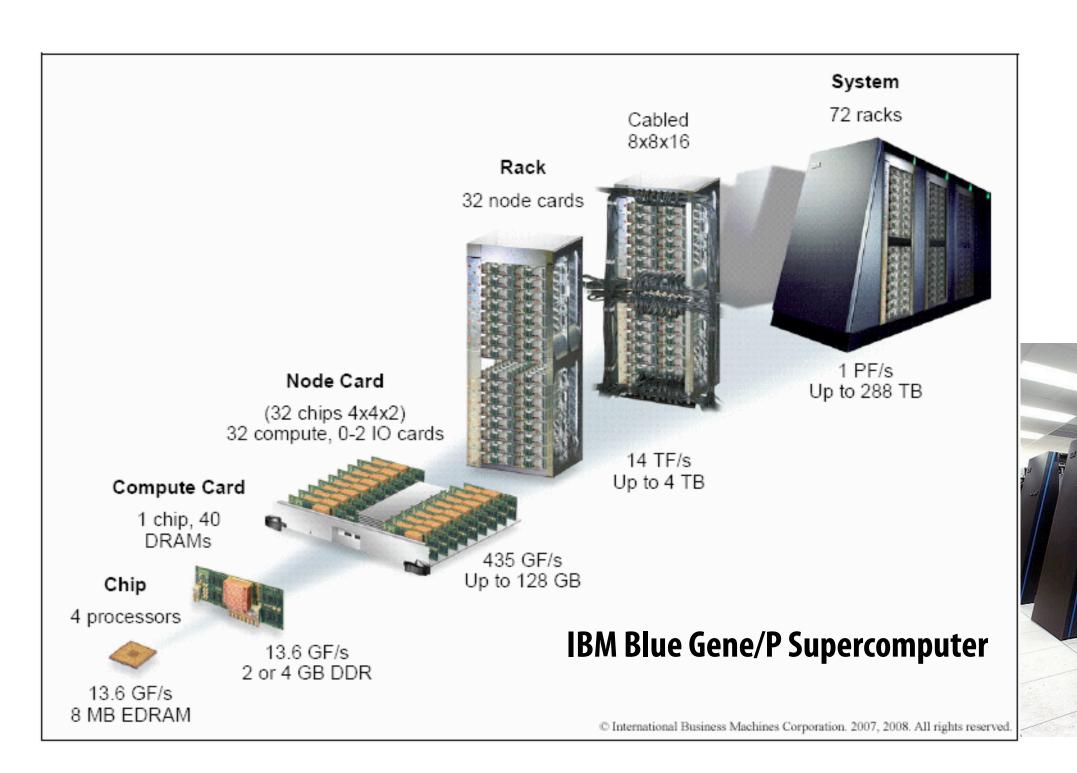


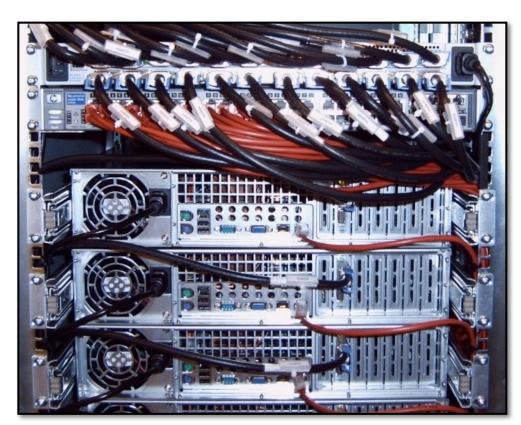
Thread 1 address space

Thread 2 address space

Message passing (implementation)

- Popular library: MPI (message passing interface)
- Challenges: buffering messages (until application initiates receive), minimizing cost of memory copies
- HW need not implement system-wide loads and stores
 - Connect complete (often commodity) systems together
 - Clusters!





