
Page 1

Snoop-Based
Multiprocessor Design II:Multiprocessor Design II:
More Sophisticated Design

Todd C. Mowry
CS 418CS 418

March 1, 2011

Roadmap

So far, we have covered a simple base design

Today, we will explore a more realistic design:
• multi-level cache hierarchies
• split-transaction buses

CS 418– 2 –

Multi-Level Cache Hierarchies
How to snoop with multi-level caches?

• independent bus snooping at every level?
• maintain cache inclusion

Requirements for Inclusion
• data in higher-level cache is subset of data in lower-level cache
• modified in higher-level => marked modified in lower-level

Now only need to snoop lowest-level cache
• If L2 says not present (modified), then not so in L1 too

If BusRd s n t bl ck th t is m difi d in L1 L2 its lf kn s this

CS 418– 3 –

• If BusRd seen to block that is modified in L1, L2 itself knows this

Is inclusion automatically preserved?
• Replacements: all higher-level misses go to lower level
• Modifications?

Violations of Inclusion

The two caches (L1, L2) may choose to replace different
blocks

Diff i f hi• Differences in reference history
– set-associative first-level cache with LRU replacement
– example: blocks m1, m2, m3 fall in same set of L1 cache...

• Split higher-level caches
– instruction, data blocks go in different caches at L1, but may collide in

L2
– what if L2 is set-associative?

• Differences in block size

CS 418– 4 –

• Differences in block size

One case that works automatically
• L1 direct-mapped, fewer sets than in L2, and block size same

Page 2

Preserving Inclusion Explicitly
Propagate lower-level (L2) replacements to higher-level (L1)

• Invalidate or flush (if dirty) messages
Propagate bus transactions from L2 to L1Propagate bus transactions from L2 to L1

• Propagate all transactions, or use inclusion bits
Propagate modified state from L1 to L2 on writes?

• Write-through L1, or modified-but-stale bit per block in L2 cache

Correctness issues altered?
• Not really, if all propagation occurs correctly and is waited for

Writes commit when they reach the bus acknowled ed immediately

CS 418– 5 –

• Writes commit when they reach the bus, acknowledged immediately
• But performance problems, so want to not wait for propagation
• Discuss after split-transaction busses

Dual cache tags less important: each cache is filter for
other

Split-Transaction Bus
Split bus transaction into request and response sub-xactions

• Separate arbitration for each phase
Oth t ti i t

Mem Access Delay

Other transactions may intervene
• Improves bandwidth dramatically
• Response is matched to request
• Buffering between bus and cache controllers

Reduce serialization down to the actual bus arbitration

CS 418– 6 –

Address/CMD

Mem Access DelayMem Access Delay

Data

Address/CMD

Data

Address/CMD

Bus
arbitration

Complications

New request can appear on bus before previous one serviced
• Even before snoop result obtained
• Conflicting operations to same block may be outstanding on bus
• e.g. P1, P2 write block in S state at same time

– both get bus before either gets snoop result, so both think they’ve won
• Note: different from overall non-atomicity discussed earlier

Buffers are small, so may need flow control
Buffering implies revisiting snoop issues

• When and how snoop results and data responses are provided

CS 418– 7 –

• In order w.r.t. requests?
– PPro, DEC Turbolaser: yes; SGI, Sun: no

• Snoop and data response together or separately?
– SGI together, SUN separately

Large space, much innovation: let’s look at one example first

Example (Based on SGI Challenge)
No conflicting requests for same block allowed on bus

• 8 outstanding requests total, makes conflict detection tractable
Flow control through negative acknowledgement (NACK)Flow-control through negative acknowledgement (NACK)

• NACK as soon as request appears on bus, requestor retries
• Separate command (incl. NACK) + address and tag + data buses

Responses may be in different order than requests
• Order of transactions determined by requests
• Snoop results presented on bus with response

CS 418– 8 –

Look at
• Bus design, and how requests and responses are matched
• Snoop results and handling conflicting requests
• Flow control
• Path of a request through the system

Page 3

Bus Design and Req-Resp Matching

Essentially two separate buses, arbitrated independently
• “Request” bus for command and addressRequest bus for command and address
• “Response” bus for data

