Lecture 3:
Communication Architectures and Parallel
Programming models:

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Announcements

m Office hours

- Fatahalian: Tue/Thurs 1:30-2:30PM, GHC 7005
- Papamichael: Wed 1-2PM, HH A-312
- Mu: Mon 4-5PM, West Wing cluster

B Assignment 1 out today!
- Due:Jan 31st

- No late handin (1 week is more than enough time)

m Course discussions, message boards hosted on piazza.com
- I've heard good things

- Please go to piazza.com and enroll in 15-418

(CMU 15-418, Spring 2012)

http://www.piazza.com
http://www.piazza.com

Review: Kayvon'’s fictitious multi-core chip

HH E=H FHS =222

We talked about forms of parallel/concurrent execution.

(CMU 15-418, Spring 2012)

Finishing up from last time

(CMU 15-418, Spring 2012)

Review: thought experiment

Task: element-wise multiplication of two vectors A and B

Assume vectors contain millions of elements

Load input A[i]

Load input Bli]
Compute Ali] x Bli]
Store result into ([i]

NIl (WP X|>

A

Three memory operations (12 bytes) for every MUL
NVIDIA GTX 480 GPU can do 480 MULs per clock (1.4 GHz)
Need ~8.4 TB/sec of bhandwidth to keep functional units busy

~ 2% efficiency... but 8x faster than CPU!

(3 GHz Core i7 quad-core CPU: similar efficiency on this computation)

(CMU 15-418, Spring 2012)

Bandwidth limited!

If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Overcoming bandwidth limits are a common challenge for
application developers on throughput-optimized systems.

(CMU 15-418, Spring 2012)

Bandwidth is a critical resource

Performant parallel programs will:

B Fetch data from memory less often
- Reuse datain a thread (traditional locality optimizations)
- Share data across threads (cooperation)

B Request data less often (instead, do more math: it is “free”)
- Term:“arithmeticintensity” - ratio of math to data access

(CMU 15-418, Spring 2012)

Entire system view: CPU + discrete GPU

L1
I)
I)
" 21 GB/sec Memory
DDR3 DRAM
. L3 cache (Gigabytes)
T (8 MB)
e Je Je
I)
L2
2011 and future:
PCle x16 bus < Co-locating CPU+GPU on same chip

Multi-core CPU avoids PCle bus bottleneck

(also reduces communication latency)

8 GB/sec each direction

Ooan
Ooan
0oan
O0ao

0oao
Ooao
aoao
a0an

Execution
contexts

. L2

’ (~1 MB)

’ 177 GB/sec

Memory
DDR5 DRAM

(1-2 GB)

aoan
ooan
0oan
0oon
a0an
aoa0
aoa0
00ao

Execution
contexts L1

Multi-core GPU (CMU 15-418, Spring 2012)

Programming with ISPC
(quick tutorial for assignment 1)

ISPC

m [ntel SPMD Program Compiler (ISPC)
m SPMD: single *program™ multiple data

m http://ispc.qithub.com/

(CMU 15-418, Spring 2012)

http://ispc.github.com
http://ispc.github.com

sin(x) in ISPC

Compute sin(x) using Tailor expansion: sin(x) = x - x3/3! + x°/5! - x7/7! + ...

(++ code: main.cpp

#include “sinx_ispc.h”

int N = 1024;

int terms = 5;

float* x = new float[N];
float* result = new float[N];

// initialize X here

// execute ISPC code
sinx(N, terms, x, result);

SPMD abstraction:

Spawn “gang” of ISPC program instances
All instances run ISPC code in parallel
Upon return, all instances have completed

ISPC code: sinx.ispc

export void sinx(
uniform int N,
uniform int terms,
uniform float* x,
uniform float* result)

// assume N 7% programCount = O
for (uniform int 1i=0; i<N; i+=programCount)
{
int idx = i + programIndex;
float value = x[idx];
float numer = x[idx] * x[idx] * x[idx];
uniform int denom = 6; // 3!
uniform int sign = -1;

for (uniform int j=1; j<=terms; j++)
{
value += sign * numer / denom
numer *= x[idx] * x[idx];
denom *= (j+3) * (j+4);
sign *= -1;
}

result[i] = value;

(CMU 15-418, Spring 2012)

sin(x) in ISPC

Compute sin(x) using Tailor expansion: sin(x) = x - x3/3! + x°/5! - x7/7! + ...

