
Page 1

Evolution and Convergence
f P ll l A hit tof Parallel Architectures

Todd C. Mowry
CS 418

January 12 2011January 12, 2011

History

Historically, parallel architectures tied to programming models
• Divergent architectures, with no predictable pattern of growth.

Application Software

System
Software SIMD

Systolic
Arrays Architecture

CS 418– 2 –

Message Passing
Shared MemoryDataflow

Uncertainty of direction paralyzed parallel software development!

Today

Extension of “computer architecture” to support
communication and cooperation
• OLD: Instruction Set Architecture
• NEW: Communication Architecture

Defines
• Critical abstractions, boundaries, and primitives (interfaces)
• Organizational structures that implement interfaces (hw or sw)

CS 418– 3 –

Compilers, libraries and OS are important bridges
today

Modern Layered Framework

CAD Database Scientific modeling Parallel applications

Multiprogramming Shared
address

Message
passing

Data
parallel

Programming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication hardware
Hardware/software boundary

CS 418– 4 –

Physical communication medium

Page 2

Programming Model

What programmer uses in coding applications
Specifies communication and synchronizationSpecifies communication and synchronization
Examples:

• Multiprogramming: no communication or synch. at program level
• Shared address space: like bulletin board
• Message passing: like letters or phone calls, explicit point to point
• Data parallel: more regimented, global actions on data

– Implemented with shared address space or message passing

CS 418– 5 –

Communication Abstraction

User level communication primitives provided
• Realizes the programming model
• Mapping exists between language primitives of programming model

and these primitives

Supported directly by hw, or via OS, or via user sw
Lots of debate about what to support in sw and gap
between layers

Today:

CS 418– 6 –

• Hw/sw interface tends to be flat, i.e. complexity roughly uniform
• Compilers and software play important roles as bridges today
• Technology trends exert strong influence

Result is convergence in organizational structure
• Relatively simple, general purpose communication primitives

Communication Architecture

= User/System Interface + Implementation

U /S t m I t f :User/System Interface:
• Comm. primitives exposed to user-level by hw and system-level sw

Implementation:
• Organizational structures that implement the primitives: hw or OS
• How optimized are they? How integrated into processing node?
• Structure of network

CS 418– 7 –

Goals:
• Performance
• Broad applicability
• Programmability
• Scalability
• Low Cost

Evolution of Architectural Models

Historically, machines tailored to programming models
• Programming model, communication abstraction, and machine g g , ,

organization lumped together as the “architecture”

Evolution helps understand convergence
• Identify core concepts

Most Common Models:
• Shared Address Space, Message Passing, Data Parallel

Other Models:

CS 418– 8 –

Other Models
• Dataflow, Systolic Arrays

Examine programming model, motivation, intended
applications, and contributions to convergence

Page 3

Shared Address Space Architectures

Any processor can directly reference any memory
location
• Communication occurs implicitly as result of loads and stores

Convenient:
• Location transparency
• Similar programming model to time-sharing on uniprocessors

– Except processes run on different processors
– Good throughput on multiprogrammed workloads

Popularly known as shared memory machines or model

CS 418– 9 –

Popularly known as shared memory machines or model
• Ambiguous: memory may be physically distributed among processors

Shared Address Space Model
Process: virtual address space plus one or more threads of control
Portions of address spaces of processes are shared

Virtual address spaces for a
ll ti f i ti

Machine physical address space

Store

P1
P2

Pn

P0

Load

P1 pri vate

P2 pri vate

Pn pri vate
collection of processes communicating
via shared addresses

Shared portion
of address space

Private portion

Common physical
addresses

CS 418– 10 –

P0 pri vate

Private portion
of address space

•Writes to shared address visible to other threads, processes
•Natural extension of uniprocessor model: conventional memory
operations for comm.; special atomic operations for synchronization

Recent x86 Examples

CS 418– 11 –

• Highly integrated, commodity systems
• On-chip: low-latency, high-bandwidth communication via shared cache
• Current scale = 4 processors

AMD’s Quad-Core Phenom IIIntel’s Quad Core i7

Earlier x86 Example:
Intel Pentium Pro Quad

CPU

Bus interface

P-Pro
module

P-Pro
module

P-Pro
module256-KB

L2 $
Interrupt
controller

P-Pro bus (64-bit data, 36-bit address, 66 MHz)