Out-of-order responses imply need for matching req-
response
• Request gets 3-bit tag when wins arbitration (8 outstanding max)
• Response includes data as well as corresponding request tag
• Tags allow response to not use address bus, leaving it free

CS 418– 9 –

g p , g

Separate bus lines for arbitration, and for snoop results

Bus Design (continued)
Each of request and response phase is 5 bus cycles (best case)

• Response: 4 cycles for data (128 bytes, 256-bit bus), 1 turnaround
• Request phase: arbitration, resolution, address, decode, ack
• Request-response transaction takes 3 or more of these

Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack

Addr
req

Addr Addr

Data
req

Tag

D0 D1 D2 D3

Addr
req

Addr Addr

Data
req

Tag

Grant

D0

check check

ackack

Time

Address
bus

Data
arbitration

Data
bus

Read operation 1

CS 418– 10 –

Cache tags looked up in decode; extend ack cycle if not possible
• Determine who will respond, if any
• Actual response comes later, with re-arbitration

Write-backs have request phase only: arbitrate both data+addr buses
Upgrades have only request part; ack’ed by bus on grant (commit)

p
Read operation 2

Bus Design (continued)

Tracking outstanding requests and matching responses
• Eight entry “request table” in each cache controller• Eight-entry request table in each cache controller

• New request on bus added to all at same index, determined by tag

• Entry holds address, request type, state in that cache (if determined
already), ...

• All entries checked on bus or processor accesses for match, so fully
associative

• Entry freed when response appears so tag can be reassigned by bus

CS 418– 11 –

• Entry freed when response appears, so tag can be reassigned by bus

Bus Interface with Request Table

Data to/from $

Request +
response
queue

Snoop state
from $

Write-back bufferTag

Request
buffer

Request table

Ta
g

7

Ad
dr

es
s

M
is

ce
lla

ne
ou

s

Issue +
merge

ac
ks se
s

check

0

O
rig

in
at

or

M
y

re
sp

on
se

in
f o

rm
at

io
n

R
es

po
ns

e
qu

eu
e

CS 418– 12 –

Addr + cmd
Snoop Data buffer

Comparator

Addr + cmd

To
control

TagTag

Addr + cmd bus

Data + tag bus

state

W
rit

e
ba

R
es

po
n

Page 4

Outline (for SGI Challenge example)
• Bus design, and how requests and responses are matched
• Snoop results and handling conflicting requests
• Flow controlFlow control
• Path of a request through the system

CS 418– 13 –

Snoop Results and Conflicting Requests

Variable-delay snooping
Shared, dirty and inhibit wired-OR lines, as before, y ,
Snoop results presented when response appears

• Determined earlier, in request phase, and kept in request table
entry

• (Also determined who will respond)
• Writebacks and upgrades don’t have data response or snoop result

Avoiding conflicting requests on bus

CS 418– 14 –

Avoiding conflicting requests on bus
• easy: don’t issue request for conflicting request that is in request

table

Recall that writes are committed when request gets bus

Outline (for SGI Challenge example)
• Bus design, and how requests and responses are matched
• Snoop results and handling conflicting requests
• Flow controlFlow control
• Path of a request through the system

CS 418– 15 –

Flow Control

Not just at incoming buffers from bus to cache controller
Cache system’s buffer for responses to its requests

• Controller limits number of outstanding requests, so easy
Mainly needed at main memory in this design

• Each of the 8 transactions can generate a writeback
• Can happen in quick succession (no response needed)
• SGI Challenge: separate NACK lines for address and data buses

– Asserted before ack phase of request (response) cycle is done
– Request (response) cancelled everywhere and retries later

CS 418– 16 –

Request (response) cancelled everywhere, and retries later
– Backoff and priorities to reduce traffic and starvation

• SUN Enterprise: destination initiates retry when it has a free buffer
– source keeps watch for this retry
– guaranteed space will still be there, so only two “tries” needed at most

Page 5

Outline (for SGI Challenge example)
• Bus design, and how requests and responses are matched
• Snoop results and handling conflicting requests
• Flow controlFlow control
• Path of a request through the system

