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The Memory Latency Problem

• á processor speed >> á memory speed
• caches help, but are not a panacea
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From Hennessy & Patterson, CA: AQA, 5th Edition
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Even Worse: Remote Latencies in a NUMA Multiprocessors

• Long cache miss latencies due to:

– remote memory accesses

– cache coherence 
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Impact of Memory Latency in these Parallel Machines

• 16-processor shared-address space machine (similar to DASH multiprocessor)

– directory-based cache coherence

– latencies = 1 : 15 : 30 : 100 : 130 processor cycles

à 6 of 8 spend > 50% of time stalled for memory!
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Tolerating Latency Through Prefetching

• overlap memory accesses with computation and other accesses
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Benefits of Prefetching

• Prefetch early enough
– completely hides memory latency

• Issue prefetches in blocks
– pipeline the misses
– only the first reference stalls

• Prefetch with ownership
– reduces write latency, coherence messages
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Types of Prefetching

• Large cache blocks
– limitations: spatial locality, false sharing

• Hardware-controlled prefetching
– modern processors detect (and prefetch) simple strided access patterns
– limitations: simple patterns, page boundaries, potential cache pollution

• Software-controlled prefetching
– explicit instructions in modern instruction sets
– advantages: more sophisticated access patterns
– limitations: instruction overhead?
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Compiler-Based Prefetching

• How well can we do if we fully-automate prefetch insertion?

• What access patterns can we can handle successfully?
– arrays, pointers?

• Improving performance requires:
– maximizing benefit, while
– minimizing overhead
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Prefetching Concepts

possible only if addresses can be determined ahead of time

coverage factor = fraction of misses that are prefetched

unnecessary if data is already in the cache

effective if data is in the cache when later referenced

Analysis: what to prefetch

– maximize coverage factor

– minimize unnecessary prefetches

Scheduling: when/how to schedule prefetches

– maximize effectiveness

– minimize overhead per prefetch
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Let’s Start with Prefetching for Sequential Applications

• Applications from SPEC, SPLASH, and NAS Parallel.
• Memory subsystem typical of MIPS R4000 (100 MHz):

– 8K / 256K direct-mapped caches, 32 byte lines
– miss penalties: 12 / 75 cycles

• 8 of 13 spend > 50% of time stalled for memory
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Reducing Prefetching Overhead

• instructions to issue prefetches
• extra demands on memory system

• important to minimize unnecessary prefetches
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Hit Rates for Array Accesses
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Compiler Algorithm

Analysis: what to prefetch
• Locality Analysis

Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining
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Steps in Locality Analysis

1. Find data reuse

– if caches were infinitely large, we would be finished

2. Determine “localized iteration space”

– set of inner loops where the data accessed by an iteration is expected 
to fit within the cache

3. Find data locality:

– reuse Ç localized iteration space Þ locality

Prefetching19
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Data Locality Example
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for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

Hit

Miss

i

j

A[i][j]

Spatial

i

j

B[j+1][0]

Temporal

i

j

B[j][0]

Group



Carnegie Mellon
PrefetchingCMU 15-418/618, Fall 2019

Localized Iteration Space

• Given finite cache, when does reuse result in locality?

• Localized if accesses less data than effective cache size

for i = 0 to 2
for j = 0 to 8

A[i][j] = B[j][0] + B[j+1][0];

for i = 0 to 2
for j = 0 to 1000000

A[i][j] = B[j][0] + B[j+1][0];

i

j

B[j+1][0]
i

j

B[j+1][0]

Localized: both i and j loops Localized: j loop only

25
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Prefetch Predicate

Example:
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Locality Type Miss Instance Predicate

None Every Iteration True

Temporal First Iteration i = 0

Spatial Every l iterations
(l = cache line size)

(i mod l) = 0

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

Reference Locality Predicate

A[i][j] (j mod 2) = 0

B[j+1][0] i = 0

[ij] none
spatial[ ]=

[ij] temporal
none[ ]=
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Compiler Algorithm