(++ code: main.cpp

#include “sinx_ispc.h”
int N = 1024; Sequential execution (C code)
int terms = 5;

float* x = new float[N];
float* result = new float[N];

Call to sinx()
123456 7 8 Begin executing programCount

// initialize x here instances of sinx() (ISPCcode)
// execute ISPC code

sinx(N, terms, x, result);

SPMD abstraction: sinx() returns.

Completion of ISPC program instances.

Spawn “gang” of ISPC program instances Resume sequential execution

All instances run ISPC code in parallel
Upon return, all instances have completed Sequential execution

(Ccode)

SIMD implementation:

Number of instances in a gang is the SIMD width (or a small multiple of)
ISPC compiler generates binary (.0) with SIMD instructions

C++ code links against object as usual (CMU 15-418, Spring 2012)

sin(x) in ISPC

Interleaved assignment of elements to instances

(++ code: main.cpp

#include “sinx_ispc.h”

int N = 1024;

int terms = 5;

float* x = new float[N];
float* result = new float[N];

// initialize X here

// execute ISPC code
sinx(N, terms, x, result);

ISPC Keywords:

programCount: number of simultaneously
executing instances in the gang (uniform value)

programIndex:id of the currentinstance in the
gang. (a non-uniform value: “varying”)

uniform:Atype modifier. All instances have the
same value for this variable. Its use is purely an
optimization. Not needed for correctness.

ISPC code: sinx.ispc

export void sinx(
uniform int N,
uniform int terms,
uniform float* x,
uniform float* result)

// assumes N % programCount = ©
for (uniform int i=0@; i<N; i+=programCount)
{
int idx = i + programIndex;
float value = x[idx];
float numer = x[idx] * x[idx] * x[idx];
uniform int denom = 6; // 3!
uniform int sign = -1;

for (uniform int j=1; j<=terms; j++)
{
value += sign * numer / denom
numer *= x[idx] * x[idx];
denom *= (j+3) * (j+4);
sign *= -1;
}

result[i] = value;

(CMU 15-418, Spring 2012)

sin(x) in ISPC

Blocked assignment of elements to instances

(++ code: main.cpp ISPC code: sinx.ispc
#include “sinx_ispc.h” export void sinx(
uniform int N,
int N = 1024; uniform int terms,
int terms = 5; un%form float: X,
float* x = new float[N]; { uniform float* result)
float* result = new float[N];

// assume N 7% programCount = ©

uniform int count = N / programCount;

int start = programIndex * count;

for (uniform int 1i=0; i<count; i++)

// execute ISPC code {

sinx(N, terms, x, result); int idx = start + i;

float value = x[idx];

float numer = x[idx] * x[idx] * x[idx];
uniform int denom = 6; // 3!

uniform int sign = -1;

// initialize x here

for (uniform int j=1; j<=terms; j++)
{
value += sign * numer / denom
numer *= x[idx] * x[idx];
denom *= (j+3) * (j+4);
sign *= -1;
}

result[i] = value;

(CMU 15-418, Spring 2012)

sin(x) in ISPC

Compute sin(x) using tailor expansion: sin(x) = x - x3/3! + x°/5! - x7/7! + ...

