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Topics
• The Cache Coherence Problem
• Snoopy Coherence Protocols

The Cache Coherence Problem

P1 P2 P31

$ $ $

3

5

u = ?

4

u = ?

u:5 u:5

3

u = 7

CS 418– 2 –

I/O devices

Memory

1
u:5 2

A Coherent Memory System: Intuition

Reading a location should return latest value written (by 
any process)

Easy in uniprocessors
• Except for I/O: coherence between I/O devices and processors
• But infrequent so software solutions work

– uncacheable operations, flush pages, pass I/O data through caches 
Would like same to hold when processes run on different 
processors
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• E.g. as if the processes were interleaved on a uniprocessor
The coherence problem is more pervasive and performance-
critical in multiprocessors
• has a much larger impact on hardware design

Problems with the Intuition

Recall: 
• Value returned by read should be last value written 

But “last” is not well-defined!
Even in sequential case:

• “last” is defined in terms of program order, not time
– Order of operations in the machine language presented to processor
– “Subsequent” defined in analogous way, and well defined

In parallel case:
• program order defined within a process  but need to make sense of 

CS 418– 4 –

• program order defined within a process, but need to make sense of 
orders across processes

Must define a meaningful semantics
• the answer involves both “cache coherence” and an appropriate 

“memory consistency model” (to be discussed in a later lecture)
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Formal Definition of Coherence
Results of a program: values returned by its read operations
A memory system is coherent if the results of any execution 
of a program are such that for each location, it is possible p g , p
to construct a hypothetical serial order of all operations to 
the location that is consistent with the results of the 
execution and in which:

1. operations issued by any particular process occur in the 
order issued by that process, and

2. the value returned by a read is the value written by the 
last write to that location in the serial order

Two necessary features:
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Two necessary features:
• Write propagation: value written must become visible to others 
• Write serialization: writes to location seen in same order by all

– if I see w1 after w2, you should not see w2 before w1
– no need for analogous read serialization since reads not visible to others

Cache Coherence Solutions
Software Based:

• often used in clusters of workstations or PCs (e.g., “Treadmarks”)
• extend virtual memory system to perform more work on page faults

– send messages to remote machines if necessary
Hardware Based:

• two most common variations:
– “snoopy” schemes

» rely on broadcast to observe all coherence traffic
» well suited for buses and small-scale systems
» example: SGI Challenge

– directory schemes
 t li d i f ti  t  id b d t
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» uses centralized information to avoid broadcast
» scales well to large numbers of processors
» example: SGI Origin 2000

Shared Caches
• Processors share a single cache, essentially punting 
the problem.  

• Useful for very small machines  • Useful for very small machines. 
• Problems are limited cache bandwidth and cache interference
• Benefits are fine-grain sharing and prefetch effects

P P
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Snoopy Cache Coherence Schemes

Basic Idea:
• all coherence-related activity is broadcast to all processors

e g  on a global bus– e.g., on a global bus
• each processor (or its representative) monitors (aka “snoops”) these actions 

and reacts to any which are relevant to the current contents of its cache
– examples: 

» if another processor wishes to write to a line, you may need to “invalidate” 
(I.e. discard) the copy in your own cache

» if another processor wishes to read a line for which you have a dirty copy, 
you may need to supply

Most common approach in commercial multiprocessors.
Examples: 
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Examples: 
• SGI Challenge, SUN Enterprise, multiprocessor PCs, etc.
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Implementing a Snoopy Protocol

Cache controller now receives inputs from both sides:
• Requests from processor, bus requests/responses from snooper

In either case, takes zero or more actions
• Updates state, responds with data, generates new bus 

transactions
Protocol is a distributed algorithm: cooperating state 
machines
• Set of states, state transition diagram, actions 

Granularity of coherence is typically a cache block
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Granular ty of coherence s typ cally a cache loc
• Like that of allocation in cache and transfer to/from cache

Coherence with Write-through Caches
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• Key extensions to uniprocessor: snooping, invalidating/updating caches
– no new states or bus transactions in this case
– invalidation- versus update-based protocols

• Write propagation: even in inval case, later reads will see new value
– inval causes miss on later access, and memory up-to-date via write-through

Write-through State Transition Diagram

V

PrRd/— PrWr/BusWr

I

PrRd/BusRd

PrWr/BusWr

BusWr/—

Processor-initiated transactions

Bus-snooper-initiated transactions
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• Two states per block in each cache, as in uniprocessor
– state of a block can be seen as p-vector