No. of the last of

Cluster of workstations (Infiniband network)

Correspondence between models and machines is fuzzy

- Common to implement message passing abstractions on machines that support a shared address space in hardware
- Can implement shared address space abstraction on machines that do not support it in HW (less efficient SW solution)
 - Mark all pages with shared variables as invalid
 - Page-fault handler issues appropriate network requests
- Reminder: keep in mind what is the programming model (abstraction) and what is the HW implementation

Data-parallel model

- Rigid computation structure
- Historically: same operation on each element of an array
 - Operation ≈ instruction
 - Matched capabilities of 80's SIMD supercomputers
 - Connection Machine (CM-1, CM-2): thousands of processors, one instruction
 - And also Cray supercomputer vector processors
 - Add(A, B, n) \leftarrow this was an instruction on vectors A, B of length n
 - Matlab another good example: A + B (A, B are vectors of same length)

Today: often takes form of SPMD programming

- map(function, collection)
- Where function may be a complicated sequence of logic (e.g., a loop body)
- Application of function to each element of collection is independent
 - In pure form: no communication during map
- Synchronization is implicit at the end of the map

Data parallelism example in ISPC

```
// main C++ code:
const int N = 1024;
float* x = new float[N];
float* y = new float[N];

// initialize N elements of x here
absolute_value(N, x, y);
```

Think of loop body as function

foreach construct is a map

Collection is implicitly defined by array indexing logic

```
// ISPC code:
export void absolute_value(
    uniform int N,
    uniform float* x,
    uniform float* y)
{
    foreach (i = 0 ... N)
    {
        if (x[i] < 0)
            y[i] = -x[i];
        else
            y[i] = x[i];
    }
}</pre>
```

Data parallelism example in ISPC

```
// main C++ code:
const int N = 1024;
float* x = new float[N/2];
float* y = new float[N];

// initialize N/2 elements of x here
absolute_repeat(N/2, x, y);
```

Think of loop body as function
foreach construct is a map
Collection is implicitly defined by array indexing logic

```
// ISPC code:
export void absolute_repeat(
    uniform int N,
    uniform float* x,
    uniform float* y)
{
    foreach (i = 0 ... N)
    {
        if (x[i] < 0)
            y[2*i] = -x[i];
        else
            y[2*i] = x[i];
        y[2*i+1] = y[2*i];
    }
}</pre>
```

Also a valid program!

Takes absolute value of elements of x, repeats them twice in output vector y

Data parallelism example in ISPC

```
// main C++ code:
const int N = 1024;
float* x = new float[N];
float* y = new float[N];

// initialize N elements of x

shift_negative(N, x, y);
```

Think of loop body as function

foreach construct is a map

Collection is implicitly defined by array indexing logic

```
// ISPC code:
export void shift_negative(
    uniform int N,
    uniform float* x,
    uniform float* y)
{
    foreach (i = 0 ... N)
    {
        if (i > 1 && x[i] < 0)
            y[i-1] = x[i];
        else
            y[i] = x[i];
    }
}</pre>
```

This program is non-deterministic!

Possibility for multiple iterations of the loop body to write to same memory location

(as described, data parallel model provides no primitives for fine-grained mutual exclusion/synchronization)

Data parallelism the more formal way

Note: this is not ISPC syntax

```
// main program:
const int N = 1024;

stream<float> x(N); // define collection
stream<float> y(N); // define collection

// initialize N elements of x here

// map absolute_value onto x, y
absolute_value(x, y);
```

```
// "kernel" definition
void absolute_value(
   float x,
   float y)
{
   if (x < 0)
      y = -x;
   else
      y = x;
}</pre>
```

Data-parallelism expressed this way is sometimes referred to as <u>stream programing</u> <u>model</u>

Streams: collections of elements. Elements can be processed independently

Kernels: side-effect-free functions. Operate element-wise on elements of collections