(++ code: main.cpp ISPC code: sinx.ispc
#include “sinx_ispc.h” export void sinx(
uniform int N,
int N = 1024; uniform int terms,
int terms = 5; uniform float* x,
float* x = new float[N]; uniform float* result)

float* result

new float[N];
foreach (i =0 ... N)
// initialize x here

float value x[1];

// execute ISPC code float numer = x[i] * x[i] * x[1];
sinx(N, terms, x, result); uniform int denom = 6; // 3!
uniform int sign = -1;
. for (uniform int j=1; j<=terms; j++)
foreach: key language construct . ’ ’

value += sign * numer / denom
numer *= x[i] * x[i];

Declares parallel loop iterations denom *= (j+3) * (j+4);

ISPC assigns iterations to program instances in gang sign *= -1;
}
. 1t[1i] = value;
(ISPCimplementation will perform static assignment,) Q= value
but nothing in the abstraction prevents a dynamic }

assignment)

(CMU 15-418, Spring 2012)

ISPC: abstraction vs. implementation

® Single program, multiple data (SPMD) programming model
= This is the programming abstraction

® Single instruction, multiple data (SIMD) implementation

- Compiler emits vector instructions
- Handles mapping of conditional control flow to vector instructions

export uniform float sumalli(export uniform float sumall2(

uniform int N, uniform int N,
uniform float* x) uniform float* x)
m Semantics of ISPCcan be tricky ¢ ;.
uniform float sum = 0.0f; uniform float sum;
. . f h (i=0...N float tial = 0.0f;
- SPMD abstraction + uniform values ke) B, .
(allows implementation details to sum += x[i]; {
. . tial += i];
peak through abstraction a bit) } i -
_ ? return sum;
What dOES Sumalll dO. } // from ISPC math library
sum = reduceAdd(partial);
- Whatdoes sumall2 do?
- Which one is correct? } T

(CMU 15-418, Spring 2012)

Today

m Three parallel programming models

- Abstractions presented to the programmer

= Influence how programmers think when writing programs

B Three machine architectures

- Abstraction presented by the HW to low-level software

- Typically reflect implementation

m Focus on communication and cooperation

m Reading: Textbook section 1.2

(CMU 15-418, Spring 2012)

System layers: interface, implementation, interface, ...

Parallel Applications

Abstractions for desqibing Abstractions fo.r de.scrlbmg : “Programming model”
: parallel computation communication : (way of thinking about things)
Language or API

primitives/mechanisms
Compiler and/or runtime

System call API

Operating system support

Hardware Architecture
(HW/SW boundary)

Micro-architecture (HW implementation)

Blue italic text: concept
Red italic text: system abstraction

Black text: system implementation
(CMU 15-418, Spring 2012)

Example: expressing parallelism (pthreads)

Parallel Applications

Abstraction for describing parallel computation: thread Programming
: model

pthread_create()

'

pthread library

'

System call API
0S support: kernel thread management

Xx86-64
modern multi-core CPU

(CMU 15-418, Spring 2012)

Example: expressing parallelism (ISP()

Parallel Applications

Abstractions for describing parallel computation:
1. Specifying simultaneous execution (imperative: true parallelism)
2. Specifying independent work (declarative: potentially parallel)

Programming
model

—
:

ISPC language (call ISPC function, foreach construct)

v
ISPC compiler

System call API
0S support

x86-64 (including AVX vector instructions)
single-core of CPU

Note: ISPC has additional language primitives for multi-core execution (not discussed here)
(CMU 15-418, Spring 2012)

Three models of communication

1. Shared address space
2. Message passing

3. Data parallel

(CMU 15-418, Spring 2012)

Shared address space model (abstraction)

B Threads communicate by:

- Reading/writing to shared variables
- Interprocessor communication is implicit in memory operations

- Thread 1 stores to X. Thread 2 reads X (observes update)

- Manipulating synchronization primitives
- e.g., mutual exclusion using locks

m Natural extension of sequential programming model
- Infact, all our discussions have assumed a shared address space so far

m Think: shared variables are like a big bulletin board
- Any thread can read or write

(CMU 15-418, Spring 2012)

Shared address space (implementation)

B (Option 1: threads share an address space (all data is sharable)

B (Option 2: each thread has its own virtual address space, shared portion of
address spaces maps to same physical location
(like processes, described this way in book)

Physical mapping

. P, private
Virtual address spaces I
, v/
Load P, , '
! ﬂ Common physical
2 addresses
P1 %
PO = //
7/ =
Store
P> private
Shared portion
of address space //
Py private
Private portion e |
of address space
[Po private