Analysis: what to prefetch
• Locality Analysis

Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining
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Loop Splitting

• Decompose loops to isolate cache miss instances
– cheaper than inserting IF statements

• Apply transformations recursively for nested loops

• Suppress transformations when loops become too large

– avoid code explosion
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Locality Type Loop Transformation
None None

Temporal Peel loop i
Spatial Unroll loop i by l
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Software Pipelining

where l = memory latency, s = shortest path through loop body
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Iterations Ahead = é ùls

for (i = 0; i<100; i++)
a[i] = 0;

Original Loop

for (i = 0; i<5; i++)     /* Prolog */
prefetch(&a[i]);

for (i = 0; i<95; i++) { /* Steady State*/
prefetch(&a[i+5]);
a[i] = 0;

}

for (i = 95; i<100; i++) /* Epilog */
a[i] = 0;

Software Pipelined Loop 
(5 iterations ahead)
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Example Revisited
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for (i = 0; i < 3; i++)
for (j = 0; j < 100; j++)
A[i][j] = B[j][0] + B[j+1][0];

Original Code
prefetch(&A[0][0]);
for (j = 0; j < 6; j += 2) {
prefetch(&B[j+1][0]);
prefetch(&B[j+2][0]);
prefetch(&A[0][j+1]);

}
for (j = 0; j < 94; j += 2) {
prefetch(&B[j+7][0]);
prefetch(&B[j+8][0]);
prefetch(&A[0][j+7]);
A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (j = 94; j < 100; j += 2) {
A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (i = 1; i < 3; i++) {
prefetch(&A[i][0]);
for (j = 0; j < 6; j += 2)
prefetch(&A[i][j+1]);

for (j = 0; j < 94; j += 2) {
prefetch(&A[i][j+7]);
A[i][j] = B[j][0] + B[j+1][0];
A[i][j+1] = B[j+1][0] + B[j+2][0];

}
for (j = 94; j < 100; j += 2) {
A[i][j] = B[j][0] + B[j+1][0];
A[i][j+1] = B[j+1][0] + B[j+2][0];

}
}

Code with Prefetching

i

j

A[i][j]

i

j

B[j+1][0]

Cache Hit
Cache Miss i = 0

i > 0
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Performance of Prefetching Algorithm

• memory stalls reduced by 50% to 90%
• instruction and memory overheads typically low
• 6 of 13 have speedups over 45%
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(N = No Prefetching, S = Selective Prefetching)
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Effectiveness of Locality Analysis (Continued)

• fewer unnecessary prefetches
• comparable coverage factor
• reduction in prefetches ranges from 1.5 to 21 (average = 6)
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Unnecessary Prefetches Coverage Factor

Indiscriminate
Selective
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Effectiveness of Software Pipelining

• Large pf-miss à ineffective scheduling
– conflicts replace prefetched data (CHOLSKY, TOMCATV)
– prefetched data still found in secondary cache
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Original Miss Breakdown
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Prefetching Indirections

Analysis: what to prefetch
– both dense and indirect references
– difficult to predict whether indirections hit or miss

Scheduling: when/how to issue prefetches
– modification of software pipelining algorithm
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for (i = 0; i<100; i++)
sum += A[index[i]];
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Software Pipelining for Indirections
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for (i = 0; i<100; i++)
sum += A[index[i]];

Original Loop

for (i = 0; i<5; i++)     /* Prolog 1 */
prefetch(&index[i]);

for (i = 0; i<5; i++) {   /* Prolog 2 */
prefetch(&index[i+5]);
prefetch(&A[index[i]]);

}
for (i = 0; i<90; i++) { /* Steady State*/

prefetch(&index[i+10]);
prefetch(&A[index[i+5]]);
sum += A[index[i]];

}
for (i = 90; i<95; i++) { /* Epilog 1 */

prefetch(&A[index[i+5]]);
sum += A[index[i]];

}
for (i = 95; i<100; i++)  /* Epilog 2 */

sum += A[index[i]];

Software Pipelined Loop 
(5 iterations ahead)
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Indirection Prefetching Results

