Tolerating Latency Through
Prefetching

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2019

I Carnegic Melion I

Prefetching CMU 15-418/618, Fall 2019 1

The Memory Latency Problem

100,000

110, 1 —{ ;

2 1000 SR USSR

100_ ..

Performance

10_ ...

1995 2000 2005 2010

Yeal’ From Hennessy & Patterson, CA: AQA, 5t Edition

1980 1985 1990

* N processor speed >> /N memory speed
e caches help, but are not a panacea

I Carnegic Mellon I

CMU 15-418/618, Fall 2019 2 Prefetching

Even Worse: Remote Latencies in a NUMA Multiprocessors

Processor

Cache

Processor

Cache

Memory

Memory

Processor

Cache

Memory

Scalable Interconnection Network

* Long cache miss latencies due to:

— remote memory accesses

— cache coherence

CMU 15-418/618, Fall 2019

Carnegie Mellon -

Prefetching

Impact of Memory Latency in these Parallel Machines

140 synchronization
memory access stalls
120 instructions

100
80
60
40
20

0

Normalized Execution Time

OCEAN MP3D LOCUS BARNES
LU CHOLESKY WATER PTHOR

e 16-processor shared-address space machine (similar to DASH multiprocessor)
— directory-based cache coherence
— latencies=1:15:30:100 : 130 processor cycles
— 6 of 8 spend > 50% of time stalled for memory!

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 5 Prefetching

-]
Tolerating Latency Through Prefetching

Without Prefetching With Prefetching
Prefetch A —>

Time PrefetchB —>
Fetch A |
| Fetch B
Load A —> Load A —> |

Load B —>

_>|

Fetch A

Load B —>

~ e

Fetch B . Executing Instructions

| . Stalled Waiting for Data

e overlap memory accesses with computation and other accesses

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 7 Prefetching

-]
Benefits of Prefetching

e Prefetch early enough
— completely hides memory latency

e Issue prefetches in blocks
— pipeline the misses
— only the first reference stalls

e Prefetch with ownership
— reduces write latency, coherence messages

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 8 Prefetching

-]
Types of Prefetching

e Large cache blocks
— limitations: spatial locality, false sharing

* Hardware-controlled prefetching
— modern processors detect (and prefetch) simple strided access patterns
— limitations: simple patterns, page boundaries, potential cache pollution

e Software-controlled prefetching
— explicit instructions in modern instruction sets
— advantages: more sophisticated access patterns

— limitations: instruction overhead?

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 9 Prefetching

Compiler-Based Prefetching

* How well can we do if we fully-automate prefetch insertion?

* What access patterns can we can handle successfully?
— arrays, pointers?

* Improving performance requires:
— maximizing benefit, while
— minimizing overhead

T Carnegic Melion I

CMU 15-418/618, Fall 2019 14 Prefetching

Prefetching Concepts

possible only if addresses can be determined ahead of time
coverage factor = fraction of misses that are prefetched
unnecessary if data is already in the cache

effective if data is in the cache when later referenced

Analysis: what to prefetch
— maximize coverage factor

— minimize unnecessary prefetches

Scheduling: when/how to schedule prefetches

— maximize effectiveness
— minimize overhead per prefetch

I Carnegic Mellon I

CMU 15-418/618, Fall 2019 15 Prefetching

Let’s Start with Prefetching for Sequential Applications

memory access st:
instructions

-
N
o

100

60
40
20

0 ure L7\ AT/ \/DEN

Normalized Execution Time

AN \J

A ®
CFFT2D BTRIX EMIT TOMCATV IS EP

Applications from SPEC, SPLASH, and NAS Parallel.
Memory subsystem typical of MIPS R4000 (100 MHz):
— 8K/ 256K direct-mapped caches, 32 byte lines
— miss penalties: 12 / 75 cycles
8 of 13 spend > 50% of time stalled for memory

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 16 Prefetching

-]
Reducing Prefetching Overhead

* instructions to issue prefetches
e extra demands on memory system

Hit Rates for Array Accesses

100

80

Hit Rate %

60

40

20

Benchmarks

e important to minimize unnecessary prefetches

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 17 Prefetching

Compiler Algorithm

Analysis: what to prefetch
* Locality Analysis

Scheduling: when/how to issue prefetches
* Loop Splitting
* Software Pipelining

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 18 Prefetching

-]
Steps in Locality Analysis

1. Find data reuse
— if caches were infinitely large, we would be finished

2. Determine “localized iteration space”

— set of inner loops where the data accessed by an iteration is expected
to fit within the cache