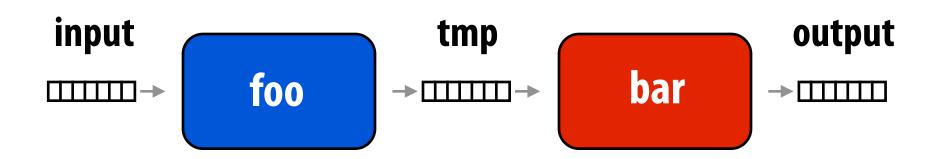
Think of kernel inputs, outputs, temporaries for each invocation as an address space

If you've ever written OpenGL shader code (e.g., 15-462), you've coded in the stream programming system

Stream programming benefits

```
// main program:
const int N = 1024;
stream<float> input(N);
stream<float> output(N);
stream<float> tmp(N);

foo(input,tmp);
bar(tmp, output);
```



Functions really are side-effect free! (cannot write a non-deterministic program)

Program data flow is known:

Allows prefetching. Inputs and outputs of each invocation are known in advance. Prefetching can be employed to hide latency.

Producer-consumer locality. Can structure code so that outputs of first function feed immediately into second function, never written to memory.

Requires sophisticated compiler analysis.

Stream programming drawbacks

```
// main program:
const int N = 1024;
stream<float> input(N/2);
stream<float> tmp(N);
stream<float> output(N);

stream_repeat(2, input, tmp);
absolute_value(tmp, output);
```

Kayvon's experience:

This is the achilles heel of all "proper" dataparallel/stream programming systems.

"I just need one more operator"...

Need library of ad-hoc operators to describe complex data flows. (see use of repeat operator at left to obtain same behavior as indexing code below)

Cross fingers and hope compiler generates code intelligently

```
// ISPC code:
export void absolute_value(
    uniform int N,
    uniform float* x,
    uniform float* y)
{
    foreach (i = 0 ... N)
    {
        if (x[i] < 0)
            y[2*i] = -x[i];
        else
            y[2*i] = x[i];
        y[2*i+1] = y[2*i];
    }
}</pre>
```

Gather/scatter:

Two key data-parallel communication primitives

```
// main program:
const int N = 1024;
stream<float> input(N);
stream<int> indices;
stream<float> tmp_input(N);
stream<float> output(N);

stream_gather(input, indices, tmp_input);
absolute_value(tmp_input, output);
```

Gather: (ISPC equivalent)

```
export void absolute_value(
    uniform float N,
    uniform float* input,
    uniform float* output,
    uniform int* indices)
{
    foreach (i = 0 ... n)
    {
       float tmp = x[indices[i]];
       if (tmp < 0)
           y[i] = -tmp;
       else
           y[i] = tmp;
    }
}</pre>
```

```
// main program:
const int N = 1024;
stream<float> input(N);
stream<int> indices;
stream<float> tmp_output(N);
stream<float> output(N);

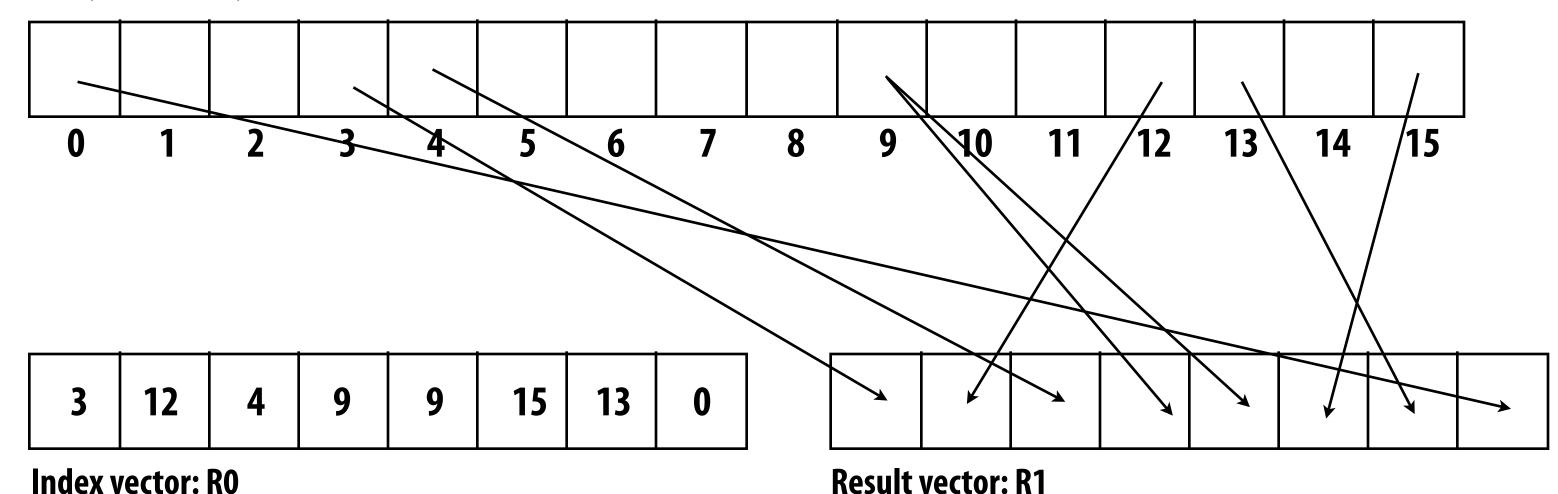
absolute_value(input, tmp_output);
stream_scatter(tmp_output, indices, output);
```