(CMU 15-418, Spring 2012)

Shared address space HW implementation

Any processor can directly reference any memory location

/| n * .
Dance-hall” organization Interconnect examples
Processor| |Processor| |Processor| |Processor
Buc S
Processor Processor Processor Processor
Local Cache Local Cache Local Cache Local Cache Memory | | Memory
(Interconnect)
Crossbar
| | et Processor| |Processor| |Processor| |Processor
F \[J/
Memory | /0 rocessor
Processor M
Processor /[_‘\
Memory Memory Memory Memory Memory Memory
Multi-stage network

B Symmetric (shared-memory) multi-processor (SMP):

— Uniform memory access time: cost of accessing an uncached* memory address is the same
for all processors

(* caching introduces non-uniform access times, but we’ll talk about that later)
(CMU 15-418, Spring 2012)

Shared address space architectures
Commodity x86 examples

T e T e Memory
S R T T R I
1 Shared L3 Cache &+
Memory Controller

Intel Core i7 (quad core)
(network is a ring) On chip network

Core 1 Core 2 /

/

' ' e B Core3 Core 4

el B
’ " .’f;’f.;' H
" (MM SR)

AMD Phenom Il (six core)

(CMU 15-418, Spring 2012)

lagara 2

Note size of crossbar: about die area of one core

e Processor
i::n‘l . : = B . . : ! : y
K & % SPARC = & SPARC SPARC o, ~ SPARC &
%.‘:,". Core @ Corz % Coe S Core &7 -ttt
st - Processor L2 cache (—— Memory
Sl 2
Buay o O
: 12 $12” 4 4
TAG1 " TAGS S LT o FoR Processor

I e] g MCu3

o s & J=!
{ B8 " Processor

L2 cache —— Memory

Crosshar
Switch

l—2 l

Processor

TAGS
L2 cache —— Memory

SPARC Wy . SPARE Wl m SPARC :;SPn.iit;,,, -
E - CoreZ2 1 & Coregld 1 i Core T4 [T Corgf- 8 Processor
. - - . Bn :

N\ /2
AN

Processor

L2 cache —— Memory

Eig ht cores Processor

(CMU 15-418, Spring 2012)

Non-uniform memory access (NUMA)

All processors can access any memory location, but cost of memory access is
different for different processors

Processor Processor Processor Processor
Local Cache Local Cache Local Cache Local Cache
Memory ﬁ Memory ﬁ Memory ﬁ Memory ﬁ
(Interconnect)

B Problem with preserving uniform access time: scalability
— (osts are uniform, but memory is uniformly far away

® NUMA designs are more scalable

— High bandwidth to local memory; BW scales with number of nodes if most accesses local
— Low latency access to local emory

B Increased programmer effort: performance tuning
— Finding, exploiting locality

(CMU 15-418, Spring 2012)

Non-uniform memory access (NUMA)

Example: latency to access location X is higher from cores 5-8 than cores 1-4

Example: modern dual-socket configuration

X7 Memory Memory

Memory Controller Memory Controller

On chip network

/

Core 3 Core 4 Core?7 Core 8

|
AMD Hyper-transport /

Intel QuickPath

(CMU 15-418, Spring 2012)

SGI Altix UV 1000 (PSC Blacklight)

256 blades, 2 CPUs per blade, 8 cores per CPU = 4K cores
B Single shared address space

B |[nterconnect
- Fat tree of 256 CPUs (15 GB/sec links)

= 2D torus to scale up another factorof ? o

| NULEE VI

\\ ‘~.>\\
—3 O '\"
-~ . \ :
- = N
2 \\ .
T s
- 3
= \ y,
N,
IS
— 7~ o
= %N ;
Y
"l
7 ! N

=
—_—
—_—
S —
—
- —
g
—_——
—_—
[——
—
—_—

Fat tree 2D torus
(CMU 15-418, Spring 2012)

Shared address space summary

B Communication abstraction

- Threads read/write shared variables
- Manipulate synchronization primitives: locks, semaphors, etc.
- Extension of uniprocessor programming