3. Find data locality:

— reuse N localized iteration space = locality

I Carnegic Mellon I

CMU 15-418/618, Fall 2019 19 Prefetching

Data Locality Example

for i = 0 to 2

for j = 0 to 100 O Hit
A[i][3] = B[3j]1[0] + B[j+1][0]; @ WMiss
A[i] [3] B[j+1][0] B[j]1[0]

‘"@0000000 00000000 00000000

Q0000000 O000000O0 O000000O0
00 00eo0eo 0000000 @O0 000000
J J J

Spatial Temporal Group

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 20 Prefetching

Localized Iteration Space

Given finite cache, when does reuse result in locality?

for i = 0 to 2
for j = 0 to 8

for i = 0 to 2
for j = 0 to 1000000

A[il[§] = B[31[0] + B[3+1][0]; A[il[§] = B[31[0] + B[3+1][0];
| 00000000 | ‘eoooo\00o00
B[J+11[0] o0o00000OO0OO B[J+11[0] eoeee@f/e0@ee
00000000 oo o0oo0\0000

J J

Localized: both i and j loops Localized: j loop only

Localized if accesses less data than effective cache size

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 25 Prefetching

Prefetch Predicate

Locality Type Miss Instance Predicate
None Every Iteration True
Temporal First Iteration i=0
Spatial Every | iterations (L modl)=0
(I = cache line size)

Example: for i = 0 to 2
for j = 0 to 100
A[i][3] = B[3j][0] + B[j+1][0];
Reference Locality Predicate

A[i]l[7] il _ none (3 mod2)=0
. ~ | spatial

B[j+1][O] i] _ | temporal i=0
. - none

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 27 Prefetching

Compiler Algorithm

Analysis: what to prefetch
* Locality Analysis

Scheduling: when/how to issue prefetches
* Loop Splitting
e Software Pipelining

I Carnegic Mellon I

CMU 15-418/618, Fall 2019 28 Prefetching

-]
Loop Splitting

* Decompose loops to isolate cache miss instances
— cheaper than inserting IF statements

Locality Type Loop Transformation
None None
Temporal Peel loop i
Spatial Unroll loop 1 by |

* Apply transformations recursively for nested loops

e Suppress transformations when loops become too large

— avoid code explosion

I Carnegic Melion I

CMU 15-418/618, Fall 2019 30 Prefetching

Software Pipelining

Iterations Ahead = |_?l-—|

where / = memory latency, s = shortest path through loop body

Software Pipelined Loop

Original Loop (5 iterations ahead)
for (i = 0; i<100; i++) for (i = 0; i<5; i++) /* Prolog */
af[i] = O0; prefetch (&ali]) ;

for (i = 0; i<95; i++) { /* Steady State*/
prefetch (&a[i+5]) ;
af[i] = 0;

}

for (i = 95; i<100; i++) /*Epilog */
a[i] = 0;

I Carnegic Mellon I

CMU 15-418/618, Fall 2019 31 Prefetching

Example Revisited

Original Code Code with Prefetching
for (i =0; 1i < 3; i++) — prefetch(&A[0][0]) ;
for (j = 0; j < 100; j++) for (% : g,(g[<_+$];[g]‘)|'= 2) {
s1741 = B[S : . prefetch (&B[] ;
A[i] [3] = B[jl1[0] + B[j+1][0]; prefetch (sB[3+2] [01) ;
prefetch (&A[0] [j+1]1) ;
}
: for (§j =0; § <94; j +=2) {
O Cache Hit prefetch (&B[j+7]1[0]) ;
. . Cache Miss 1=0 < prefetch (&B[j+8] [0]) ;
prefetch (&A[0] [§+71) ;
ST R
. . A j+1] = B[j+ +B[j+ ;
A[i][]] }
i] for (j = 94; j < 100; j += 2) {
A[0][3j] = B[3j]1[0]+B[j+1][O];
Q0000000 A[0] [3+1] = B[3+1] [01+B[3+2] [0];
— }
‘O‘O‘0.0 — for (i =1; i < 3; i++) {
prefetch (&A[1i][0]) ;
[NoN FoX NeoX¥ Neo for (3 = 0; § < 6; § += 2)
j prefetch (&A[i] [j+1]);
for (§j =0; § < 94; j +=2) {
) prefetch (&A[i] [§+71)
B[j+1][0] {50 — A[i][3] = BI31[0] + BI3+1](0];
i 1 A[i] [j+1] = B[j+1]1[0] + B[j+2][0];
}
O0000000O0 for (§ = 94; 3§ < 100; § += 2) {
A[i] [3] = B[j1[0] + B[j+1][0];
00000000 A[i] [j+1] = B[j+1]1[0] + B[j+2][0];
00000000 : }
J