• Hardware state bits associated with only blocks that are in the cache
– other blocks can be seen as being in invalid (not-present) state in that cache

• Write will invalidate all other caches (no local change of state)
– can have multiple simultaneous readers of block,but write invalidates them

Problem with Write-Through

High bandwidth requirements
• Every write from every processor goes to shared bus and memory
• Consider a 3GHz, 1CPI processor, where 15% of instructions are 

8-byte stores
• Each processor generates 450M stores or 3.6GB data per second
• 5GB/s bus can support only 1 processor without saturating
• Write-through especially unpopular for SMPs

Write-back caches absorb most writes as cache hits
• Write hits don’t go on bus
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• But now how do we ensure write propagation and serialization?
• Need more sophisticated protocols: large design space
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Write-Back Snoopy Protocols

No need to change processor, main memory, cache …
• Extend cache controller and exploit bus (provides serialization)

Dirty state now also indicates exclusive ownership
• Exclusive: only cache with a valid copy (main memory may be too)
• Owner: responsible for supplying block upon a request for it

Design space
• Invalidation versus Update-based protocols
• Set of states
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Invalidation-Based Protocols
“Exclusive” state means can modify without notifying anyone else

• i.e. without bus transaction
M t fi t t bl k in x l i  t t  b f  itin  int  it• Must first get block in exclusive state before writing into it

• Even if already in valid state, need transaction, so called a write miss
Store to non-dirty data generates a read-exclusive bus transaction

• Tells others about impending write, obtains exclusive ownership
– makes the write visible, i.e. write is performed
– may be actually observed (by a read miss) only later
– write hit made visible (performed) when block updated in writer’s cache

O l   RdX  d t  ti  f   bl k  i li d b  b
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• Only one RdX can succeed at a time for a block: serialized by bus
Read and Read-exclusive bus transactions drive coherence actions

• Writeback transactions also, but not caused by memory operation and 
quite incidental to coherence protocol
– note: replaced block that is not in modified state can be dropped 

Update-Based Protocols

A write operation updates values in other caches
• New, update bus transaction

Advantages
• Other processors don’t miss on next access: reduced latency

– In invalidation protocols, they would miss and cause more 
transactions

• Single bus transaction to update several caches can save 
bandwidth
– Also, only the word written is transferred, not whole block
d

CS 418– 15 –

Disadvantages
• Multiple writes by same processor cause multiple update 

transactions
– In invalidation, first write gets exclusive ownership, others local

Detailed tradeoffs more complex

Invalidate versus Update

Basic question of program behavior
• Is a block written by one processor read by others before it is 

rewritten?rewritten?
Invalidation:

• Yes =>  readers will take a miss
• No =>  multiple writes without additional traffic

– and clears out copies that won’t be used again
Update:

• Yes =>  readers will not miss if they had a copy previously
– single bus transaction to update all copies

CS 418– 16 –

g p p
• No =>  multiple useless updates, even to dead copies

Need to look at program behavior and hardware complexity
Invalidation protocols much more popular

• Some systems provide both, or even hybrid
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Basic MSI Writeback Inval Protocol

States
• Invalid (I)
• Shared (S): one or more
• Dirty or Modified (M): one only

Processor Events:
• PrRd (read)
• PrWr (write)

Bus Transactions
• BusRd: asks for copy with no intent to modify
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BusRd: asks for copy with no intent to modify
• BusRdX: asks for copy with intent to modify
• BusWB: updates memory

Actions
• Update state, perform bus transaction, flush value onto bus

State Transition Diagram
PrRd/— PrWr/—

M

PrRd/—
BusRd/—

S BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd
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• Write to shared block:
– Already have latest data; can use upgrade (BusUpgr) instead of BusRdX

• Replacement changes state of two blocks: outgoing and incoming

PrWr/BusRdX
BusRd/

I

Satisfying Coherence

Write propagation is clear
Write serialization?

• All writes that appear on the bus (BusRdX) ordered by the bus
– Write performed in writer’s cache before it handles other 

transactions, so ordered in same way even w.r.t. writer
• Reads that appear on the bus ordered wrt these
• Writes that don’t appear on the bus:

– sequence of such writes between two bus xactions for the block must 
come from same processor, say P
i  i li ti  th    b t  th  t  b  ti

CS 418– 19 –

– in serialization, the sequence appears between these two bus xactions
– reads by P will seem them in this order w.r.t. other bus transactions
– reads by other processors separated from sequence by a bus xaction, 

which places them in the serialized order w.r.t the writes
– so reads by all processors see writes in same order

Lower-Level Protocol Choices

BusRd observed in M state: what transition to make?

