
Carnegie Mellon

Tolerating Latency Through
Prefetching

Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2019

Prefetching CMU 15-418/618, Fall 2019 1

Carnegie Mellon

The Memory Latency Problem

• á processor speed >> á memory speed
• caches help, but are not a panacea

PrefetchingCMU 15-418/618, Fall 2019 2

From Hennessy & Patterson, CA: AQA, 5th Edition

Carnegie Mellon

Even Worse: Remote Latencies in a NUMA Multiprocessors

• Long cache miss latencies due to:

– remote memory accesses

– cache coherence

PrefetchingCMU 15-418/618, Fall 2019 4

Scalable Interconnection Network

Processor

Cache

Memory

Processor

Cache

Memory

Processor

Cache

Memory

…

Carnegie Mellon

Impact of Memory Latency in these Parallel Machines

• 16-processor shared-address space machine (similar to DASH multiprocessor)

– directory-based cache coherence

– latencies = 1 : 15 : 30 : 100 : 130 processor cycles

à 6 of 8 spend > 50% of time stalled for memory!

PrefetchingCMU 15-418/618, Fall 2019 5

|0

|20

|40

|60

|80

|100

|120

|140
 N

or
m

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e synchronization

OCEAN
LU

MP3D
CHOLESKY

LOCUS
WATER

BARNES
PTHOR

memory access stalls
instructions

Carnegie Mellon

Tolerating Latency Through Prefetching

• overlap memory accesses with computation and other accesses

PrefetchingCMU 15-418/618, Fall 2019 7

Without Prefetching With Prefetching

Time

Load A

Load B

Fetch A

Fetch B

Load A

Load B

Prefetch A
Prefetch B

Fetch A
Fetch B

Executing Instructions

Stalled Waiting for Data

Carnegie Mellon

Benefits of Prefetching

• Prefetch early enough
– completely hides memory latency

• Issue prefetches in blocks
– pipeline the misses
– only the first reference stalls

• Prefetch with ownership
– reduces write latency, coherence messages

PrefetchingCMU 15-418/618, Fall 2019 8

Carnegie Mellon

Types of Prefetching

• Large cache blocks
– limitations: spatial locality, false sharing

• Hardware-controlled prefetching
– modern processors detect (and prefetch) simple strided access patterns
– limitations: simple patterns, page boundaries, potential cache pollution

• Software-controlled prefetching
– explicit instructions in modern instruction sets
– advantages: more sophisticated access patterns
– limitations: instruction overhead?

PrefetchingCMU 15-418/618, Fall 2019 9

Carnegie Mellon

Compiler-Based Prefetching

• How well can we do if we fully-automate prefetch insertion?

• What access patterns can we can handle successfully?
– arrays, pointers?

• Improving performance requires:
– maximizing benefit, while
– minimizing overhead

PrefetchingCMU 15-418/618, Fall 2019 14

Carnegie Mellon

Prefetching Concepts

possible only if addresses can be determined ahead of time

coverage factor = fraction of misses that are prefetched

unnecessary if data is already in the cache

effective if data is in the cache when later referenced

Analysis: what to prefetch

– maximize coverage factor

– minimize unnecessary prefetches

Scheduling: when/how to schedule prefetches

– maximize effectiveness

– minimize overhead per prefetch

PrefetchingCMU 15-418/618, Fall 2019 15

Carnegie Mellon

Let’s Start with Prefetching for Sequential Applications

• Applications from SPEC, SPLASH, and NAS Parallel.
• Memory subsystem typical of MIPS R4000 (100 MHz):

– 8K / 256K direct-mapped caches, 32 byte lines
– miss penalties: 12 / 75 cycles

• 8 of 13 spend > 50% of time stalled for memory

PrefetchingCMU 15-418/618, Fall 2019 16

Carnegie Mellon

Reducing Prefetching Overhead

• instructions to issue prefetches
• extra demands on memory system

• important to minimize unnecessary prefetches

PrefetchingCMU 15-418/618, Fall 2019 17

Hit Rates for Array Accesses

Carnegie Mellon

Compiler Algorithm

Analysis: what to prefetch
• Locality Analysis

Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining

PrefetchingCMU 15-418/618, Fall 2019 18

Carnegie Mellon
CMU 15-418/618, Fall 2019

Steps in Locality Analysis

1. Find data reuse

– if caches were infinitely large, we would be finished

2. Determine “localized iteration space”

– set of inner loops where the data accessed by an iteration is expected
to fit within the cache