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 32 Prefetching

Performance of Prefetching Algorithm

prefetch memory overhead
memory access stalls
instructions

100 100 100 100 100 100 100

-
P
=]

-
N
o

00 100 100 100 100 100

100

95

Q
E
=
c
=
=
§ so 81 84 88 87 89 89
w | o 69
© 60
¢l
m
g 40
2 20
I I R N N N N R R R R S
MXM CHOLSKY GMTRY VPENTA OCEAN CG MG
CFFT2D BTRIX EMIT TOMCATV IS EP

(N = No Prefetching, S = Selective Prefetching)

* memory stalls reduced by 50% to 90%
e instruction and memory overheads typically low
6 0of 13 have speedups over 45%

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 35 Prefetching

Effectiveness of Locality Analysis (Continued)

Unnecessary Prefetches Coverage Factor

-
o
o
-
o
o

Indiscriminate
Selective

Percentage
(0]

S
Percentage
(0]

S

(o))
o

60

B
o

40

N
o

20

o

Benchmarks Benchmarks

 fewer unnecessary prefetches
e comparable coverage factor
* reduction in prefetches ranges from 1.5 to 21 (average = 6)

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 37 Prefetching

Effectiveness of Software Pipelining

-
=N
o

Original Miss Breakdown ™ nopf-miss

pf-miss
R -III

-
N
o

I pf-hit

100

Percentage

(2]
o

B~ o,
o o

N
o o

MXM CHOLSKY GMTRY VPENTA OCEAN CG MG
CFFT2D BTRIX EMIT TOMCATV IS EP

* Large pf-miss = ineffective scheduling
— conflicts replace prefetched data (CHOLSKY, TOMCATV)
— prefetched data still found in secondary cache

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 38 Prefetching

Prefetching Indirections

for (i = 0; i<100; i++)
sum += A[index[i]];

Analysis: what to prefetch
— both dense and indirect references
— difficult to predict whether indirections hit or miss

Scheduling: when/how to issue prefetches

— modification of software pipelining algorithm

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 40 Prefetching

Software Pipelining for Indirections

Original Loop

for (i = 0; i<100; i++)
sum += A[index[i]];

Software Pipelined Loop
(5 iterations ahead)

for (1 = 0; i<5; i++) /* Prolog 1 */
prefetch (&index[i]) ;

for (1 = 0; i<5; i++) { /* Prolog 2 */
prefetch (&index[i+5]) ;
prefetch (&A[index[i]]) ;

}

for (i = 0; i<90; i++) { /* Steady State*/
prefetch (&index[i+10]) ;
prefetch (&A[index[i+5]]) ;
sum += A[index[i]];

}

for (i = 90; i<95; i++) { /*Epilog1*/
prefetch (&A[index[i+5]]) ;
sum += A[index[i]];

}

for (i = 95; i<100; i++) /*Epilog2*/
sum += A[index[i]];

I Carnegic Melion [N

CMU 15-418/618, Fall 2019

41 Prefetching

Indirection Prefetching Results

140 prefetch memory overhead
memory access stalls
120 instructions
100 100 100
100 92 92 of

80
60
40
20

0

73

Normalized Execution Time

100
i
i
i
i
I

N D | N D |1 N D 1 N D |
IS CG MP3D SPARSPALI}

(N = No Prefetching, D = Dense-Only Prefetching, | = Indirection Prefetching)

e larger overheads in computing indirection addresses
e significant overall improvements for IS and CG