CS 418– 17 –

Handling a Read Miss
Need to issue BusRd
First check request table. If hit:

• If prior request exists for same block, want to grab data too!
– “want to grab response” bit
– “original requestor” bit

»non-original grabber must assert sharing line so others will load in S
rather than E state

• If prior request incompatible with BusRd (e.g. BusRdX)
– wait for it to complete and retry (processor-side controller)

If no prior request issue request and watch out for race conditions

CS 418– 18 –

• If no prior request, issue request and watch out for race conditions
– conflicting request may win arbitration before this one, but this one

receives bus grant before conflict is apparent
»watch for conflicting request in slot before own, degrade request to

“no action” and withdraw till conflicting request satisfied

Upon Issuing the BusRd Request
All processors enter request into table, snoop for request in
cache

Memory starts fetching blockMemory starts fetching block

1. Cache with dirty block responds before memory ready
• Memory aborts on seeing response
• Waiters grab data

– some may assert inhibit to extend response phase till done snooping
– memory must accept response as WB (might even have to NACK)

2. Memory responds before cache with dirty block

CS 418– 19 –

y p f y
• Cache with dirty block asserts inhibit line till done with snoop
• When done, asserts dirty, causing memory to cancel response
• Cache with dirty issues response, arbitrating for bus

3. No dirty block: memory responds when inhibit line released
• Assume cache-to-cache sharing not used (for non-modified data)

Handling a Write Miss

Similar to read miss, except:
• Generate BusRdX
• Main memory does not sink response since will be modified again
• No other processor can grab the data

If block present in shared state, issue BusUpgr instead
• No response needed
• If another processor was going to issue BusUpgr, changes to

BusRdX as with atomic bus

CS 418– 20 –

Page 6

Correctness Issues

For Coherence:
• Write propagation
• Write serialization

For Memory Consistency:
• Write completion
• Write atomicity

O h C I

CS 418– 21 –

Other Correctness Issues:
• Deadlock
• Livelock
• Starvation

Write Serialization
With split-transaction buses, usually bus order is determined
by order of requests appearing on bus
• actually, the ack phase, since requests may be NACKedactually, the ack phase, since requests may be NACKed
• by end of this phase, they are committed for visibility in order

A write that follows a read transaction to the same location
should not be able to affect the value returned by that
read
• Easy in this case, since conflicting requests not allowed
• Read response precedes write request on bus

Similarly a read that follows a write transaction won’t return old

CS 418– 22 –

Similarly, a read that follows a write transaction won t return old
value

Detecting Write Completion
Problem: invalidations don’t happen as soon as request appears
on bus
• They’re buffered between bus and cache
• Commitment does not imply performing or completion
• Need additional mechanisms

Key property to preserve: processor shouldn’t see new value
produced by a write before previous writes in bus order are
visible to it
1. Don’t let certain types of incoming transactions be reordered in

buffers
i i l d l h ld k i lid i

CS 418– 23 –

– in particular, data reply should not overtake invalidation request
– okay for invalidations to be reordered: only reply actually brings data in

2. Allow reordering in buffers, but ensure important orders preserved at
key points
– e.g. flush incoming invalidations/updates from queues and apply before

processor completes operation that may enable it to see a new value

Commitment of Writes (Operations)

More generally, distinguish between performing and
committing a write w:

Performed w.r.t a processor: invalidation actually applied

Committed w.r.t a processor: guaranteed that once that
processor sees the new value associated with W, any
subsequent read by it will see new values of all writes
that were committed w.r.t that processor before W.

Global bus serves as point of commitment, if buffers are
FIFO

CS 418– 24 –

FIFO
• benefit of a serializing broadcast medium for interconnect

Note: acks from bus to processor must logically come via
same FIFO
• not via some special signal, since otherwise can violate ordering

Page 7

Write Atomicity

Still provided naturally by broadcast nature of bus
Recall that bus implies:Recall that bus implies:

• writes commit in same order w.r.t. all processors
• read cannot see value produced by write before write has

committed on bus and hence w.r.t. all processors
Previous techniques allow substitution of “complete” for
“commit” in above statements
• that’s write atomicity