- But NUMA implementation requires reasoning about locality for perf

m Hardware support

- Any processor can load and store from any address

- NUMA designs more scalable than uniform memory access

- Even so, costly to scale (see cost of Blacklight)

(CMU 15-418, Spring 2012)

Message passing model (abstraction)

B Threads operate within independent address spaces

B Threads communicate by sending/receiving messages
- Explicit, point-to-point
- send: specifies buffer to be transmitted, recipient, optional message “tag”
- receive: specifies buffer to store data, sender, and (optional) message tag

- May be synchronous or asynchronous

/\/
match!
Address Y
send(X, 2, tag) recv(Y, 1, tag)
Address X
Thread 1 address space Thread 2 address space

(CMU 15-418, Spring 2012)

Message passing (implementation)

® Popular library: MPI (message passing interface)

B (Challenges: buffering messages (until application initiates receive), minimizing cost of

memory copies

B HW need not implement system-wide loads and stores
- Connect complete (often commodity) systems together

= (lusters!

Node Card

(32 chips 4x4x2)
32 compute, 0-2 10 cards

Compute Card

1 chip, 40 [=%
DRA"V’IS

Chip aﬁ
4 processors i.?m

& 13.6 GF/s

2or4 GB DDR
13.6 GF/s
8 MB EDRAM

System

Cabled 72 racks
8x8x16

Rack

32 node cards

i
i EANINXAT

HABEXIS. Bk
FEINEER 3

1 PFls
Up to 288 TB

Up to 128 GB

IBM Blue Gene/P Supercomputer

O International Business Machines Corporation. 2007, 2008. All rights reserved

-4 0
’Lﬁ!‘~m;'==ﬁr-a {
F 4 .

A

T T e T Ty

Cluster of workstations

(Infiniband network)

(CMU 15-418, Spring 2012)

Correspondence hetween models and
machines is fuzzy

m Common to implement message passing abstractions on
machines that support a shared address space in hardware

® (animplement shared address space abstraction on machines
that do not support it in HW (less efficient SW solution)

- Mark all pages with shared variables as invalid

- Page-fault handler issues appropriate network requests

m Reminder: keep in mind what is the programming model
(abstraction) and what is the HW implementation

(CMU 15-418, Spring 2012)

Data-parallel model

m Rigid computation structure

m Historically: same operation on each element of an array

= Operation = instruction

- Matched capabilities of 80’s SIMD supercomputers
- Connection Machine (C(M-1, (M-2): thousands of processors, one instruction
- And also Cray supercomputer vector processors

- Add(A, B, n) <«— thiswasan instruction on vectorsA, B of length n
- Matlab another good example: A+ B (A, B are vectors of same length)

m Today: often takes form of SPMD programming

- map(function, collection)
- Where function may be a complicated sequence of logic (e.g., a loop body)

- Application of function to each element of collection is independent
= In pure form: no communication during map
- Synchronization is implicit at the end of the map (CMU 15-418, Spring 2012)

Data parallelism example in ISPC

// main C++ code:
const int N = 1024;

float* x = new float[N]; Think of loop body as function
float* y = new float[N];

foreach construct is a map
it 2< Ni clenents of X here Collection is implicitly defined by array indexing logic

absolute value(N, x, y);

// ISPC code:

export void absolute value(
uniform int N,
uniform float* x,
uniform float* y)

{
foreach (i =0 ... N)
{ if (x[1i] < 0)
y[i] = -x[1i];
else
y[i] = x[1];
}
}

(CMU 15-418, Spring 2012)

Data parallelism example in ISPC

// main C++ code:
const int N = 1024;

float* x = new float[N/2]; Think of loop body as function
float* y = new float[N];

foreach construct is a map

(R L C AN/ 2 elements of x here Collection is implicitly defined by array indexing logic

absolute repeat(N/2, X, y);

