
15-418/618 Fall 2021

Assignment 3
Parallel VLSI Wire Routing via OpenMP

Assigned: Monday, September 27th
Due: Wednesday, October 13th, 11:59PM

Last day to handin: Friday, October 15th, 11:59PM

This assignment aims to introduce you to parallel programming using OpenMP and illustrate how the
realities of parallel machines affect performance. Although the sequential version of the task you are asked
to parallelize is relatively straightforward, there are a number of subtle issues involved in achieving high
performance with your parallel code.

1 Policy and Logistics

You will work in groups of two for the problems in this assignment. Turn in a single writeup per group,
indicating all group members. Any clarifications and revisions to the assignment will be posted on the
class “Assignments” web page, and also announced via our class Piazza web site.

You may clone the Assignment 3 starter code from the course Github:

git clone https://github.com/cmu15418f21/Assignment-3.git

2 Programming Task: Parallel VLSI Wire Routing

The programming task for this assignment is inspired by VLSI wire routing. You will be given input files
of the format shown in Figure 1 that specify the dimensions of a 2D grid, along with the end points for a
collection of wires. Your mission is to route the path of each of these wires using Manhattan-style routes
(i.e., only 90 degree bends in the routes) that fall within the bounding box specified by these two end
points.

X_dimension Y_dimension # dimensions of the 2D grid

number_of_wires # total number of wires, each of which is described below

X1 Y1 X2 Y2 # coordinates of the endpoints for wire 0

X1 Y1 X2 Y2 # coordinates of the endpoints for wire 1

X1 Y1 X2 Y2 # coordinates of the endpoints for wire 2

...

X1 Y1 X2 Y2 # coordinates of the endpoints for wire (number_of_wires-1)

Figure 1: Format of the input file that describes a particular problem. Note that the comments to the
right will not actually be in the file: they are just there to describe the contents of the file.

To simplify the problem, you may assume that each wire has at most two “bends”, but the wires should
always make forward progress from one end point to the other. Your goal is not to minimize wire length
(all valid routes will have the same length), but rather to minimize the maximum number of wires that
overlap the same position in this 2D grid.

1

This metric is important in VLSI because it corresponds to the number of layers of metal that are needed
in the VLSI process to route the chip. (The more layers of metal, the more expensive the process.) Even
if only a single point in the 2D grid requires an additional layer of metal, you still incur the cost of the
more expensive VLSI process.

Your algorithm will begin by visiting each wire once to place it in an initial route using a simple greedy
heuristic. After the initial routes have been created, you will then make several iterative passes over the
wires, possibly improving the route of each wire as you visit it. To illustrate how your algorithm will work,
consider the small example input file in Figure 2, which specifies five wires to be routed in a 10x10 grid.
(The first wire is between points (1, 1) and (7, 6), the second is between points (3, 2) and (5, 6), etc.)

10 10
5
1 1 7 6
3 2 5 6
4 3 2 8
6 2 3 7
7 4 5 8

Figure 2: Illustration of an input file.

Figure 3 illustrates a hypothetical snapshot of the state of this algorithm for the input file shown in
Figure 2. On the left-hand side of this figure, we see the current routes of the wires in the 2D grid. (Note
that the wires at coordinates (7,4), (7,5), and (7,6) are occupying the same space, even though they were
not drawn directly on top of each other for the purpose of illustration.) An important data structure for
your algorithm is a 2D cost array, as illustrated on the right-hand side of Figure 3. Each entry in the cost
array is simply the number of wires (including end points) that are routed through that position in space.
For this particular routing example, we can get away with two layers of metal, since the maximum value
in the cost array is two.

9876543210

9
8
7
6
5
4
3
2
1
0

Snapshot of Wire Routes

9876543210

00000000009
00111111008
00111210007
00211210006
00210110005
00221221104
00010110103
00010010102
00000000101
00000000000

Corresponding Cost Array

Figure 3: Example of a potential wire routing (shown on the left) and the corresponding cost array (shown
on the right), for the input file given in Figure 2.

2

3 Further Algorithmic Details

Metric For Optimization:

Your first priority in choosing a route is to select one that minimizes the maximum cost array value
along the route. Given a set of routes with equivalent maximum cost array values, your next priority
is to minimize the sum of the cost array values along the entire path. Beyond that, you can break
ties arbitrarily.