3. Find data locality:

– reuse Ç localized iteration space Þ locality

Prefetching19

Carnegie Mellon

Data Locality Example

PrefetchingCMU 15-418/618, Fall 2019 20

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

Hit

Miss

i

j

A[i][j]

Spatial

i

j

B[j+1][0]

Temporal

i

j

B[j][0]

Group

Carnegie Mellon
PrefetchingCMU 15-418/618, Fall 2019

Localized Iteration Space

• Given finite cache, when does reuse result in locality?

• Localized if accesses less data than effective cache size

for i = 0 to 2
for j = 0 to 8

A[i][j] = B[j][0] + B[j+1][0];

for i = 0 to 2
for j = 0 to 1000000

A[i][j] = B[j][0] + B[j+1][0];

i

j

B[j+1][0]
i

j

B[j+1][0]

Localized: both i and j loops Localized: j loop only

25

Carnegie Mellon

Prefetch Predicate

Example:

PrefetchingCMU 15-418/618, Fall 2019 27

Locality Type Miss Instance Predicate

None Every Iteration True

Temporal First Iteration i = 0

Spatial Every l iterations
(l = cache line size)

(i mod l) = 0

for i = 0 to 2
for j = 0 to 100
A[i][j] = B[j][0] + B[j+1][0];

Reference Locality Predicate

A[i][j] (j mod 2) = 0

B[j+1][0] i = 0

[ij] none
spatial[]=

[ij] temporal
none[]=

Carnegie Mellon

Compiler Algorithm

Analysis: what to prefetch
• Locality Analysis

Scheduling: when/how to issue prefetches
• Loop Splitting
• Software Pipelining

PrefetchingCMU 15-418/618, Fall 2019 28

Carnegie Mellon

Loop Splitting

• Decompose loops to isolate cache miss instances
– cheaper than inserting IF statements

• Apply transformations recursively for nested loops

• Suppress transformations when loops become too large

– avoid code explosion

PrefetchingCMU 15-418/618, Fall 2019 30

Locality Type Loop Transformation
None None

Temporal Peel loop i
Spatial Unroll loop i by l

Carnegie Mellon

Software Pipelining

where l = memory latency, s = shortest path through loop body

PrefetchingCMU 15-418/618, Fall 2019 31

Iterations Ahead = é ùls

for (i = 0; i<100; i++)
a[i] = 0;

Original Loop

for (i = 0; i<5; i++) /* Prolog */
prefetch(&a[i]);

for (i = 0; i<95; i++) { /* Steady State*/
prefetch(&a[i+5]);
a[i] = 0;

}

for (i = 95; i<100; i++) /* Epilog */
a[i] = 0;

Software Pipelined Loop
(5 iterations ahead)

Carnegie Mellon

Example Revisited

PrefetchingCMU 15-418/618, Fall 2019 32

for (i = 0; i < 3; i++)
for (j = 0; j < 100; j++)
A[i][j] = B[j][0] + B[j+1][0];

Original Code
prefetch(&A[0][0]);
for (j = 0; j < 6; j += 2) {
prefetch(&B[j+1][0]);
prefetch(&B[j+2][0]);
prefetch(&A[0][j+1]);

}
for (j = 0; j < 94; j += 2) {
prefetch(&B[j+7][0]);
prefetch(&B[j+8][0]);
prefetch(&A[0][j+7]);
A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (j = 94; j < 100; j += 2) {
A[0][j] = B[j][0]+B[j+1][0];
A[0][j+1] = B[j+1][0]+B[j+2][0];

}
for (i = 1; i < 3; i++) {
prefetch(&A[i][0]);
for (j = 0; j < 6; j += 2)
prefetch(&A[i][j+1]);

for (j = 0; j < 94; j += 2) {
prefetch(&A[i][j+7]);
A[i][j] = B[j][0] + B[j+1][0];
A[i][j+1] = B[j+1][0] + B[j+2][0];