• larger overheads in computing indirection addresses
• significant overall improvements for IS and CG
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(N = No Prefetching, D = Dense-Only Prefetching, I = Indirection Prefetching)
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Prefetching for Parallel Shared-Address-Space Machines

• Main memory is physically distributed (aka NUMA)
– but logically a single, shared address space

• Hardware cache coherence
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Prefetching for Multiprocessors

• Non-binding vs. binding prefetches:
– use non-binding since data remains coherent until accessed later

à no restrictions on when prefetches can be issued

• Dealing with coherence misses:
– localized iteration space takes explicit synchronization into account

• Further optimizations:
– prefetching in exclusive-mode in read-modify-write situations
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prefetch(&x);
…
LOCK(L);
x = x + 1;
UNLOCK(L);
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Multiprocessor Results

• Memory stalls reduced by 50% to 90%
• Synchronization stalls reduced in some cases

à 4 of 5 have speedups over 45%
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Effectiveness of Software Pipelining

• Large pf-miss à ineffective scheduling
– prefetched data still found in secondary cache
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Exclusive-Mode Prefetching

• Message traffic reduced by 7% to 29%

• Relaxed memory consistency à write latency already hidden
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Prefetching for Databases

• Hash Join

• Prefetching + SIMD in full queries
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Simple Hash Join

• Build a hash table to index all tuples of the smaller relation
• Probe this hash table using all tuples of the larger relation

• Random access patterns: little spatial or temporal locality
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Challenges

• Naïve approach: prefetch within the processing of a single tuple
– e.g., prefetch within a single hash table visit

• Does not work!
– dependencies essentially form a critical path
– addresses would be generated too late for prefetching
– randomness makes prediction almost impossible
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A Simplified Probing Algorithm

foreach tuple in probe partition {
compute hash bucket number;
visit the hash bucket header;
visit the hash cell array;
visit the matching build tuple to 

compare keys and produce output tuple;
}

PrefetchingCMU 15-418/618, Fall 2019 52



Carnegie Mellon

An Intuitive Way to Represent the Algorithm

PrefetchingCMU 15-418/618, Fall 2019 53

foreach tuple in probe partition {
compute hash bucket number;

visit the hash bucket header;

visit the hash cell array;

visit the matching build tuple to 
compare keys and produce output tuple;
}
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Group Prefetching
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foreach group of tuples in probe partition {
foreach tuple in the group { 

compute hash bucket number;
prefetch the target bucket header;

}
foreach tuple in the group { 

visit the hash bucket header;
prefetch the hash cell array;

}
foreach tuple in the group { 

visit the hash cell array;
prefetch the matching build tuple;

}
foreach tuple in the group { 

visit the matching build tuple to 
compare keys and produce output tuple;

}
}
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Applying Prefetching & SIMD to Queries: e.g., TPC-C Q19

• SIMD and prefetching are complementary: over 2X speedup
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A More Complex Query from TPC-C: Q3

• SIMD + Prefetching à large improvement
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Prefetching Only Works if there is Sufficient Memory Bandwidth

• If you are already bandwidth-limited, then prefetching cannot help
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Without Prefetching With Prefetching
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How Can We Provide Sufficient Memory Bandwidth?

Recent enabling technology: 3D stacking of DRAM chips
– DRAMs connected via through-silicon-vias (TSVs) that run through the chips

• TSVs provide highly parallel connection between logic layer and DRAMs 
– Base layer of stack “logic layer” is memory controller, manages requests from processor
– Silicon “interposer” serves as high-BW interconnect between DRAM stack and processor

Technologies:
– Micron/Intel’s Hybrid Memory Cube (HMC)
– AMD’s High-Bandwidth Memory (HBM): 1024 bit interface to stack
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HBM vs GDDR5: 
HBM shortens your information commute 

