
Page 1

Fundamental Design Issues
for Parallel Architecturefor Parallel Architecture

Todd C. Mowry
CS 418

January 13 2011January 13, 2011

Understanding Parallel Architecture

Traditional taxonomies not very useful
Programming models not enough, nor hardware Programming models not enough, nor hardware
structures
• Same one can be supported by radically different architectures

Architectural distinctions that affect software
• Compilers, libraries, programs

Design of user/system and hardware/software interface
• Constrained from above by progr. models and below by technology

CS 418– 2 –

y p g y gy

Guiding principles provided by layers
• What primitives are provided at communication abstraction
• How programming models map to these
• How they are mapped to hardware

Fundamental Design Issues

At any layer, interface (contract) aspect and performance aspects

• Naming: How are logically shared data and/or processes referenced?Nam ng How ar og ca y shar ata an /or proc ss s r f r nc ?

• Operations: What operations are provided on these data

• Ordering: How are accesses to data ordered and coordinated?

• Replication: How are data replicated to reduce communication?

• Communication Cost: Latency, bandwidth, overhead, occupancy

Understand at programming model first, since that sets requirements

CS 418– 3 –

Understand at programming model first, since that sets requirements

Other issues:
• Node Granularity: How to split between processors and memory?
• Heterogeneity: Are all processors equally powerful?

Sequential Programming Model

Contract
• Naming: Can name any variable in virtual address space

– Hardware (and perhaps compilers) does translation to physical
addresses

• Operations: Loads and Stores
• Ordering: Sequential program order

Performance
• Rely on dependences on single location (mostly): dependence order

CS 418– 4 –

• Rely on dependences on single location (mostly): dependence order
• Compilers and hardware violate other orders without getting caught
• Compiler: reordering and register allocation
• Hardware: out of order, pipeline bypassing, write buffers
• Transparent replication in caches

Page 2

Shared Address Space
Programming Model

Naming:
• Any process can name any variable in shared space

Operations:
• Loads and stores, plus those needed for ordering

Simplest Ordering Model:
• Within a process/thread: sequential program order
• Across threads: some interleaving (as in time-sharing)

CS 418– 5 –

g (g)
• Additional orders through synchronization
• Again, compilers/hardware can violate orders without getting caught

– Different, more subtle ordering models also possible (discussed later)

Synchronization

Mutual exclusion (locks)
• Ensure certain operations on certain data can be performed by

l only one process at a time
• Analogy: like a room that only one person can enter at a time
• No ordering guarantees

Event synchronization
• Ordering of events to preserve dependences

– e.g. producer —> consumer of data

CS 418– 6 –

• 3 main types:
– point-to-point
– global
– group

Message Passing Programming Model
Naming: Processes can name private data directly.

• No shared address space

Operations: Explicit communication via send and receive
• Send transfers data from private address space to another process
• Receive copies data from process to private address space
• Must be able to name processes

Ordering:
• Program order within a process

S d d i id h b

CS 418– 7 –

• Send and receive can provide pt-to-pt synch between processes
• Mutual exclusion inherent

Can construct global address space:
• Process number + address within process address space
• But no direct operations on these names

Design Issues Apply at All Layers

Programming model’s position provides constraints/goals for system

In fact, each interface between layers supports or takes a position In fact, each interface between layers supports or takes a position
on:
• Naming model
• Set of operations on names
• Ordering model
• Replication
• Communication performance

CS 418– 8 –

Any set of positions can be mapped to any other by software

Let’s see issues across layers:
• How lower layers can support contracts of programming models
• Performance issues

Page 3

Naming and Operations
Naming and operations in programming model can be directly supported by

lower levels, or translated by compiler, libraries or OS

E l Sh d i l dd i i d lExample: Shared virtual address space in programming model

1. Hardware interface supports shared physical address space
• Direct support by hardware through v-to-p mappings, no software layers

2. Hardware supports independent physical address spaces
• Can provide SAS through OS, so in system/user interface

– v-to-p mappings only for data that are local
t d t ss s i f lts; b ht i i f lt h dl s

CS 418– 9 –

– remote data accesses incur page faults; brought in via page fault handlers
– same programming model, different hardware requirements and cost model

• Or through compilers or runtime, so above sys/user interface
– shared objects, instrumentation of shared accesses, compiler support