}
for (j = 94; j < 100; j += 2) {
A[i][j] = B[j][0] + B[j+1][0];
A[i][j+1] = B[j+1][0] + B[j+2][0];

}
}

Code with Prefetching

i

j

A[i][j]

i

j

B[j+1][0]

Cache Hit
Cache Miss i = 0

i > 0

Carnegie Mellon

Performance of Prefetching Algorithm

• memory stalls reduced by 50% to 90%
• instruction and memory overheads typically low
• 6 of 13 have speedups over 45%

PrefetchingCMU 15-418/618, Fall 2019 35

(N = No Prefetching, S = Selective Prefetching)

Carnegie Mellon

Effectiveness of Locality Analysis (Continued)

• fewer unnecessary prefetches
• comparable coverage factor
• reduction in prefetches ranges from 1.5 to 21 (average = 6)

PrefetchingCMU 15-418/618, Fall 2019 37

Unnecessary Prefetches Coverage Factor

Indiscriminate
Selective

Carnegie Mellon

Effectiveness of Software Pipelining

• Large pf-miss à ineffective scheduling
– conflicts replace prefetched data (CHOLSKY, TOMCATV)
– prefetched data still found in secondary cache

PrefetchingCMU 15-418/618, Fall 2019 38

Original Miss Breakdown

Carnegie Mellon

Prefetching Indirections

Analysis: what to prefetch
– both dense and indirect references
– difficult to predict whether indirections hit or miss

Scheduling: when/how to issue prefetches
– modification of software pipelining algorithm

PrefetchingCMU 15-418/618, Fall 2019 40

for (i = 0; i<100; i++)
sum += A[index[i]];

Carnegie Mellon

Software Pipelining for Indirections

PrefetchingCMU 15-418/618, Fall 2019 41

for (i = 0; i<100; i++)
sum += A[index[i]];

Original Loop

for (i = 0; i<5; i++) /* Prolog 1 */
prefetch(&index[i]);

for (i = 0; i<5; i++) { /* Prolog 2 */
prefetch(&index[i+5]);
prefetch(&A[index[i]]);

}
for (i = 0; i<90; i++) { /* Steady State*/

prefetch(&index[i+10]);
prefetch(&A[index[i+5]]);
sum += A[index[i]];

}
for (i = 90; i<95; i++) { /* Epilog 1 */

prefetch(&A[index[i+5]]);
sum += A[index[i]];

}
for (i = 95; i<100; i++) /* Epilog 2 */

sum += A[index[i]];

Software Pipelined Loop
(5 iterations ahead)

Carnegie Mellon

Indirection Prefetching Results

• larger overheads in computing indirection addresses
• significant overall improvements for IS and CG

PrefetchingCMU 15-418/618, Fall 2019 42

(N = No Prefetching, D = Dense-Only Prefetching, I = Indirection Prefetching)

Carnegie Mellon

Prefetching for Parallel Shared-Address-Space Machines

• Main memory is physically distributed (aka NUMA)
– but logically a single, shared address space

• Hardware cache coherence

PrefetchingCMU 15-418/618, Fall 2019 43

Scalable Interconnection Network

Processor

Cache

Memory

Processor

Cache

Memory

Processor

Cache

Memory

…

Carnegie Mellon

Prefetching for Multiprocessors

• Non-binding vs. binding prefetches:
– use non-binding since data remains coherent until accessed later

à no restrictions on when prefetches can be issued

• Dealing with coherence misses:
– localized iteration space takes explicit synchronization into account

• Further optimizations:
– prefetching in exclusive-mode in read-modify-write situations

PrefetchingCMU 15-418/618, Fall 2019 44

prefetch(&x);
…
LOCK(L);
x = x + 1;
UNLOCK(L);

Carnegie Mellon

Multiprocessor Results

• Memory stalls reduced by 50% to 90%
• Synchronization stalls reduced in some cases