For example, if we were to revisit the red wire in Figure 3 with end points at coordinates (1, 1) and
(7, 6), a better route for this wire would consist of two segments: one segment running from (1, 1)
to (7, 1), and another running from (7, 1) to (7, 6) (with a 90 degree bend at position (7, 1)). While
this improved route still has a maximum cost array value of 2, it has a lower total cost over its entire
path (15 versus 18).

A Single Iteration:

After initially placing the wires using a simple greedy heuristic, you should make several iterative
passes over the wires, possibly improving each wire route as you visit it. To simplify the problem,
you may assume each wire has at most two “bends”. For examples, see Figure 4, which contains
wires that are on straight lines, wires with only one “bend” and wires with up to two “bends”:

2 30 1 6 74 5

0

30 65

1

22

3

4

55

6

Figure 4: Examples of possible wire shapes. Wires can lie along vertical or horizontal lines, have one bend
in their route, or have at most two bends in their routes.

Restricting the number of bends in the wire drastically reduces the search space. Consider a wire with
endpoints at (0, 0) and (x, y), with x > 0, y > 0. The total number of possible routes is exactly x+y.
To see this, consider the following route, which first travels along the x-axis: (0, 0)→ (1, 0)→ (1, y)→
(x, y). There are exactly two “bends”, represented by intermediate points along the route. Another
possible route is (0, 0) → (2, 0) → (2, y) → (x, y) and in general (0, 0) → (a, 0) → (a, y) → (x, y)
where 0 < a < x. In the special case of routing (0, 0) → (x, 0) → (x, y) there is actually only one
“bend” or intermediate point along the route.

Similarly, if we want to first travel along the y-axis: (0, 0) → (0, b) → (x, b) → (x, y) holds, as long

3

as 0 < b < y, as well as the route (0, 0) → (0, y) → (x, y). You can convince yourself that these are
all the routes possible between (0, 0) and (x, y).

In general, the total number of routes will be ∆x + ∆y, assuming the endpoints do not lie on a
straight line (then, there is only one possible route according to our scenario).

Consider the wire placement algorithm for a particular wire whose two endpoints are not on a straight
line. The “inner loop” code might (but does not need to) follow this basic outline. “Minimum path”
refers to the minimum cost path according to our metric for optimization.

1. Calculate cost of the current path, if not known. This is the current minimum path.

2. Consider all paths which first travel horizontally. If any cost less than the current minimum
path, that is the new minimum path.

3. Consider all paths which first travel vertically. If any cost less than the current minimum path,
that is the new minimum path.

It is acceptable for the inner loop of your implementation to differ from this outline; this is merely
one way to approach the problem.

Simplified Simulated Annealing: A real version of this application would iterate until it no longer
achieves significant improvements, and it might use simulated annealing to avoid being trapped
in local minima. Since our focus in this assignment is on understanding and improving parallel
performance rather than generating a high-quality CAD tool, we will simplify things a bit.

• Rather than iterating until the solution quality no longer improves, you may simply iterate for
a fixed number of iterations Niters after the initial wire placement. The value of Niters should
be an input parameter to your program. By default, please set Niters to 5.

• Rather than performing a true simulated annealing algorithm, you may perform a crude ap-
proximation of simulated annealing as follows. You will visit each wire to see whether its route
can be improved. With some probability P , where P is an input parameter, you will pick a
new route1 uniformly at random from the set of all possible routes. Otherwise, you will use
the improved route your algorithm suggests. Choosing a random route with some probability
each iteration can help your algorithm escape poor local minima from which it cannot make any
further optimization progress.

This simply adds a step to the beginning of your algorithm:

1. Calculate cost of current path, if not known. This is the current minimum path.

2. Consider all paths which first travel horizontally. If any cost less than the current minimum
path, that is the new minimum path.

3. Consider all paths which first travel vertically. If any cost less than the current minimum
path, that is the new minimum path.

4. With probability 1 − P , choose the current minimum path. Otherwise, choose a path
uniformly at random from the space of ∆x + ∆y possible routes.