Bus interface

MIU

PCI
bridge

PCI
bridge

Memory
controller

1-, 2-, or 4-way
interleaved

DRAM

PC
I b

us

PC
I b

usPCI
I/O

cards

CS 418– 12 –

• All coherence and multiprocessing
glue in processor module

• In its day, highly-integrated for
high volume

• Low latency and bandwidth

Page 4

Example: Sun SPARC Enterprise M9000

CS 418– 13 –

• 64 SPARC64 VII+ quad-core processors (i.e. 256 cores)
• Crossbar bandwidth: 245 GB/sec (snoop bandwidth)
• Memory latency: 437-532 nsec (i.e. 1050-1277 cycles @ 2.4 GHz)
• Higher bandwidth, but also higher latency

Scaling Up
M M M

• Problem is interconnect: cost (crossbar) or bandwidth (bus)

 M M M

NetworkNetwork

P

$

P

$

P

$

P

$

P

$

P

$

“Dance hall” Distributed memory

CS 418– 14 –

• Dance-hall: bandwidth still scalable, but lower cost than crossbar
– latencies to memory uniform, but uniformly large

• Distributed memory or non-uniform memory access (NUMA)
– Construct shared address space out of simple message transactions

across a general-purpose network (e.g. read-request, read-response)
• Caching shared (particularly nonlocal) data?

Example: SGI Altix UV 1000

Blacklight at the PSC (4096 cores)
256 socket (2048 core) fat-tree

(this size is doubled in Blacklight via a torus)

CS 418– 15 –

• Scales up to 131,072 cores
• 15GB/sec links
• Hardware cache coherence

8x8 torus

Parallel Programming Models

• Shared Address Space
• Message PassingMessage Passing
• Data Parallel
• Dataflow
• Systolic Arrays

CS 418– 16 –

Page 5

Message Passing Architectures

Complete computer as building block, including I/O
• Communication via explicit I/O operations

Programming model:
• directly access only private address space (local memory)
• communicate via explicit messages (send/receive)

High-level block diagram similar to distributed-mem SAS
B t mm int t d t IO l l n d n t p t int m m t m

CS 418– 17 –

• But comm. integrated at IO level, need not put into memory system
• Easier to build than scalable SAS

Programming model further from basic hardware ops
• Library or OS intervention

Message Passing Abstraction

Add Y

Receive Y, P, tMatch

• Send specifies buffer to be transmitted and receiving process
• Recv specifies sending process and application storage to receive into

ProcessP Process Q

Address Y

Address X

Send X, Q, t

Local process
address spaceLocal process

address space

CS 418– 18 –

• Memory to memory copy, but need to name processes
• Optional tag on send and matching rule on receive

• Many overheads: copying, buffer management, protection

Evolution of Message Passing

Early machines: FIFO on each link
• Hardware close to programming model

100101

p g g
– synchronous ops

• Replaced by DMA, enabling non-blocking ops
– Buffered by system at destination until recv

Diminishing role of topology
• Store & forward routing: topology important
• Introduction of pipelined routing made it less so
• Cost is in node network interface

000001

010011

110111

CS 418– 19 –

• Cost is in node-network interface
• Simplifies programming

Example: IBM Blue Gene/L

CS 418– 20 –

Nodes: 2 PowerPC 400s; everything except DRAM on one chip

Page 6

Example: IBM SP-2

Memory bus

MicroChannel bus

I/O DMA

IBM SP-2 node

L2 $

Power 2
CPU

Memory
controller

4-way
interleaved

DRAM

General interconnection
network formed from
8-port switches

NIC

CS 418– 21 –

• Made out of essentially complete RS6000 workstations
• Network interface integrated in I/O bus (bw limited by I/O bus)

I/O

i860 NI

DMA

D
R

A
M

Taxonomy of Common
Large-Scale SAS and MP Systems

aka “message passing”aka message passing

CS 418– 22 –

Toward Architectural Convergence

Evolution and role of software have blurred boundary
• Send/recv supported on SAS machines via buffers
• Can construct global address space on MP using hashing
• Page-based (or finer-grained) shared virtual memory

Programming models distinct, but organizations converging
• Nodes connected by general network and communication assists
• Implementations also converging, at least in high-end machines

CS 418– 23 –

Parallel Programming Models

• Shared Address Space
• Message PassingMessage Passing
• Data Parallel
• Dataflow
• Systolic Arrays

CS 418– 24 –

Page 7

Data Parallel Systems
Programming model:

• Operations performed in parallel on each element of data structure
• Logically single thread of control performs sequential or parallel stepsLogically single thread of control, performs sequential or parallel steps
• Conceptually, a processor associated with each data element

Architectural model:
• Array of many simple, cheap processors with little memory each

– Processors don’t sequence through instructions
• Attached to a control processor that issues instructions
• Specialized and general communication cheap global synchronization

CS 418– 25 –

Specialized and general communication, cheap global synchronization

Original motivation:
• Matches simple differential equation solvers
• Centralize high cost of instruction fetch &

sequencing

PE PE PE

PE PE PE

PE PE PE

Control
processor

Application of Data Parallelism

• Each PE contains an employee record with his/her salary
If salary > 100K then

salary = salary *1.05
else

salary = salary *1.10
• Logically, the whole operation is a single step
• Some processors enabled for arithmetic operation, others disabled

Other examples:
• Finite differences, linear algebra, ...