I Carnegic Melion I

CMU 15-418/618, Fall 2019 42 Prefetching

-
Prefetching for Parallel Shared-Address-Space Machines

Processor Processor Processor
Cache Cache Cache
000
Memory Memory Memory
[Scalable Interconnection Network }

 Main memory is physically distributed (aka NUMA)
— but logically a single, shared address space
 Hardware cache coherence

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 43 Prefetching

Prefetching for Multiprocessors

* Non-binding vs. binding prefetches:

— use non-binding since data remains coherent until accessed later

prefetch (&x) ;

LOCK (L) ;
X =x+ 1;
UNLOCK (L) ;

— no restrictions on when prefetches can be issued

e Dealing with coherence misses:

— localized iteration space takes explicit synchronization into account

e Further optimizations:

— prefetching in exclusive-mode in read-modify-write situations

I Carnegic Melion I

CMU 15-418/618, Fall 2019 44 Prefetching

Multiprocessor Results

o " prefetch memory overhead
§ 140 synchronization
= memory access stalls
s 120 instructions
3 100 o
()
X
W go
ko)
)
N 60
£
s 40
P
20
0
N S N S N S N S N S
OCEAN LU MP3D CHOLESKY LOCUS

* Memory stalls reduced by 50% to 90%
e Synchronization stalls reduced in some cases
- 4 of 5 have speedups over 45%

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 45 Prefetching

Effectiveness of Software Pipelining

I nopf-miss
- - pf-miss: too late
O pf-miss: invalidated

pf-miss: replaced
pf-miss: in s-cache
pf-hit

Percentage
o)
o

60

40

20

OCEAN MP3D LOCUS
LU CHOLESKY

* Large pf-miss = ineffective scheduling
— prefetched data still found in secondary cache

I Carnegic Melion I

CMU 15-418/618, Fall 2019 46 Prefetching

Exclusive-Mode Prefetching

Normalized Message Traffic Shared-Mode Only
120 Exclusive-Mode

100
80
60
40

20

0
OCEAN LU MP3D CHOLESKY LOCUS

* Message traffic reduced by 7% to 29%
* Relaxed memory consistency = write latency already hidden

T Carnegic Mellon [N

CMU 15-418/618, Fall 2019 47 Prefetching

Prefetching for Databases

e Hash Join

e Prefetching + SIMD in full queries

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 49 Prefetching

Simple Hash Join

e Build a hash table to index all tuples of the smaller relation
* Probe this hash table using all tuples of the larger relation

Hash Table

—

Probe
Relation

Build
Relation

* Random access patterns: little spatial or temporal locality

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 50 Prefetching

-]
Challenges

Hash Cell
__(hash code, ptr to build tuple)

| _—

Hash = 7 Build
Bucket > : Partition

Headers A
—— =

* Naive approach: prefetch within the processing of a single tuple

AT

— e.g., prefetch within a single hash table visit
* Does not work!
— dependencies essentially form a critical path
— addresses would be generated too late for prefetching
— randomness makes prediction almost impossible

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 51 Prefetching

-]
A Simplified Probing Algorithm

Hash Cell
__(hash code, ptr to build tuple)

e e | | =
Hash [= — Build

Bucket | ———> I Partition

Headers ///E
—— =T

foreach tuple in probe partition {
compute hash bucket number;
visit the hash bucket header;
visit the hash cell array;

visit the matching build tuple to
compare keys and produce output tuple;

}

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 52 Prefetching

-]
An Intuitive Way to Represent the Algorithm

0
I
1
foreach tuple in probe partition { 1
0 compute hash bucket number; i
3 0
/ !
1 visit the hash bucket header; 1
Cache |
miss 2
I
latency o 3
2 visit the hash cell array; 0
I
\ !
I
3 visit the matching build tuple to 2
compare keys and produce output tuple; ;
} |
1
I
2
I
3

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 53 Prefetching

-]
Group Prefetching

foreach group of tuples in probe partition {
foreach tuple in the group {
compute hash bucket number;
prefetch the target bucket header;
}
foreach tuple in the group {
visit the hash bucket header;
prefetch the hash cell array;
}
foreach tuple in the group {
visit the hash cell array;
prefetch the matching build tuple;