Output from your program: The output from your program should include the contents of the cost
array (named costs_$inputFileName_$numThreads.txt) and a representation of the actual wire
routes for each wire (named output_$inputFileName_$numThreads.txt). The content format for
the cost array output file should be a space-delimited matrix of numbers:

1It is acceptable to skip this step when the minimum route between two points lies on a straight line.

4

<maxX> <maxY>

<c11> <c12> ... <c1n>

<c21> <c22> ... <c2n>

...

<cm1> <cm2> ... <cmn>

where <maxX> and maxY are the x and y dimensions of the grid. The content for the wire routes
output file should be in the format used in Figure 1:

<maxX> <maxY>

<# of wires>

<w1x1> <w1y1> <w1x2> <w1y2> <w1x3> <w1y3> ...

<w2x1> <w2y1> <w2x2> <w2y2> <w1x3> <w1y3> ...

...

The computation for writing these out can be done sequentially (on one thread) after the parallel
algorithm completes, and it should not be counted against your parallel speedup. In your writeup,
please present the routes and the cost array in a graphical format (not as dumps of text or numbers).
We have provided a visualization tool, located in code/WireGrapher.java, to help you with this
part of the assignment. You can compile and run WireGrapher using the following commands (make
sure to SSH with the -Y flag):

$ javac WireGrapher.java

$ java WireGrapher [input]

4 Parameter Names

Your executable should accept the following parameters as command line arguments:

<executable> -f <filename> -n <num_threads> [-p <P>] [-i <N_iters>]

where both P and N_iters are optional arguments.

5 Logistics

You should parallelize these applications using OpenMP to create a shared-memory application. Further
details on how to use the OpenMP can be found in tutorials/openmp.pdf, along with several example C
programs in examples. You can also take a look at the following documents: The OpenMP 3.0 specification
and An OpenMP cheat sheet .

We will make a number of different input files available to you (using the format shown in Figure 1)
in the code/inputs directory. We will provide inputs at a variety of different sizes. Please start with
the test files in the code/inputs/testinput first in order to debug your program. Once it appears to
be working, try the files in code/inputs/timeinput. You will need to report your performance on the
code/inputs/timeinput files as part of your assignment submission.

We provide a script called code/validate.py to validate the consistency of output wire routes and the
cost array. You can run python validate.py -h for instructions on how to use the script.

5

http://www.openmp.org/mp-documents/spec30.pdf
http://openmp.org/mp-documents/OpenMP3.1-CCard.pdf

6 The Parallel Machines

Feel free to use the machines in the Gates cluster for your initial development and testing. Host names for
these machines are ghcX.ghc.andrew.cmu.edu, where X is between 47 and 86.

However, you will collect your final performance numbers on the PSC Bridges-2 RM (Regular Memory) and
GPU machines. For more information on using these machines, please see the tutorials/machines.pdf

document. You may also find it helpful to refer to the Bridges-2 User Guide.

7 Measuring Performance

Execution time: To evaluate the performance of the parallel program, measure the following times:

1. Initialization Time: The time required to perform initialization, read the command line arguments,
and create the separate processes. Start timing when the program starts, and end just before the
main computation starts.

2. Computation Time: This is strictly the time to compute the result. (It does not include the time
necessary to print them out.) Start timing when the main computation starts after all the processes
have been created, and finish when all of the results have been calculated.

Note that: Total Time = Initialization Time + Computation Time. Speedup is calculated as T1
Tp

, where
T1 is the time for one processor, and Tp is the time for P processors. Computation Speedup uses only
Computation Time, and Total Speedup uses the Total Time. The starter code includes some basic timing
code that you may use.

Cache misses: In this assignment, we will also be using hardware counters to report certain performance
metrics at the program level. In particular, we will measure the number of cache misses of your parallel
programs using perf, a performance analysis tool for Linux. You can use the following command to
measure the total cache misses across all threads:

$ perf stat -e cache-misses $PROGRAM

8 Performance Analysis

The goal of this assignment is for you to think carefully about how real-world effects in the machine
are limiting your speedup, and how you can improve your program to get better performance. If your
performance is disappointing, then it is likely that you can restructure your code to make things better.
We are especially interested in hearing about the thought process that went into designing
your program, and how it evolved over time based on your experiments.