CS 418– 26 –

• Document searching, graphics, image processing, ...
Example machines:

• Thinking Machines CM-1, CM-2 (and CM-5)
• Maspar MP-1 and MP-2

Evolution and Convergence

Rigid control structure (SIMD in Flynn taxonomy)
• SISD = uniprocessor, MIMD = multiprocessorp p

Popular when cost savings of centralized sequencer high
• 60s when CPU was a cabinet; replaced by vectors in mid-70s
• Revived in mid-80s when 32-bit datapath slices just fit on chip
• No longer true with modern microprocessors

Other reasons for demise
• Simple, regular applications have good locality, can do well anyway
• Loss of applicability due to hardwiring data parallelism

CS 418– 27 –

• Loss of applicability due to hardwiring data parallelism
– MIMD machines as effective for data parallelism and more general

Programming model converges with SPMD (single program
multiple data)
• Contributes need for fast global synchronization
• Structured global address space, implemented with either SAS or MP

Parallel Programming Models

• Shared Address Space
• Message PassingMessage Passing
• Data Parallel
• Dataflow
• Systolic Arrays

CS 418– 28 –

Page 8

Dataflow Architectures
Represent computation as a graph of essential dependences

• Logical processor at each node, activated by availability of operands
• Message (tokens) carrying tag of next instruction sent to next processorM ssag (t ns) carry ng tag f n t nstruct n s nt t n t pr c ss r
• Tag compared with others in matching store; match fires execution

1 b

a

+

c e

d

f

Dataflow graph

f = a d

Network

a = (b +1) (b c)
d = c e

CS 418– 29 –

Token
store

Waiting
Matching

Instruction
fetch

Execute

Token queue

Form
token

Network

Network

Program
store

Evolution and Convergence
Key characteristics:

• Ability to name operations, synchronization, dynamic scheduling

Problems:Problems:
• Operations have locality across them, useful to group together
• Handling complex data structures like arrays
• Complexity of matching store and memory units
• Exposes too much parallelism (?)

Lasting contributions:

CS 418– 30 –

g
• Integration of communication with thread (handler) generation
• Tightly integrated communication and fine-grained synchronization
• Remained useful concept for software (compilers etc.)

Parallel Programming Models

• Shared Address Space
• Message PassingMessage Passing
• Data Parallel
• Dataflow
• Systolic Arrays

CS 418– 31 –

Systolic Architectures
• Replace single processor with array of regular processing elements
• Orchestrate data flow for high throughput with less memory access

M

PE

M

PE PE PE

Different from pipelining:
Nonlinear array structure multidirection data flow each PE may have

CS 418– 32 –

• Nonlinear array structure, multidirection data flow, each PE may have
(small) local instruction and data memory

Different from SIMD: each PE may do something different
Initial motivation: VLSI enables inexpensive special-purpose chips
Represent algorithms directly by chips connected in regular pattern

Page 9

Systolic Arrays (Cont)
Example: Systolic array for 1-D convolution

x(i+1) x(i) x(i-1) (i k)

• Practical realizations (e.g. iWARP) use quite general processors
– Enable variety of algorithms on same hardware

x(i+1) x(i) x(i-1) x(i-k)

y(i) y(i+1)

y(i) = w(j)*x(i-j)

j=1

k

y(i+k+1) y(i+k)
W (1) W (2) W (k)

CS 418– 33 –

y g
• But dedicated interconnect channels

– Data transfer directly from register to register across channel
• Specialized, and same problems as SIMD

– General purpose systems work well for same algorithms (locality etc.)

Convergence: General Parallel Architecture

Network
A generic modern multiprocessor

Node: processor(s) memory system plus communication assist

Mem

P

$

Communication
assist (CA)

CS 418– 34 –

Node: processor(s), memory system, plus communication assist
• Network interface and communication controller

• Scalable network
• Convergence allows lots of innovation, now within framework

• Integration of assist with node, what operations, how efficiently...