Depends on expectations of access patternsDepends on expectations of access patterns
• S: assumption that I’ll read again soon, rather than other will 

write
– good for mostly read data
– what about “migratory” data

»I read and write, then you read and write, then X reads and 
writes...

»better to go to I state, so I don’t have to be invalidated on your 
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g , y
write

• Synapse transitioned to I state
• Sequent Symmetry and MIT Alewife use adaptive protocols

Choices can affect performance of memory system
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MESI (4-state) Invalidation Protocol
Problem with MSI protocol

• Reading and modifying data is 2 bus transactions, even if no sharing
– e g  even in sequential programe.g. even in sequential program
– BusRd (I->S) followed by BusRdX or BusUpgr (S->M)

Add exclusive state: write locally without transaction, but not 
modified
• Main memory is up to date, so cache not necessarily owner
• States

– invalid
– exclusive or exclusive-clean (only this cache has copy  but not modified)
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exclusive or exclusive clean (only this cache has copy, but not modified)
– shared (two or more caches may have copies)
– modified (dirty)

• I -> E on PrRd if no other processor has a copy
– needs “shared” signal on bus: wired-or line asserted in response to 

BusRd

MESI State Transition Diagram
PrWr/—

B Rd/Fl h
BusRdX/Flush

M

PrRd

BusRd/Flush

PrWr/BusRdX

PrWr/—

PrRd/—

PrRd/—

E

S

BusRdX/Flush

BusRdX/Flush

BusRd/
Flush

PrWr/BusRdX

PrRd/
BusRd (S) 
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• BusRd(S) means shared line asserted on BusRd transaction
• Flush’: if cache-to-cache sharing (see next), only one cache flushes data
• MOESI protocol: Owned state: exclusive but memory not valid

PrRd/ 

PrRd/
BusRd/Flush

I

BusRd(S)

Lower-level Protocol Choices

Who supplies data on miss when not in M state: memory or cache?
Original, lllinois MESI: cache, since assumed faster than memory

• Cache-to-cache sharing
Not true in modern systems

• Intervening in another cache more expensive than getting from 
memory

Cache-to-cache sharing also adds complexity
• How does memory know it should supply data (must wait for caches)
• Selection algorithm if multiple caches have valid data
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But valuable for cache-coherent machines with distributed memory
• May be cheaper to obtain from nearby cache than distant memory
• Especially when constructed out of SMP nodes (Stanford DASH)

Dragon Write-Back Update Protocol

4 states
• Exclusive-clean or exclusive (E): I and memory have it

Sh d l (S )   I  th  d b   b t I’  t • Shared clean (Sc):  I, others, and maybe memory, but I’m not owner
• Shared modified (Sm): I and others but not memory, and I’m the owner

– Sm and Sc can coexist in different caches, with only one Sm
• Modified or dirty (D): I and nobody else

No invalid state
• If in cache, cannot be invalid
• If not present in cache, can view as being in not-present or invalid 

state
  d  
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New processor events: PrRdMiss, PrWrMiss
• Introduced to specify actions when block not present in cache

New bus transaction: BusUpd
• Broadcasts single word written on bus; updates other relevant caches
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Dragon State Transition Diagram
PrRd/—

BusRd/

PrRd/— BusUpd/Update

E Sc
PrRdMiss/BusRd(S)PrRdMiss/BusRd(S)

PrWr/—

PrWr/BusUpd(S)

BusRd/—

BusUpd/Update

PrWr/BusUpd(S)
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Sm M

PrWr/—
PrRd/—PrRd/—

PrWrMiss/(BusRd(S); BusUpd) PrWrMiss/BusRd(S)

PrWr/BusUpd(S)

BusRd/Flush

BusRd/Flush

PrWr/BusUpd(S)

Lower-level Protocol Choices

Can shared-modified state be eliminated?
• If update memory as well on BusUpd transactions (DEC Firefly)
• Dragon protocol doesn’t (assumes DRAM memory slow to update)

Should replacement of an Sc block be broadcast?
• Would allow last copy to go to E state and not generate updates
• Replacement bus xaction is not in critical path, later update may be