à 4 of 5 have speedups over 45%

PrefetchingCMU 15-418/618, Fall 2019 45

|0

|20

|40

|60

|80

|100

|120

|140
 N

or
m

al
iz

ed
 E

xe
cu

tio
n

Ti
m

e prefetch memory overhead

 100

 61

 100

 44

 100

 69

 100

 78

 100

 69

N S N S N S N S N S
OCEAN LU MP3D CHOLESKY LOCUS

synchronization
memory access stalls
instructions

Carnegie Mellon

Effectiveness of Software Pipelining

• Large pf-miss à ineffective scheduling
– prefetched data still found in secondary cache

PrefetchingCMU 15-418/618, Fall 2019 46

|0

|20

|40

|60

|80

|100
 P

er
ce

nt
ag

e nopf-m

OCEAN
LU

MP3D
CHOLESKY

LOCUS

pf-miss
pf-miss
pf-miss
pf-miss
pf-hit

nopf-miss
pf-miss: too late
pf-miss: invalidated
pf-miss: replaced
pf-miss: in s-cache
pf-hit

Carnegie Mellon

Exclusive-Mode Prefetching

• Message traffic reduced by 7% to 29%

• Relaxed memory consistency à write latency already hidden

PrefetchingCMU 15-418/618, Fall 2019 47

|0

|20

|40

|60

|80

|100

|120

OCEAN LU MP3D CHOLESKY LOCUS

Normalized Message Traffic
Shared-Mode Only
Exclusive-Mode

Carnegie Mellon

Prefetching for Databases

• Hash Join

• Prefetching + SIMD in full queries

PrefetchingCMU 15-418/618, Fall 2019 49

Carnegie Mellon

Simple Hash Join

• Build a hash table to index all tuples of the smaller relation
• Probe this hash table using all tuples of the larger relation

• Random access patterns: little spatial or temporal locality

PrefetchingCMU 15-418/618, Fall 2019 50

Carnegie Mellon

Challenges

• Naïve approach: prefetch within the processing of a single tuple
– e.g., prefetch within a single hash table visit

• Does not work!
– dependencies essentially form a critical path
– addresses would be generated too late for prefetching
– randomness makes prediction almost impossible

PrefetchingCMU 15-418/618, Fall 2019 51

Carnegie Mellon

A Simplified Probing Algorithm

foreach tuple in probe partition {
compute hash bucket number;
visit the hash bucket header;
visit the hash cell array;
visit the matching build tuple to

compare keys and produce output tuple;
}

PrefetchingCMU 15-418/618, Fall 2019 52

Carnegie Mellon

An Intuitive Way to Represent the Algorithm

PrefetchingCMU 15-418/618, Fall 2019 53

foreach tuple in probe partition {
compute hash bucket number;

visit the hash bucket header;

visit the hash cell array;

visit the matching build tuple to
compare keys and produce output tuple;
}

0

1

2

3

Cache
miss

latency

0

1

2

3 0

1

2

3 0

1

2

3 0

1

2

3

Carnegie Mellon

Group Prefetching

PrefetchingCMU 15-418/618, Fall 2019 54

foreach group of tuples in probe partition {
foreach tuple in the group {

compute hash bucket number;
prefetch the target bucket header;

}
foreach tuple in the group {

visit the hash bucket header;
prefetch the hash cell array;

}
foreach tuple in the group {

visit the hash cell array;
prefetch the matching build tuple;

}
foreach tuple in the group {

visit the matching build tuple to
compare keys and produce output tuple;

}
}

0

1

2

3

0

1

2

3

0

1

2

3 0

1

2

3

0

1

2

3

0

1

2

3 0

1

2

3

0

1

2

3

0

1

2

3

Carnegie Mellon

Applying Prefetching & SIMD to Queries: e.g., TPC-C Q19

• SIMD and prefetching are complementary: over 2X speedup

PrefetchingCMU 15-418/618, Fall 2019 55

Carnegie Mellon

A More Complex Query from TPC-C: Q3

• SIMD + Prefetching à large improvement

PrefetchingCMU 15-418/618, Fall 2019 56

Carnegie Mellon

Prefetching Only Works if there is Sufficient Memory Bandwidth

• If you are already bandwidth-limited, then prefetching cannot help

PrefetchingCMU 15-418/618, Fall 2019 57

Without Prefetching With Prefetching

Time

Load A

Load B

Fetch A

Fetch B

Load A

Load B

Prefetch A
Prefetch B

Fetch A
Fetch B

Executing Instructions

Stalled Waiting for Data

Carnegie Mellon

How Can We Provide Sufficient Memory Bandwidth?