HBM blasts through existing performance limitations

MOORE’S INSIGHT

INDUSTRY PROBLEM #1

High-Bandwidth Memory (HBM)
REINVENTING MEMORY TECHNOLOGY

HBM vs GDDR5: 
Better bandwidth per watt 1

HBM vs GDDR5: 
Massive space savings

HBM vs GDDR5: 
Compare side by side

GDDR5 HBM

DRAM

GDDR5 HBMPer Package
32-bit 1024-bitBus Width

Up to 1750MHz (7GBps) Up to 500MHz (1GBps)Clock Speed
Up to 28GB/s per chip   >100GB/s per stack     Bandwidth

1.5V 1.3VVoltage

TSV

IFBGA Roll

Iu-Bump

DRAM Core die

DRAM Core die

DRAM Core die

DRAM Core die

Base die

Substrate

Package

HBM: AMD and JEDEC establish a new industry standard

AMD’s history of pioneering innovations and open technologies sets 
industry standards and enables the entire industry to push the 
boundaries of what is possible.

Mantle
GDDR
Wake-on-LAN/Magic Packet
DisplayPortTM Adaptive-Sync

x86-64
Integrated Memory Controllers
On-die GPUs
Consumer Multicore CPUs

Design and implementation
AMD

Industry standards
JEDEC

ICs/PHY
SK hynix

© 2015 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo,and combinations thereof are trademarks of Advanced Micro Devices, Inc. 

1. Testing conducted by AMD engineering on the AMD Radeon™ R9 290X GPU vs. an HBM-based device. Data obtained through isolated direct measurement 
of GDDR5 and HBM power delivery rails at full memory utilization. Power efficiency calculated as GB/s of bandwidth delivered per watt of power consumed. 
AMD Radeon™ R9 290X (10.66 GB/s bandwidth per watt) and HBM-based device (35+ GB/s bandwidth per watt), AMD FX-8350, Gigabyte GA-990FX-UD5, 8GB 
DDR3-1866, Windows 8.1 x64 Professional, AMD Catalyst™ 15.20 Beta. HBM-1

2. Measurements conducted by AMD Engineering on 1GB GDDR5 (4x256MB ICs) @ 672mm2 vs. 1zGB HBM (1x4-Hi) @ 35mm2. HBM-2

GDDR5 can’t keep up with GPU performance growth
GDDR5's rising power consumption may soon be 
great enough to actively stall the growth of 
graphics performance.

DRAM
SSD

TRUE
IVR

OPTICS

Stacked Memory 

CPU/GPUSilicon Die

Off Chip Memory
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GDDR5 10.66

HBM

GB/s of Bandwidth Per Watt

35+

Areal, to scale

94% less surface area2

1GB GDDR5

28mm

24
m

m

1GB HBM

7mm

5m
m

Revolutionary HBM breaks the processing bottleneck
HBM is a new type of memory chip with low power consumption and ultra-wide 
communication lanes. It uses vertically stacked memory chips interconnected by microscopic 
wires called "through-silicon vias," or TSVs.

  HBM DRAM Die

  HBM DRAM Die

  HBM DRAM Die

  HBM DRAM Die

GPU/CPU/Soc DiePHY

TSV

PHY  Logic Die

  Interposer

Package Substrate

Microbump

110mm

90
mm

Package 
Substrate

Interposer

Logic Die

INDUSTRY PROBLEM #2
GDDR5 limits form factors
A large number of GDDR5 chips are required to 
reach high bandwidth. Larger voltage circuitry is 
also required. This determines the size of a 
high-performance product.

INDUSTRY PROBLEM #3
On-chip integration not ideal for everything
Technologies like NAND, DRAM and Optics would 
benefit from on-chip integration, but aren't 
technologically compatible.

TIME
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Memory Power              PC Power              GPU Performance

1.4x Trend 

Coming 
Soon!

Over the history of computing hardware, the number of transistors in a dense integrated circuit 
has doubled approximately every two years. 

(Thus) it may prove to be more economical to build large systems out of larger functions, which 
are separately packaged and interconnected… to design and construct a considerable variety of 
equipment both rapidly and economically.