Shouldn’t update local copy on write hit before controller gets bus
• Can mess up serialization

Coherence, consistency considerations much like write-through case
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r n , n t n y n rat n  mu   wr t t r ug  a

In general, many subtle race conditions in protocols
But first, let’s illustrate quantitative assessment at logical level

Assessing Protocol Tradeoffs

Tradeoffs affected by performance and organization characteristics
Decisions affect pressure placed on these
Part art and part science

• Art: experience, intuition and aesthetics of designers
• Science: Workload-driven evaluation for cost-performance

– want a balanced system: no expensive resource heavily underutilized
Methodology:

• Use simulator; choose parameters per earlier methodology (default 
1MB, 4-way cache, 64-byte block, 16 processors; 64K cache for some)
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• Focus on frequencies, not end performance for now
– transcends architectural details, but not what we’re really after

• Use idealized memory performance model to avoid changes of reference 
interleaving across processors with machine parameters
– Cheap simulation: no need to model contention

Impact of Protocol Optimizations
(Computing traffic from state transitions discussed in book)
Effect of E state, and of BusUpgr instead of BusRdX
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• MSI versus MESI doesn’t seem to matter for bw for these workloads
• Upgrades instead of read-exclusive helps
• Same story when working sets don’t fit for Ocean, Radix, Raytrace
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Impact of Cache Block Size
Multiprocessors add new kind of miss to cold, capacity, conflict

• Coherence misses: true sharing and false sharing
– latter due to granularity of coherence being larger than a word

• Both miss rate and traffic matter
Reducing misses architecturally in invalidation protocol

• Capacity: enlarge cache; increase block size (if spatial locality)
• Conflict: increase associativity
• Cold and Coherence: only block size

Increasing block size has advantages and disadvantages
• Can reduce misses if spatial locality is good
• Can hurt too
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• Can hurt too
– increase misses due to false sharing if spatial locality not good
– increase misses due to conflicts in fixed-size cache
– increase traffic due to fetching unnecessary data and due to false 

sharing
– can increase miss penalty and perhaps hit cost

Impact of Block Size on Miss Rate
Results shown only for default problem size: varied behavior

• Need to examine impact of problem size and p as well (see text)
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•Working set doesn’t fit: impact on capacity misses much more critical
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Impact of Block Size on Traffic
Traffic affects performance indirectly through contention
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• Results different than for miss rate: traffic almost always increases
• When working sets fits, overall traffic still small, except for Radix
• Fixed overhead is significant component

– So total traffic often minimized at 16-32 byte block, not smaller
• Working set doesn’t fit: even 128-byte good for Ocean due to capacity
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Making Large Blocks More Effective

Software
• Improve spatial locality by better data structuring
• Compiler techniques

Hardware
• Retain granularity of transfer but reduce granularity of coherence

– use subblocks: same tag but different state bits
– one subblock may be valid but another invalid or dirty

• Reduce both granularities, but prefetch more blocks on a miss
• Proposals for adjustable cache block size
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p f j
• More subtle: delay propagation of invalidations and perform all at 

once
– But can change consistency model: discuss later in course

• Use update instead of invalidate protocols to reduce false sharing 
effect
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Update versus Invalidate

Much debate over the years: tradeoff depends on sharing patterns
Intuition:

• If those that used continue to use, and writes between use are few, 
update should do better
– e.g. producer-consumer pattern

• If those that use unlikely to use again, or many writes between 
reads, updates not good
– “pack rat” phenomenon particularly bad under process migration
– useless updates where only last one will be used

Can construct scenarios where one or other is much better
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Can construct scenarios where one or other is much better
Can combine them in hybrid schemes (see text)

• E.g. competitive: observe patterns at runtime and change protocol
Let’s look at real workloads
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• Lots of coherence misses: updates help
• Lots of capacity misses: updates hurt (keep data in cache uselessly)
• Updates seem to help, but this ignores upgrade and update traffic

Upgrade and Update Rates (Traffic)

• Update traffic is substantial
• Main cause is multiple writes by a 
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processor before a read by other
– many bus transactions versus one in 

invalidation case
– could delay updates or use merging 

• Overall, trend is away from update 
based protocols as default
– bandwidth, complexity, large blocks 

trend, pack rat for process migration
• Will see later that updates have 
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• Will see later that updates have 
greater problems for scalable systems
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