Recent enabling technology: 3D stacking of DRAM chips
– DRAMs connected via through-silicon-vias (TSVs) that run through the chips

• TSVs provide highly parallel connection between logic layer and DRAMs
– Base layer of stack “logic layer” is memory controller, manages requests from processor
– Silicon “interposer” serves as high-BW interconnect between DRAM stack and processor

Technologies:
– Micron/Intel’s Hybrid Memory Cube (HMC)
– AMD’s High-Bandwidth Memory (HBM): 1024 bit interface to stack

PrefetchingCMU 15-418/618, Fall 2019 58

HBM vs GDDR5:
HBM shortens your information commute

HBM blasts through existing performance limitations

MOORE’S INSIGHT

INDUSTRY PROBLEM #1

High-Bandwidth Memory (HBM)
REINVENTING MEMORY TECHNOLOGY

HBM vs GDDR5:
Better bandwidth per watt 1

HBM vs GDDR5:
Massive space savings

HBM vs GDDR5:
Compare side by side

GDDR5 HBM

DRAM

GDDR5 HBMPer Package
32-bit 1024-bitBus Width

Up to 1750MHz (7GBps) Up to 500MHz (1GBps)Clock Speed
Up to 28GB/s per chip >100GB/s per stack Bandwidth

1.5V 1.3VVoltage

TSV

IFBGA Roll

Iu-Bump

DRAM Core die

DRAM Core die

DRAM Core die

DRAM Core die

Base die

Substrate

Package

HBM: AMD and JEDEC establish a new industry standard

AMD’s history of pioneering innovations and open technologies sets
industry standards and enables the entire industry to push the
boundaries of what is possible.

Mantle
GDDR
Wake-on-LAN/Magic Packet
DisplayPortTM Adaptive-Sync

x86-64
Integrated Memory Controllers
On-die GPUs
Consumer Multicore CPUs

Design and implementation
AMD

Industry standards
JEDEC

ICs/PHY
SK hynix

© 2015 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo,and combinations thereof are trademarks of Advanced Micro Devices, Inc.

1. Testing conducted by AMD engineering on the AMD Radeon™ R9 290X GPU vs. an HBM-based device. Data obtained through isolated direct measurement
of GDDR5 and HBM power delivery rails at full memory utilization. Power efficiency calculated as GB/s of bandwidth delivered per watt of power consumed.
AMD Radeon™ R9 290X (10.66 GB/s bandwidth per watt) and HBM-based device (35+ GB/s bandwidth per watt), AMD FX-8350, Gigabyte GA-990FX-UD5, 8GB
DDR3-1866, Windows 8.1 x64 Professional, AMD Catalyst™ 15.20 Beta. HBM-1

2. Measurements conducted by AMD Engineering on 1GB GDDR5 (4x256MB ICs) @ 672mm2 vs. 1zGB HBM (1x4-Hi) @ 35mm2. HBM-2

GDDR5 can’t keep up with GPU performance growth
GDDR5's rising power consumption may soon be
great enough to actively stall the growth of
graphics performance.

DRAM
SSD

TRUE
IVR

OPTICS

Stacked Memory

CPU/GPUSilicon Die

Off Chip Memory

0 10 20 30 40 50

GDDR5 10.66

HBM

GB/s of Bandwidth Per Watt

35+

Areal, to scale

94% less surface area2

1GB GDDR5

28mm

24
m

m

1GB HBM

7mm

5m
m

Revolutionary HBM breaks the processing bottleneck
HBM is a new type of memory chip with low power consumption and ultra-wide
communication lanes. It uses vertically stacked memory chips interconnected by microscopic
wires called "through-silicon vias," or TSVs.

