
Page 1

Synchronization

Todd C. Mowryy
CS418

March 3, 2011

TopicsTopics
• Locks
• Barriers
• Hardware primitives

Types of Synchronization

Mutual Exclusion
• LocksLocks

Event Synchronization
• Global or group-based (barriers)
• Point-to-point

CS418– 2 –

Busy Waiting vs. Blocking
Busy-waiting is preferable when:

• scheduling overhead is larger than expected wait time
• processor resources are not needed for other tasks
• schedule-based blocking is inappropriate

– e.g., in OS kernel

CS418– 3 –

A Simple Lock
lock: ld register, location

cmp register, #0
b l kbnz lock
st location, #1
ret

unlock: st location, #0
ret

CS418– 4 –

Page 2

Need Atomic Primitive!

Test&Set
SwapSwap
Fetch&Op

• Fetch&Incr, Fetch&Decr

Compare&Swap

CS418– 5 –

Test&Set based lock
lock: t&s register, location

bnz lock
ret

unlock: st location, #0
ret

CS418– 6 –

T&S Lock Performance
Code: lock; delay(c); unlock;
Same total no. of lock calls as p increases; measure time per transfer


















































Ti
m

e
(

s)

10

12

14

16

18

20
 Test&set, c = 0
 Test&set, exponential backoff, c = 3.64
 Test&set, exponential backoff, c = 0
 Ideal

CS418– 7 –





















  
















Number of processors
11 13 15

0

2

4

6

8

9753

Test and Test and Set

A: while (lock != free);
if (test&set(lock) == free) {if (test&set(lock) == free) {

critical section;
}
else goto A;

CS418– 8 –

(+) spinning happens in cache
(-) can still generate a lot of traffic when
many processors go to do test&set

Page 3

Test and Set with Backoff
Upon failure, delay for a while before retrying

• either constant delay or exponential backoff

Tradeoffs:
(+) much less network traffic
(-) exponential backoff can cause starvation for high-contention locks

– new requestors back off for shorter times

But exponential found to work best in practice

CS418– 9 –

T&S Lock Performance
Code: lock; delay(c); unlock;
Same total no. of lock calls as p increases; measure time per transfer


















































Ti
m

e
(

s)

10

12

14

16

18

20
 Test&set, c = 0
 Test&set, exponential backoff, c = 3.64
 Test&set, exponential backoff, c = 0
 Ideal

CS418– 10 –





















  
















Number of processors
11 13 15

0

2

4

6

8

9753

Test and Set with Update
Test and Set sends updates to processors that cache
the lock

Tradeoffs:
(+) good for bus-based machines
(-) still lots of traffic on distributed networks

Main problem with test&set-based schemes:

CS418– 11 –

Main problem with test&set based schemes:
• a lock release causes all waiters to try to get the lock, using a

test&set to try to get it.

Ticket Lock (fetch&incr based)
Two counters:

• next_ticket (number of requestors)
(b f l h h h d)• now_serving (number of releases that have happened)

Algorithm:
• First do a fetch&incr on next_ticket (not test&set)
• When release happens, poll the value of now_serving

– if my_ticket, then I win
Use delay; but how much?

CS418– 12 –

Page 4

Ticket Lock Tradeoffs
(+) guaranteed FIFO order; no starvation possible
(+) latency can be low if fetch&incr is cacheable
(+) traffic can be quite low
(-) but traffic is not guaranteed to be O(1) per lock acquire

CS418– 13 –

Array-Based Queueing Locks
Every process spins on a unique location, rather than
on a single now_serving counter

fetch&incr gives a process the address on which to
spin

Tradeoffs:
(+) guarantees FIFO order (like ticket lock)

CS418– 14 –

(+) guarantees FIFO order (like ticket lock)
(+) O(1) traffic with coherence caches (unlike ticket lock)
(-) requires space per lock proportional to P

List-Base Queueing Locks (MCS)

All other good things + O(1) traffic even
without coherent caches (spin locally)p y