Your report should include the following items:

1. A detailed discussion of the design and rationale behind your approach to parallelizing the algorithm.
Specifically try to address the following questions:

• What approaches have you took to parallelize the algorithm?

• Where is the synchronization in your solution? Did you do anything to limit the overhead of
synchronization?

6

https://www.psc.edu/resources/bridges-2/user-guide-2/

• Why do you think your code is unable to achieve perfect speedup? (Is it workload imbalance?
communication/synchronization? data movement?)

• At high thread counts, do you observe a drop-off in performance? If so, (and you may not) why
do you think this might be the case?

2. The output of your program (shown graphically using the WireGrapher tool) for the input circuits
in code/inputs/timeinput.

3. A plot of the Total Speedup and Computation Speedup vs. Number of Processors (Nprocs) for the
input circuits in code/inputs/timeinput, where Nprocs = 1, 4, 16, 64, and 128. Please measure
your speedup on PSC Bridges-2.

4. A plot of the total number of cache misses for the entire program vs. Number of Processors (Nprocs)
for the input circuits in code/inputs/timeinput, where Nprocs = 1, 4, and 16. You can measure
this using perf stat -e cache-misses $PROGRAM on the Gates cluster machines (unfortunately,
this measurement is not available on PSC Bridges-2).

5. A plot of the arithmetic mean of per-thread cache misses vs. Number of Processors (Nprocs).

6. Discuss the results that you expected for all the plots in Questions 2-5 and explain the reasons for
any non-ideal behavior that you observe.

7. A plot of the Total Speedup and Computation Speedup on 128 threads with respect to 1 thread where
the value of P (i.e. the probability of forcing a wire to be rerouted through simulated annealing) is
varied between 0.01, 0.1, and 0.5, for the input circuits in code/inputs/timeinput. (If running with
1 thread is too slow, you are free to change the baseline to 4 threads or even 16 threads)

8. Discuss the impact of varying P on performance, explaining any effects that you see.

9. A plot of the Total Speedup and Computation Speedup on 128 threads where the input problem size
is varied. There are different ways to vary the problem size, for example, grid size, number of wires,
the average length of wires or even the layout of the wires. Here, please explore the different grid size
and number of wires. Please report the results for the input circuits in code/inputs/problemsize.
(Again, if running with 1 thread is too slow, you are free to change the baseline to 4 threads or even
16 threads)

10. Discuss the impact of problem size (both grid size and number of wires) on performance.

9 Grading

You will be graded on the report items in Section 8. While we do ask you to include your performance on
the inputs provided in code/inputs/timeinput, we won’t put too much emphasis on performance. We
care a lot more about your thought process in parallelizing the algorithm and your analysis of the results.
That being said, here are the computation time metrics (in seconds) for the reference solution to serve as
a performance target:

7

Threads easy 4096 medium 4096 hard 4096

1 1.59 14.27 23.53
4 0.62 6.59 10.16
16 0.21 1.89 3.07
64 0.21 0.68 1.12

10 Hand In

If you are working with a partner, please form a group on Autolab before submitting your assignment.
One submission per group is sufficient.

Your submission should be a .tar file with a single directory titled andrewid1_andrweid2 consisting of
your source code for wireroute.cpp and wireroute.h as well as your outputs for each of the files in
code/inputs/timeinput with -n 128. Please follow the directory structure below.

andrewid1_andrewid2

code

wireroute.cpp

wireroute.h

Extra helper files, if applicable.

outputs

output_easy_4096_128.txt

output_hard_4096_128.txt

output_medium_4096_128.txt

Also remember to do a good job on commenting your code, which is very important.

Please upload your writeup in .pdf format to Gradescope (one submission per team) and select the
appropriate pages for each part of the assignment. After submitting, you will be able to add your teammate
using the add group members button on the top right of your submission. Your report should include the
items listed in Section 8.

8

	Policy and Logistics
	Programming Task: Parallel VLSI Wire Routing
	Further Algorithmic Details
	Parameter Names
	Logistics
	The Parallel Machines
	Measuring Performance
	Performance Analysis
	Grading
	Hand In