Naming and Operations (Cont)
Example: Implementing Message Passing
1. Direct support at hardware interface

• But match and buffering benefit from more flexibility• But match and buffering benefit from more flexibility
2. Support at system/user interface or above in software (almost

always)
• Hardware interface provides basic data transport (well suited)
• Send/receive built in software for flexibility (protection, buffering)
• Choices at user/system interface:

– OS each time: expensive
– OS sets up once/infrequently then little software involvement each

CS 418– 10 –

– OS sets up once/infrequently, then little software involvement each
time

• Or lower interfaces provide SAS, and send/receive built on top with
buffers and loads/stores

Need to examine the issues and tradeoffs at every layer
• Frequencies and types of operations, costs

Ordering

Message passing: no assumptions on orders across
processes except those imposed by send/receive pairs

SAS: How processes see the order of other processes’
references defines semantics of SAS
• Ordering very important and subtle
• Uniprocessors play tricks with orders to gain parallelism or locality
• These are more important in multiprocessors
• Need to understand which old tricks are valid and learn new ones

CS 418– 11 –

• Need to understand which old tricks are valid, and learn new ones
• How programs behave, what they rely on, and hardware implications

Replication

Very important for reducing data transfer/communication
Again depends on naming modelAgain, depends on naming model
Uniprocessor: caches do it automatically

• Reduce communication with memory

Message Passing naming model at an interface
• A receive replicates, giving a new name; subsequently use new name
• Replication is explicit in software above that interface

SAS naming model at an interface

CS 418– 12 –

SAS naming model at an interface
• A load brings in data transparently, so can replicate transparently
• Hardware caches do this: e.g., in shared physical address space
• OS can do it at page level in shared virtual address space, or objects
• No explicit renaming, many copies for same name: coherence problem

– in uniprocessors, “coherence” of copies is natural in memory hierarchy

Page 4

Communication Performance
Performance characteristics determine usage of
operations at a layer
• Programmer compilers etc make choices based on thisProgrammer, compilers etc make choices based on this

Fundamentally, three characteristics:
• Latency: time taken for an operation
• Bandwidth: rate of performing operations
• Cost: impact on execution time of program

If processor does one thing at a time: bandwidth 1/latency
• But actually more complex in modern systems

CS 418– 13 –

y p y

Characteristics apply to overall operations, as well as
individual components of a system, however small

We will focus on communication or data transfer across
nodes

Communication Cost Model

Communication Time per Message
= Overhead + Assist Occupancy + Network Delay + Size/Bandwidth +
C iContention

= ov + oc + l + n/B + Tc

Overhead and assist occupancy may be f(n) or not

Each component along the way has occupancy and delay
• Overall delay is sum of delays

CS 418– 14 –

y y
• Overall occupancy (1/bandwidth) is biggest of occupancies

Comm Cost = frequency * (Comm time - overlap)

General model for data transfer: applies to cache
misses too

Summary of Design Issues
Functional and performance issues apply at all layers

Functional: Naming, operations and orderingFunctional Naming, operations and ordering

Performance: Organization, latency, bandwidth,
overhead, occupancy

Replication and communication are deeply related
• Management depends on naming model

G l f hi d i i f d

CS 418– 15 –

Goal of architects: design against frequency and type
of operations that occur at communication
abstraction, constrained by tradeoffs from above or
below
• Hardware/software tradeoffs

Recap
Parallel architecture is now mainstream
Exotic designs have contributed much, but given way to
Parallel architecture is now mainstream
Exotic designs have contributed much, but given way to
convergence
• Push of technology, cost and application performance
• Basic processor-memory architecture is the same
• Key architectural issue is in communication architecture

Fundamental design issues:
• Functional: naming, operations, ordering
• Performance: organization replication performance characteristics

convergence
• Push of technology, cost and application performance
• Basic processor-memory architecture is the same
• Key architectural issue is in communication architecture

Fundamental design issues:
• Functional: naming, operations, ordering
• Performance: organization replication performance characteristics

CS 418– 16 –

Performance: organization, replication, performance characteristics

Design decisions driven by workload-driven evaluation
• Integral part of the engineering focus

Performance: organization, replication, performance characteristics

Design decisions driven by workload-driven evaluation
• Integral part of the engineering focus