// ISPC code: . I
export void absolute_repeat(AISO a Valld program.
uniform int N,
uniform float* x,
if float*
{ T Takes absolute value of elements of x,
Y repeats them twice in output vectory
if (x[1i] < 0)
y[2*1i] = -x[1i];
else
y[2*i] = x[1];
y[2¥1+1] = y[2*1];
}

(CMU 15-418, Spring 2012)

Data parallelism example in ISPC

// main C++ code:
const int N = 1024;

float* x = new float[N]; Think of loop body as function
float* y = new float[N];

foreach construct is a map

EE S 1ZEiN elements of x Collection is implicitly defined by array indexing logic

shift negative(N, x, y);

// ISPC code:

export void shift negative(
uniform int N,
uniform float* x,

This program is non-deterministic!

{ AT G ECER S Possibility for multiple iterations of the loop
foreach (i = @ ... N) body to write to same memory location
{
if (1 > 1 && x[i] < 0) o o
yli-1] = x[i]; (as described, data parallel model provides
EISF'] " no primitives for fine-grained mutual
1] = X[1]; o o o
T exclusion/synchronization)
}

(CMU 15-418, Spring 2012)

Data parallelism the more formal way

Note: this is not ISPC syntax

// main program:
const int N = 1024;

stream<float> x(N); // define collection
stream<float> y(N); // define collection

// initialize N elements of x here

// map absolute value onto x, y
absolute_value(x, y);

// “kernel” definition
void absolute_value(
float x,
float y)

{
if (x < 9)

y = =X,
else

y = %

Data-parallelism expressed this way is
sometimes referred to as stream programing
model

Streams: collections of elements. Elements
can be processed independently

Kernels: side-effect-free functions. Operate
element-wise on elements of collections

Think of kernel inputs, outputs, temporaries
for each invocation as an address space

If you've ever written OpenGL shader code
(e.g., 15-462), you've coded in the stream
programming system

(CMU 15-418, Spring 2012)

Stream programming benefits

// main program:

const int N = 1024;
stream<float> input(N);
stream<float> output(N);
stream<float> tmp(N);

foo(input,tmp);
bar(tmp, output);

input tmp

output

Functions really are side-effect free!
(cannot write a non-deterministic program)

Program data flow is known:

Allows prefetching. Inputs and outputs of each
invocation are known in advance. Prefetching
can be employed to hide latency.
Producer-consumer locality. Can structure code
so that outputs of first function feed
immediately into second function, never

written to memory.

Requires sophisticated compiler analysis.

(CMU 15-418, Spring 2012)

Stream programming drawbacks

// main program: Need library of ad-hoc operators to describe
const i1nt N = 1024;

streamcfloats input(N/2); complex data flows. (see use of repeat
stream<float> tmp(N); operator at left to obtain same behavior as

stream<float> output(N); . .
indexing code below)

stream_repeat(2, input, tmp);
absolute_value(tmp, output);

Cross fingers and hope compiler generates code
intelligently

// ISPC code:
export void absolute value(

Kayvon’s experience: uniform int N,

uniform float* x,
uniform float* y)

This is the achilles heel of all “proper” data- {
o foreach (1 = 0 ... N)
parallel/stream programming systems. ‘
if (x[i] < 0)
auy ° 1/ y[z*i] - 'X[i]3
| just need one more operator®... else
y[2*i] = x[i];
y[2*i+1] = y[2*i];
}
}

(CMU 15-418, Spring 2012)

Gather/scatter:
Two key data-parallel communication primitives

// main program: // main program:
const int N = 1024; const int N = 1024;
stream<float> input(N); stream<float> input(N);
stream<int> indices; stream<int> indices;
stream<float> tmp_input(N); stream<float> tmp output(N);
stream<float> output(N); stream<float> output(N);
stream_gather(input, indices, tmp_input); absolute value(input, tmp_output);
absolute _value(tmp_input, output); stream_scatter(tmp output, indices, output);
Gather: (ISPC equivalent) Scatter: (ISPCequivalent)
export void absolute_value(export void absolute _value(

uniform float N, uniform float N,

uniform float* input, uniform float* input,

uniform float* output, uniform float* output,

uniform int* indices) uniform int* indices)
{ foreach (1 =0 ... n) { foreach (1 =0 ... n)