}
foreach tuple in the group {

W =N = = O
W =N = = O
W =N = = O

W e N = = 0O
W e N = = 0O
W e N = = 0O

Wem N =R =0
Wem N =R =0
Wem N =R =0

visit the matching build tuple to
compare keys and produce output tuple;

}
}

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 54 Prefetching

Applying Prefetching & SIMD to Queries: e.g., TPC-C Q19

SELECT SUM(...) AS revenue
FROM LineItem JOIN Part ON 1_partkey = p_partkey

WHERE (CLAUSE1) OR (CLAUSE2) OR (CLAUSE3) m
£
Py 450
i E
e
| P3 = 300
1 E
I o 150
Q
X
J9 (11]
I Baseline
P1 > P2 Optimizations
/ \ o1 Modification: P2 = (LineItem — 01 — =1 —=b>d— 09 — I)
Description: Apply SIMD to predicate o1 (LineItem).
part o1 02 Modification: —
Description: Use = to prefetch buckets during probe of <.
’I 03 Modification: P2 = (Lineltem — 07 — =] —=<— S5 —
L. It o9 —+ =23 — 1)
Ineltem Description: Insert staging points between every pair of operators.

e SIMD and prefetching are complementary: over 2X speedup

Carnegie Mellon -

CMU 15-418/618, Fall 2019 55 Prefetching

-
A More Complex Query from TPC-C: Q3

D0 P1 (O6d P2 NN P3 B P4

Q m
£
| P4 < 1200
Sort £
| T 800
9
Mo (Group) P3 =
/ \ o
My P2 o3 i
P1 0 .
/ \ ‘ I Baseline O1
I‘ ‘ I o1 Modification: P1 = (Customer — o1 — =1 —x<1)
Description: Apply SIMD to predicate oy (Cutomer).
customer orders 02 Modification: P2 = (Orders — 02 — Zo —bxi;—<l2)
Description: Apply SIMD to predicate o2 (Orders).
Modification: —

03
Description: Use =5 to prefetch buckets during 0<1; probe.

Modification: P2 = (Orders — 02 — S5 —<1— Z3 —I<ig)
Description: Use =3 to prefetch buckets during build of t<ia.
Modification: P3 = (LineItem — o3 — =4 —b<io— Sort)
05 . .

. . Description: Apply SIMD to predicate o3.

e SIMD + Prefetching = large improvement Modification: —

06
Description: Use =4 to prefetch buckets for p<iz probe.

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 56 Prefetching

04

-
Prefetching Only Works if there is Sufficient Memory Bandwidth

Without Prefetching With Prefetchin
Prefetch A —>

Time PrefetchB —>
Fetch A |

Fetch B
LoadA —> LoadA —>
I Load B —>
Fetch A
Load B —>
Fetch B . Executing Instructions

| . Stalled Waiting for Data

e |f you are already bandwidth-limited, then prefetching cannot help

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 57 Prefetching

How Can We Provide Sufficient Memory Bandwidth?

Recent enabling technology: 3D stacking of DRAM chips
— DRAMs connected via through-silicon-vias (TSVs) that run through the chips

* TSVs provide highly parallel connection between logic layer and DRAMs
— Base layer of stack “logic layer” is memory controller, manages requests from processor
— Silicon “interposer” serves as high-BW interconnect between DRAM stack and processor

SV
Microbump

PHY GPU/CPU/Soc Die

000000000 0 0 000

Package Substrate

Technologies:
— Micron/Intel’s Hybrid Memory Cube (HMC)
— AMD’s High-Bandwidth Memory (HBM): 1024 bit interface to stack

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 58 Prefetching

GPUs Have Been Adopting HBM Technologies

_~ Stacked Memory

AMD Radeon Fury GPU (2015)

* 4096-bit interface:
* 4 HBM chips.x 1024 bit interface per chip

* 512 GB/sec BW

Logic Die “

_~ (PU/GPU

/ -~ Package

Substrate

Interposer

NVIDIA P100 GPU (2016)