 HBM DRAM Die

 HBM DRAM Die

 HBM DRAM Die

 HBM DRAM Die

GPU/CPU/Soc DiePHY

TSV

PHY Logic Die

 Interposer

Package Substrate

Microbump

110mm

90
mm

Package
Substrate

Interposer

Logic Die

INDUSTRY PROBLEM #2
GDDR5 limits form factors
A large number of GDDR5 chips are required to
reach high bandwidth. Larger voltage circuitry is
also required. This determines the size of a
high-performance product.

INDUSTRY PROBLEM #3
On-chip integration not ideal for everything
Technologies like NAND, DRAM and Optics would
benefit from on-chip integration, but aren't
technologically compatible.

TIME

TO
TA

L P
OW

ER

PE
RF

OR
MA

NC
E

Memory Power PC Power GPU Performance

1.4x Trend

Coming
Soon!

Over the history of computing hardware, the number of transistors in a dense integrated circuit
has doubled approximately every two years.

(Thus) it may prove to be more economical to build large systems out of larger functions, which
are separately packaged and interconnected… to design and construct a considerable variety of
equipment both rapidly and economically.

*AMD internal estimates, for illustrative purposes only

Source: "Cramming more components onto integrated circuits," Gordon E. Moore, Fairchild Semiconductor, 1965

Carnegie Mellon

GPUs Have Been Adopting HBM Technologies

PrefetchingCMU 15-418/618, Fall 2019 59

NVIDIA P100 GPU (2016)
• 4096-bit interface:

• 4 HBM2 chips x 1024 bit interface per chip
• 720 GB/sec peak BW
• 4 x 4 GB = 16 GB capacity

AMD Radeon Fury GPU (2015)
• 4096-bit interface:

• 4 HBM chips x 1024 bit interface per chip
• 512 GB/sec BW

Carnegie Mellon

Xeon Phi (Knights Landing) MCDRAM

• 16 GB in package stacked DRAM

• Can be configured as either:

– 16 GB last level cache

– 16 GB separate address space
• aka “flat mode”

• Intel’s claims:

– ~ same latency at DDR4

– ~5x bandwidth of DDR4

– ~5x less energy cost per bit transferred

// allocate buffer in MCDRAM (“high bandwidth” memory malloc)
float* foo = hbw_malloc(sizeof(float) * 1024);

PrefetchingCMU 15-418/618, Fall 2019 60

Carnegie Mellon

Bonus Material: Prefetching for Recursive Data Structures

• Examples:
– linked lists, trees, graphs, ...

• A common method of building large data structures

– especially in non-numeric programs

• Cache miss behavior is a concern because:

– large data set with respect to the cache size
– temporal locality may be poor
– little spatial locality among consecutively-accessed nodes

Goal:
• Automatic Compiler-Based Prefetching for Recursive Data Structures

PrefetchingCMU 15-418/618, Fall 2019 62

Carnegie Mellon

Scheduling Prefetches for Recursive Data Structures

PrefetchingCMU 15-418/618, Fall 2019 64

ni

currently visiting

ni+1 ni+2 ni+3

p
want to prefetch

loading a node

work()

L

W

Our Goal: fully hide latency
• thus achieving fastest possible computation rate of 1/ W

e.g., if L=3W, we must prefetch 3 nodes ahead to achieve this

p = &n0
while (p){

work(p ->data);
p = p->next ;

}

loa d *p here

Our Goal: fully hide latency
– thus achieving fastest possible computation rate of 1/W

• e.g., if L = 3W, we must prefetch 3 nodes ahead to achieve this

Carnegie Mellon

Performance without Prefetching

PrefetchingCMU 15-418/618, Fall 2019 65

Wi+1

 computa tion ra te = 1/ (L+W)

ni

ni+1

ni+2

ni+3

Li+1

Li Wi

Li+2 Wi+2

Li+3 Wi+3

Time

while (p){
work(p ->data);
p = p->next;

}

computation rate = 1 / (L+W)

Carnegie Mellon

Prefetching One Node Ahead

pre fetc h

 computation rate = 1/ L

ni

ni+1

ni+2

ni+3

Wi

Wi+1

Wi+2

Wi+3

pf(pi->next)

while (p){
pf(p->next);
work(p ->data);
p = p->next;

}

Li

Li+1

Li+2

Li+3

visiting

Time

• Comp uta tio n is overla p ped with memory a c c esses

work(nk)Wk

Lk load ing nk

da ta d epend enc e

Prefetching One Node Ahead

PrefetchingCMU 15-418/618, Fall 2019 66

• Computation is overlapped with memory accesses

computation rate = 1/L

Carnegie Mellon

Prefetching Three Nodes Ahead

pre fetc h

ni+1

ni+2

ni+3

Wi+1

pf(pi->next->next->next)

Li

Li+1

Li+2

Li+3

visiting

Time

 computation rate does not improve (still = 1/ L)!