*AMD internal estimates, for illustrative purposes only

Source: "Cramming more components onto integrated circuits," Gordon E. Moore, Fairchild Semiconductor, 1965
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GPUs Have Been Adopting HBM Technologies

PrefetchingCMU 15-418/618, Fall 2019 59

NVIDIA P100 GPU (2016)
• 4096-bit interface: 

• 4 HBM2 chips x 1024 bit interface per chip
• 720 GB/sec peak BW
• 4 x 4 GB = 16 GB capacity 

AMD Radeon Fury GPU (2015) 
• 4096-bit interface: 

• 4 HBM chips x 1024 bit interface per chip
• 512 GB/sec BW
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Xeon Phi (Knights Landing) MCDRAM

• 16 GB in package stacked DRAM

• Can be configured as either:

– 16 GB last level cache

– 16 GB separate address space
• aka “flat mode”

• Intel’s claims:

– ~ same latency at DDR4

– ~5x bandwidth of DDR4

– ~5x less energy cost per bit transferred 

// allocate buffer in MCDRAM (“high bandwidth” memory malloc)
float* foo = hbw_malloc(sizeof(float) * 1024);

PrefetchingCMU 15-418/618, Fall 2019 60
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Bonus Material: Prefetching for Recursive Data Structures

• Examples:
– linked lists, trees, graphs, ...

• A common method of building large data structures

– especially in non-numeric programs

• Cache miss behavior is a concern because:

– large data set with respect to the cache size
– temporal locality may be poor
– little spatial locality among consecutively-accessed nodes

Goal:
• Automatic Compiler-Based Prefetching for Recursive Data Structures

PrefetchingCMU 15-418/618, Fall 2019 62
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Scheduling Prefetches for Recursive Data Structures
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ni

currently visiting

ni+1 ni+2 ni+3

p
want to prefetch

loading a node

work()

L

W

Our Goal: fully hide latency
•  thus achieving fastest possible computation rate of 1/ W

e.g., if L=3W, we must prefetch 3 nodes ahead to achieve this

p = &n0
while  (p){

work(p ->data );
p = p->next ;

}

loa d *p  here

Our Goal: fully hide latency
– thus achieving fastest possible computation rate of 1/W 

• e.g., if L = 3W, we must prefetch 3 nodes ahead to achieve this
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Performance without Prefetching
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Wi+1

 computa tion ra te = 1/ (L+W)

ni

ni+1

ni+2

ni+3

Li+1

Li Wi

Li+2 Wi+2

Li+3 Wi+3

Time

while  (p ){
work(p ->data );
p = p->next;

}

computation rate = 1 / (L+W)
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Prefetching One Node Ahead

pre fetc h

 computation rate = 1/ L

ni

ni+1

ni+2

ni+3

Wi

Wi+1

Wi+2

Wi+3

pf(pi->next)

while  (p ){
pf(p->next);
work(p ->data );
p = p->next;

}

Li

Li+1

Li+2

Li+3

visiting

Time

•  Comp uta tio n is overla p ped  with memory a c c esses

work(nk)Wk

Lk load ing nk

da ta d epend enc e

Prefetching One Node Ahead
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• Computation is overlapped with memory accesses

computation rate = 1/L
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Prefetching Three Nodes Ahead

pre fetc h

ni+1

ni+2

ni+3

Wi+1

pf(pi->next->next->next)

Li

Li+1

Li+2

Li+3

visiting

Time

 computation rate does not improve (still = 1/ L)!

Pointer-Chasing Problem:
any scheme which follows the pointer chain is limited to a rate of 1/L

ni Wi

Wi+2

Wi+3

while  (p ){
pf(p->next->next->next);
work(p ->data );
p = p->next;

}
L

Prefetching Three Nodes Ahead
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computation rate does not improve (still = 1/L)!