* 4096-bit interface:
* 4 HBM2 chips x 1024 bit interface per chip

* 720 GB/sec peak BW
* 4x4GB=16 GB capacity

T carnegie Melion [
59 Prefetching

CMU 15-418/618, Fall 2019

.
-
=
=
-

-]
Xeon Phi (Knights Landing) MCDRAM

. 2x16 X4
16 GB in package stacked DRAM uwﬂ mﬂ 18 0 OMI mconam tmm
* Can be configured as either: |
— 16 GB last level cache

— 16 GB separate address space
* aka “flat mode”

PCle
Gen 3

connected by

2D Mesh
Interconnect

* |Intel’s claims:

wrmZZ>»ION & OO0 w
wrmEE>PIEIN X200 w

— ~same latency at DDR4
— ~5x bandwidth of DDR4
— ~5x less energy cost per bit transferred

// allocate buffer in MCDRAM (“high bandwidth” memory malloc)
float* foo = hbw malloc(sizeof (float) * 1024);

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 60 Prefetching

Bonus Material: Prefetching for Recursive Data Structures

 Examples:
— linked lists, trees, graphs, ...
e A common method of building large data structures

— especially in non-numeric programs

e Cache miss behavior is a concern because:

— large data set with respect to the cache size
— temporal locality may be poor
— little spatial locality among consecutively-accessed nodes

Goal:
* Automatic Compiler-Based Prefetching for Recursive Data Structures

T Carnegic Mellon [N

CMU 15-418/618, Fall 2019 62 Prefetching

Scheduling Prefetches for Recursive Data Structures

curre ntly visiting want to prefetch
ip
eeoe eee
p=4&n,
while (p) load *p here
work(p->data), ~— |

p = p—>next;

Our Goal: fully hide latency
— thus achieving fastest possible computation rate of 1/W

e e.g.,ifL=3W, we must prefetch 3 nodes ahead to achieve this

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 64 Prefetching

Performance without Prefetching

Time

while (p)
work(p->data);
p =p->next;

computation rate =1 / (L+W)

I Carnegic Melion I

CMU 15-418/618, Fall 2019 65 Prefetching

Prefetching One Node Ahead

Time

while (p){
pf(p->next);
work(p->data);
p = p->next;

visiting

©-...

prefetch

pf(pi->nxt)

loading n

work(n,)

= data dependence

66

 Computation is overlapped with memory accesses

computation rate = 1/L

I Carnegic Mellon I

CMU 15-418/618, Fall 2019 66 Prefetching

Prefetching Three Nodes Ahead

while (p X
- pf(p->next->next->next);

work(p->data);
p =p->next,

Time

*
*
e

¥

visiting

prefetch

A
pf(p;->next->next->next)

o

computation rate does not improve (still = 1/L)!

Pointer-Chasing Problem:

* any scheme which follows the pointer chain is limited to a rate of 1/L

Carnegie Mellon -

CMU 15-418/618, Fall 2019 67 Prefetching

-
Our Goal: Fully Hide Latency

Time
|
while (p X
visiting pf(&n;,3);
work(p->data);
p = p->next;
}

prefetch
-

» achieves the fastest possible computation rate of 1/W

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 68 Prefetching

Overview

* Challenges in Prefetching Recursive Data Structures

* Three Prefetching Algorithms

— Greedy Prefetching
— History-Pointer Prefetching
— Data-Linearization Prefetching

* Experimental Results

e Conclusions

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 69 Prefetching

Overcoming the Pointer-Chasing Problem

Key:
* n;needs to know &n;,4 without referencing the d-1 intermediate nodes

Our proposals:

an existing pointer
* use existing pointer(s) in n; to approximate &n;.q4 m
: 9 ® o
— Greedy Prefetching - g

e add new pointer(s) to n; to approximate &n;,4 f
— History-Pointer Prefetching

&n;

&Nisg

 compute &n;.q directly from &n; (no ptr deref) i A !