Scatter: (ISPC equivalent)

```
export void absolute_value(
    uniform float N,
    uniform float* input,
    uniform float* output,
    uniform int* indices)
{
    foreach (i = 0 ... n)
    {
        if (x[i] < 0)
            y[indices[i]] = -x[i];
        else
            y[indices[i]] = x[i];
    }
}</pre>
```

Gather operation:

gather(R1, R0, mem_base);



SSE, AVX instruction sets do not directly support SIMD gather/scatter (must implement as scalar loop)

Hardware supported gather/scatter does exist on GPUs. (still an expensive operation)

Data-parallel model summary

- Data-parallelism is about program structure
- In spirit, map a single program onto a large collection of data
 - Functional: side-effect free executions
 - No communication among invocations
- In practice that's how most programs work
- But... most popular languages do not enforce this
 - OpenCL, CUDA, ISPC, etc.
 - Choose flexibility/familiarity of imperative syntax over safety and complex compiler optimizations required for functional syntax
 - It's been their key to success (and the recent adoption of parallel programming)
 - Hear that PL folks! (lighten up!)

Three parallel programming models

Shared address space

- Communication is unstructured, implicit in loads and stores
- Natural way of programming, but can shoot yourself in the foot easily
 - Program might be correct, but not scale

Message passing

- Structured communication as messages
- Often harder to get first correct program than shared address space
- Structure often helpful in getting to <u>first correct, scalable</u> program

Data parallel

- Structure computation as a big map
- Assumes a shared address space from which to load inputs/store results, but severely limits communication within the map (preserve independent processing)
- Modern embodiments encourage, don't enforce, this structure