{ float tmp = x[indices[i]]; { if (x[1i] < 9)

if (tmp < 0) y[indices[i]] = -x[1i];
y[i] = -tmp; else
else y[indices[i]] = x[1i];
y[i] = tmp; }

} }

}

(CMU 15-418, Spring 2012)

Gather operation:

gather(R1, RO, mem_base);

Array in memory: base address = mem_base

—~ ~L \\ / 1\ /

0 1 2 5 6 7/ 8 9 0O 11 /12 13\ 14 /15

3 (12| 49| 9] 15/13]0 ~~ ~ | \ Nl
Index vector: RO Result vector: R1

SSE, AVX instruction sets do not directly support SIMD gather/scatter
(must implement as scalar loop)

Hardware supported gather/scatter does exist on GPUs.
(still an expensive operation)

(CMU 15-418, Spring 2012)

Data-parallel model summary

m Data-parallelism is about program structure
m [n spirit, map a single program onto a large collection of data

- Functional; side-effect free executions

- No communication among invocations

m |n practice that’s how most programs work

m But... most popular languages do not enforce this
- OpenCL, CUDA, ISPC, etc.

- Choose flexibility/familiarity of imperative syntax over safety and complex
compiler optimizations required for functional syntax

- It's been their key to success (and the recent adoption of parallel programming)
= Hear that PL folks! (lighten up!)

(CMU 15-418, Spring 2012)

Three parallel programming models

m Shared address space

- Communication is unstructured, implicit in loads and stores
- Natural way of programming, but can shoot yourself in the foot easily
- Program might be correct, but not scale

B Message passing
- Structured communication as messages

- Often harder to get first correct program than shared address space
- Structure often helpful in getting to first correct, scalable program

m Data parallel

- Structure computation as a big map
- Assumes a shared address space from which to load inputs/store results, but

severely limits communication within the map (preserve independent
processing)

- Modern embodiments encourage, don’t enforce, this structure

(CMU 15-418, Spring 2012)

Trend: hybrid programming models

m Shared address space within a multi-core node of a cluster,

message passing hetween nodes

- Very, very common
- Use convenience of shared address space where it can be implemented
efficiently (within a node)

m Data-parallel programming models support synchronization
primitives in kernels (CUDA, OpenCL)

- Permits limited forms of communication

m CUDA/OpenCL use data parallel model to scale to many cores, but
adopt shared-address space model for threads in a single core.

(CMU 15-418, Spring 2012)

Los Alamos National Laboratory: Roadrunner

Fastest computer in the world in 2008 (no longer true)
3,240 node cluster. Heterogeneous nodes.

Cluster Node

IBM Cell CPU IBM Cell CPU IBM Cell CPU IBM Cell CPU AMD CPU
Core1 || Core?2 Core1 || Core?2 Core1 || Core?2 Core1 || Core?2 Core1 || Core?2
16 GB
Core3 | | Core 4 Core3 | | Core4 Core3 | | Core4 Core3 | | Core 4 Memory
Core5 || Core 6 Core5 | | Core 6 Core5 | | Core 6 Core5 | | Core 6 AMD CPU (Address
Space)
Core7 | | Core 8 Core7 | | Core 8 Core7 | | Core8 Core7 | | Core8 Core1 | | Core2

4 GB Memory

(Address space)

4 GB Memory

(Address space)

4 GB Memory

(Address space)

4 GB Memory

(Address space)

Network

(CMU 15-418, Spring 2012)

Summary

®m Programming models provide a way to think about parallel
programs. They are abstractions that admit many possible
implementations.

B But restrictions imposed my models reflect realities of

hardware costs of communication

- Shared address space machines

- Messaging passing machines

- Usually wise to keep abstraction distance low (performance predictability). But
want it high enough for flexibility/portability

B |npractice, you'll need to be able to think in a variety of ways

- Modern machines provide different types of communication at different scales
- Different models fit the machine best at the various scales

(CMU 15-418, Spring 2012)