Pointer-Chasing Problem:

• any scheme which follows the pointer chain is limited to a rate of 1/L
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Our Goal: Fully Hide Latency

ni

ni+1

ni+2

ni+3

Li Wi

Li+1 Wi+1

Li+2 Wi+2

Li+3 Wi+3

while  (p ){
pf(&ni+3);
work(p ->data );
p = p->next;

}

pf(&ni+3) 

visiting

Time

 achieves the fastest possible computa tion rate of 1/W

pre fetc h

Our Goal: Fully Hide Latency
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• achieves the fastest possible computation rate of 1/W
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Overview

• Challenges in Prefetching Recursive Data Structures

• Three Prefetching Algorithms

– Greedy Prefetching
– History-Pointer Prefetching
– Data-Linearization Prefetching

• Experimental Results

• Conclusions

PrefetchingCMU 15-418/618, Fall 2019 69
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Overcoming the Pointer-Chasing Problem
Key:

Our proposals:
use existing  po inter(s) in n i to  a pproximate &ni+d

a dd new po inter(s) to  ni to  a pproximate &ni+d

c ompute &ni+d directly from &ni (no ptr. d eref.)

 ni needs to know &ni+d without referencing the d-1 intermediate nodes

ni ni+d

an existing p ointer

ni ni+d

a new p ointer

A&ni &ni+d

A=Add ress ge nera ting func tion

ni ni+d

Greedy Prefetching

History-Pointer Prefetching

Data-Linearization Prefetching

Overcoming the Pointer-Chasing Problem

Key:
• ni needs to know &ni+d without referencing the d-1 intermediate nodes

Our proposals:

• use existing pointer(s) in ni to approximate &ni+d

– Greedy Prefetching

• add new pointer(s) to ni to approximate &ni+d

– History-Pointer Prefetching

• compute &ni+d directly from &ni (no ptr deref)

– History-Pointer Prefetching
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Greedy Prefetching

• Prefetch all neighboring nodes (simplified definition)
– only one will be followed by the immediate control flow
– hopefully, we will visit other neighbors later

• Reasonably effective in practice
• However, little control over the prefetching distance
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preorder(treeNode * t){
if (t != NULL){

pf(t->left);
pf(t->right);
process(t->data);
preorder(t->left);
preorder(t->right);

}
}
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History-Pointer Prefetching

• Add new pointer(s) to each node
– history-pointers are obtained from some recent traversal

• Trade space & time for better control over prefetching distances
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Data-Linearization Prefetching

• No pointer dereferences are required
• Map nodes close in the traversal to contiguous memory
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Performance of Compiler-Inserted Greedy Prefetching

• Eliminates much of the stall time in programs with large load stall penalties
– half achieve speedups of 4% to 45%
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O = Original
G = Compiler-Inserted Greedy Prefetching

load stall
store stall
inst. stall
busy
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Unnecessary Prefetches

• % dynamic pfs that are unnecessary because the data is in the D-cache
• 4 have >80% unnecessary prefetches
• Could reduce overhead by eliminating static pfs that have high hit rates
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100 = all unnecessary dynamic pfs

99 = exclude all static pfs with hit rates > 99%
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Performance of History-Pointer Prefetching

• Applicable because a list structure does not change over time
• 40% speedup over greedy prefetching through:

– better miss coverage (64% -> 100%)
– fewer unnecessary prefetches (41% -> 29%)

• Improved accuracy outweighs increased overhead in this case
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O = original

G = greedy prefetching

H = history-pointer prefetching

Health
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Performance of Data-Linearization Prefetching

• Creation order equals major traversal order in treeadd & perimeter
– hence data linearization is done without data restructuring

• 9% and 18% speedups over greedy prefetching through:
– fewer unnecessary prefetches:

• 94%->78% in perimeter, 87%->81% in treeadd
– while maintaining good coverage factors:

• 100%->80% in perimeter, 100%->93% in treeadd
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O = original
G = greedy prefetching
D = data-linearization prefetching
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Conclusions

• Propose 3 schemes to overcome the pointer-chasing problem:
– Greedy Prefetching
– History-Pointer Prefetching
– Data-Linearization Prefetching

• Automated greedy prefetching in SUIF
– improves performance significantly for half of Olden
– memory feedback can further reduce prefetch overhead

• The other 2 schemes can outperform greedy in some situations
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