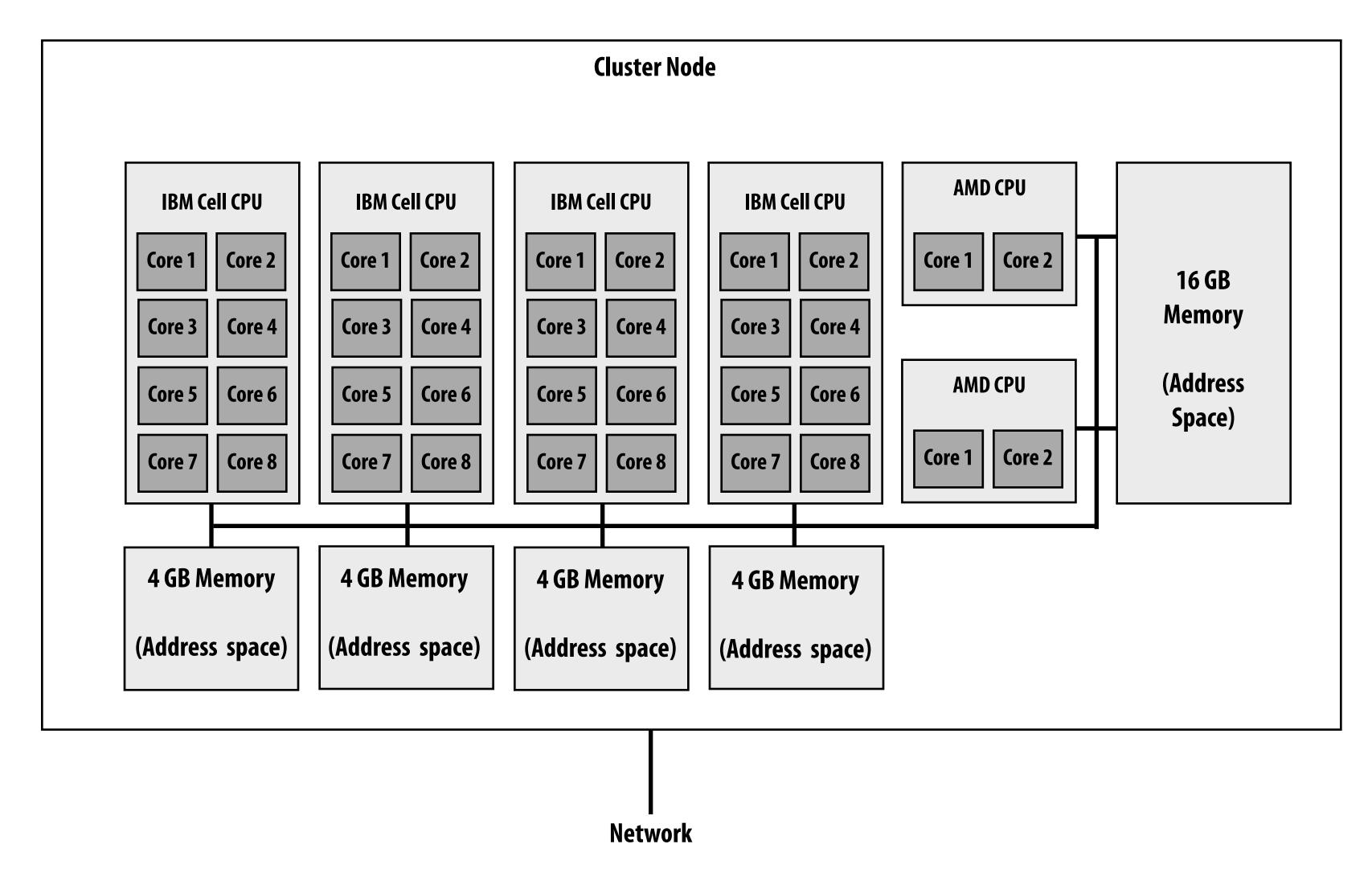
Trend: hybrid programming models

- Shared address space within a multi-core node of a cluster, message passing between nodes
 - Very, very common
 - Use convenience of shared address space where it can be implemented efficiently (within a node)
- Data-parallel programming models support synchronization primitives in kernels (CUDA, OpenCL)
 - Permits limited forms of communication

 CUDA/OpenCL use data parallel model to scale to many cores, but adopt shared-address space model for threads in a single core.

Los Alamos National Laboratory: Roadrunner

Fastest computer in the world in 2008 (no longer true) 3,240 node cluster. Heterogeneous nodes.



Summary

- Programming models provide a way to think about parallel programs. They are abstractions that admit many possible implementations.
- But restrictions imposed my models reflect realities of hardware costs of communication
 - Shared address space machines
 - Messaging passing machines
 - Usually wise to keep abstraction distance low (performance predictability). But want it high enough for flexibility/portability
- In practice, you'll need to be able to think in a variety of ways
 - Modern machines provide different types of communication at different scales
 - Different models fit the machine best at the various scales