— History-Pointer Prefetching °_>. ° '_>®

A=Add ressgenerating function

Carnegie Mellon -

CMU 15-418/618, Fall 2019 70 Prefetching

Greedy Prefetching

* Prefetch all neighboring nodes (simplified definition)
— only one will be followed by the immediate control flow
— hopefully, we will visit other neighbors later

preorder (treeNode * t) {
if (t '= NULL){
pf (t->left) ;
pf (t->right) ;
process (t->data) ;
preorder (t->left) ;
preorder (t->right) ;

ey

@ it

: » partial
O iss > missS

* However, little control over the prefetching distance

* Reasonably effective in practice

T Carnegic Melion [N

CMU 15-418/618, Fall 2019 71 Prefetching

History-Pointer Prefetching

 Add new pointer(s) to each node
— history-pointers are obtained from some recent traversal

I
—— XX 2 1
<9 : !
' 4
youngest , 8
i 1 9
: 1 5
\ [|
L I
oldest é : .
!]
g ®
| preorder

e €X15 tiNg history-pointer @ currently visiting

/WWV-> history-pointer being added

* Trade space & time for better control over prefetching distances

Carnegie Mellon -

CMU 15-418/618, Fall 2019 72 Prefetching

Data-Linearization Prefetching

* No pointer dereferences are required
* Map nodes close in the traversal to contiguous memory

preorder

traversal

prefetching distance= 3 nodes » prefetch

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 73 Prefetching

Performance of Compiler-Inserted Greedy Prefetching

o
101.6 .
£ 100 . o otz 999 99.8 99.4 96.6
= I l l I I I . . 91.3 88.7
c | -
O 80 25
5 . 68.6
®
g 60
w
2
2 40
©
E 20
o
=z
0OG O G 0O G 0O G O G O G 0O G O G 0O G 0O G
mst bisort power em3d voronoi bh tsp perimeter treeadd health
.. load stall
O = Original] store stall
G = Compiler-Inserted Greedy Prefetching st. stall
.busy

* Eliminates much of the stall time in programs with large load stall penalties
— half achieve speedups of 4% to 45%

I Carnegic Mellon [N

CMU 15-418/618, Fall 2019 78 Prefetching

Unnecessary Prefetches

100

65656065
59595959

50 |- 48454848 49

40 3838 41414141

% of PF that Hit in D-Cache
g

19 19
111111 11
4 4 4

0
10099 95 90 100999590 100999590 1D099 9590 10099 9590 10099 95 90 10099 9590 10099 9590 10099 95 90 10099 95 90

mst bisort power em3d voronoi bh tsp perimetertreeadd health

.I 100 = all unnecessary dynamic pfs 95

.I 99 = exclude all static pfs with hit rates > 99% ll 90

* % dynamic pfs that are unnecessary because the data is in the D-cache
* 4 have >80% unnecessary prefetches
* Could reduce overhead by eliminating static pfs that have high hit rates

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 80 Prefetching

Performance of History-Pointer Prefetching

Q
€ 100 100.0 '*:ad s
= store :
£ inst si
= 80 I busy
i 68.6
&J O = original
60 .
w G = greedy prefetchin
= 490 g. yp . g -
ﬁ' . H = history-pointer prefetching
= 40
©
€
=
o 20
=

Health

* Applicable because a list structure does not change over time
* 40% speedup over greedy prefetching through:

— better miss coverage (64% -> 100%)

— fewer unnecessary prefetches (41% -> 29%)
* Improved accuracy outweighs increased overhead in this case

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 82 Prefetching

Performance of Data-Linearization Prefetching

100 J100.0 100.0 load

88.7 store

= g4 inst ¢

80 79.8 Il busy
67.6 O = original

G = greedy prefetching

D = data-linearization prefetching

s
o

Normalized Execution Time
%] (=]
=] [

perimeter treeadd

* Creation order equals major traversal order in treeadd & perimeter
— hence data linearization is done without data restructuring
* 9% and 18% speedups over greedy prefetching through:

— fewer unnecessary prefetches:
* 94%->78% in perimeter, 87%->81% in treeadd

— while maintaining good coverage factors:
* 100%->80% in perimeter, 100%->93% in treeadd

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 83 Prefetching

Conclusions

* Propose 3 schemes to overcome the pointer-chasing problem:
— Greedy Prefetching
— History-Pointer Prefetching
— Data-Linearization Prefetching

* Automated greedy prefetching in SUIF
— improves performance significantly for half of Olden

— memory feedback can further reduce prefetch overhead

 The other 2 schemes can outperform greedy in some situations

I Carnegic Melion I

CMU 15-418/618, Fall 2019 84 Prefetching