Will di d dl k li l k t ti ft

CS 418– 25 –

Will discuss deadlock, livelock, starvation after
multilevel caches plus split transaction bus

Alternatives: In-Order Responses

FIFO request table suffices
Dirty cache does not release inhibit line till it is ready to supply

d tdata
• No deadlock problem since does not rely on anyone else

But performance problems possible at interleaved memory
• Major motivation for allowing out-of-order responses

Allow conflicting requests more easily
• Two BusRdX requests one after the other on bus for same block

– latter controller invalidates its block, as before
– but earlier requestor sees latter request before its own data response

CS 418– 26 –

but earlier requestor sees latter request before its own data response
– with out-of-order response, not known which response will appear first
– with in-order, known, and actually can use performance optimization
– earlier controller responds to latter request by noting that latter is pending
– when its response arrives, updates word, short-cuts block back on to bus,

invalidates its copy (reduces ping-pong latency)

Other Alternatives
Fixed delay from request to snoop result also makes it easier

• Can have conflicting requests even if data responses not in order
• e g SUN Enterprisee.g. SUN Enterprise

– 64-byte line and 256-bit bus => 2 cycle data transfer
– so 2-cycle request phase used too, for uniform pipelines
– too little time to snoop and extend request phase
– snoop results presented 5 cycles after address (unless inhibited)
– by later data response arrival, conflicting requestors know what to do

Don’t even need request to go on same bus, as long as order

CS 418– 27 –

q g , g
is well-defined
• SUN SparcCenter2000 had 2 busses, Cray 6400 had 4
• Multiple requests go on bus in same cycle
• Priority order established among them is logical order

Multi-Level Caches with ST Bus
Key new problem: many cycles to propagate through hierarchy

• Must let others propagate too for bandwidth, so queues between levels

Response Processor request

L1 $

L2 $

18

Processor

L1 $

L2 $

5
4

Processor

Response/
request
from L2 to L1

Response/
request
from L1 to L2

CS 418– 28 –
Introduces deadlock and serialization problems

Request/response
to bus27

Bus

2 $

63
Response/
request
from bus

Page 8

Deadlock Considerations
Fetch deadlock:

• Must buffer incoming requests/responses while request outstanding
• One outstanding request per processor => need space to hold pOne outstanding request per processor => need space to hold p

requests plus one reply (latter is essential)
• If smaller (or if multiple o/s requests), may need to NACK
• Then need priority mechanism in bus arbiter to ensure progress

Buffer deadlock:
• L1 to L2 queue filled with read requests, waiting for response from L2
• L2 to L1 queue filled with bus requests waiting for response from L1
• Latter condition only when cache closer than lowest level is write back

CS 418– 29 –

• Latter condition only when cache closer than lowest level is write back
• Could provide enough buffering, or general solutions discussed later

If # o/s bus transactions smaller than total o/s cache
misses, response from cache must get bus before new
requests from it allowed
• Queues may need to support bypassing

Sequential Consistency

Separation of commitment from completion even greater now
• More performance-critical that commitment replace completion

Fortunately techniques for single-level cache and ST bus
extend
• Just use them at each level
• i.e. either

– don’t allow certain reorderings of transactions at any level, OR
– don’t let outgoing operation proceed past level before incoming

invalidations/updates at that level are applied

CS 418– 30 –

Multiple Outstanding Processor Requests

So far assumed only one: not true of modern processors
Danger: operations from same processor can complete out of order

• e g write buffer: until serialized by bus should not be visible to otherse.g. write buffer: until serialized by bus, should not be visible to others
• Uniprocessors use write buffer to insert multiple writes in succession

– multiprocessors usually can’t do this while ensuring consistent serialization
– exception: writes are to same block, and no intervening ops in program order

Key question: who should wait to issue next op till previous completes
• Key to high performance: processor needn’t do it (so can overlap)
• Queues/buffers/controllers can ensure writes not visible to external world and

reads don’t complete (even if back) until allowed (more later)

CS 418– 31 –

Other requirement: caches must be lockup free to be effective
• Merge operations to a block, so rest of system sees only one o/s to block

All needed mechanisms for correctness available (deeper queues for
performance)