Uses compare&swap to build linked lists in
software

Locally-allocated flag per list node to spin on
Can work with fetch&store, but loses FIFO
guarantee

T d ff :

CS418– 15 –

Tradeoffs:
(+) less storage than array-based locks
(+) O(1) traffic even without coherent caches
(-) compare&swap not easy to implement

Implementing Fetch&Op

Load Linked/Store Conditional
1 /* LL l ti t 1 */lock: ll reg1, location /* LL location to reg1 */

bnz reg1, lock /* check if location locked*/
sc location, reg2 /* SC reg2 into location*/
beqz reg2, lock /* if failed, start again */
ret

unlock:

CS418– 16 –

unlock:

st location, #0 /* write 0 to location */
ret

Page 5

Barriers

We will discuss five barriers:
• centralizedcentralized
• software combining tree
• dissemination barrier
• tournament barrier
• MCS tree-based barrier

CS418– 17 –

Centralized Barrier
Basic idea:

• notify a single shared counter when you arrive
• poll that shared location until all have arrived

Simple version require polling/spinning twice:
• first to ensure that all procs have left previous barrier
• second to ensure that all procs have arrived at current barrier

CS418– 18 –

Solution to get one spin: sense reversal

Software Combining Tree Barrier
Contention Little contention

• Writes into one tree for barrier arrival

Flat Tree structured

CS418– 19 –

• Writes into one tree for barrier arrival
• Reads from another tree to allow procs to continue
• Sense reversal to distinguish consecutive barriers

Dissemination Barrier
log P rounds of synchronization
In round k, proc i synchronizes with proc (i+2k) mod PIn round k, proc i synchronizes with proc (i 2) mod P

Advantage:
• Can statically allocate flags to avoid remote spinning

CS418– 20 –

Page 6

Minimum Barrier Traffic

What is the minimum number of messages
needed to implement a barrier with N needed to implement a barrier with N
processors?

P1 …P2 P3 P4 PN

CS418– 21 –

Tournament Barrier
Binary combining tree

R i d i i ll hRepresentative processor at a node is statically chosen
• no fetch&op needed

In round k, proc i=2k sets a flag for proc j=i-2k

• i then drops out of tournament and j proceeds in next round
• i waits for global flag signalling completion of barrier to be set

– could use combining wakeup tree

CS418– 22 –

MCS Software Barrier

Modifies tournament barrier to allow static
allocation in wakeup tree, and to use sense allocation in wakeup tree, and to use sense
reversal

Every processor is a node in two P-node
trees:
• has pointers to its parent building a fanin-4 arrival tree
• has pointers to its children to build a fanout-2 wakeup tree

CS418– 23 –

Barrier Recommendations

Criteria:
• length of critical pathlength of critical path
• number of network transactions
• space requirements
• atomic operation requirements

CS418– 24 –

Page 7

Space Requirements

Centralized:
• constantconstant

MCS, combining tree:
• O(P)

Dissemination, Tournament:
• O(PlogP)

CS418– 25 –

Network Transactions

Centralized, combining tree:
• O(P) if broadcast and coherent caches;O(P) if broadcast and coherent caches;
• unbounded otherwise

Dissemination:
• O(PlogP)

Tournament, MCS:
• O(P)

CS418– 26 –

Critical Path Length

If independent parallel network paths
available:available
• all are O(logP) except centralized, which is O(P)

Otherwise (e.g., shared bus):
• linear factors dominate

CS418– 27 –

Primitives Needed

Centralized and combining tree:
• atomic incrementatomic increment
• atomic decrement

Others:
• atomic read
• atomic write

CS418– 28 –

Page 8

Barrier Recommendations

Without broadcast on distributed memory:
• Dissemination

– MCS is good, only critical path length is about 1.5X longer
– MCS has somewhat better network load and space requirements

Cache coherence with broadcast (e.g., a bus):
• MCS with flag wakeup

– centralized is best for modest numbers of processors

Big advantage of centralized barrier:
d h i b f b i ll

CS418– 29 –

• adapts to changing number of processors across barrier calls