Pointer-Chasing Problem:
any scheme which follows the pointer chain is limited to a rate of 1/L

ni Wi

Wi+2

Wi+3

while (p){
pf(p->next->next->next);
work(p ->data);
p = p->next;

}
L

Prefetching Three Nodes Ahead

PrefetchingCMU 15-418/618, Fall 2019 67

computation rate does not improve (still = 1/L)!

Pointer-Chasing Problem:

• any scheme which follows the pointer chain is limited to a rate of 1/L

Carnegie Mellon

Our Goal: Fully Hide Latency

ni

ni+1

ni+2

ni+3

Li Wi

Li+1 Wi+1

Li+2 Wi+2

Li+3 Wi+3

while (p){
pf(&ni+3);
work(p ->data);
p = p->next;

}

pf(&ni+3)

visiting

Time

 achieves the fastest possible computa tion rate of 1/W

pre fetc h

Our Goal: Fully Hide Latency

PrefetchingCMU 15-418/618, Fall 2019 68

• achieves the fastest possible computation rate of 1/W

Carnegie Mellon

Overview

• Challenges in Prefetching Recursive Data Structures

• Three Prefetching Algorithms

– Greedy Prefetching
– History-Pointer Prefetching
– Data-Linearization Prefetching

• Experimental Results

• Conclusions

PrefetchingCMU 15-418/618, Fall 2019 69

Carnegie Mellon

Overcoming the Pointer-Chasing Problem
Key:

Our proposals:
use existing po inter(s) in n i to a pproximate &ni+d

a dd new po inter(s) to ni to a pproximate &ni+d

c ompute &ni+d directly from &ni (no ptr. d eref.)

 ni needs to know &ni+d without referencing the d-1 intermediate nodes

ni ni+d

an existing p ointer

ni ni+d

a new p ointer

A&ni &ni+d

A=Add ress ge nera ting func tion

ni ni+d

Greedy Prefetching

History-Pointer Prefetching

Data-Linearization Prefetching

Overcoming the Pointer-Chasing Problem

Key:
• ni needs to know &ni+d without referencing the d-1 intermediate nodes

Our proposals:

• use existing pointer(s) in ni to approximate &ni+d

– Greedy Prefetching

• add new pointer(s) to ni to approximate &ni+d

– History-Pointer Prefetching

• compute &ni+d directly from &ni (no ptr deref)

– History-Pointer Prefetching

PrefetchingCMU 15-418/618, Fall 2019 70

Carnegie Mellon

Greedy Prefetching

• Prefetch all neighboring nodes (simplified definition)
– only one will be followed by the immediate control flow
– hopefully, we will visit other neighbors later

• Reasonably effective in practice
• However, little control over the prefetching distance

PrefetchingCMU 15-418/618, Fall 2019 71

1

2

missmissmiss partial
miss

hit

3

4

8 10

6

12 14

5

9 11

7

13 15

preorder(treeNode * t){
if (t != NULL){

pf(t->left);
pf(t->right);
process(t->data);
preorder(t->left);
preorder(t->right);

}
}

Carnegie Mellon

History-Pointer Prefetching

• Add new pointer(s) to each node
– history-pointers are obtained from some recent traversal

• Trade space & time for better control over prefetching distances

PrefetchingCMU 15-418/618, Fall 2019 72

8 9 11 15

1

2 3

4 5 7

10 12 13 14

3
11
10

6
12

5
9

youngest

oldest

FIFO (d=3)
6

existing history-pointer

history-pointer being added

6 currently visiting

1
2
4
8
9
5
10
11
3
6

preorder

Carnegie Mellon

Data-Linearization Prefetching

• No pointer dereferences are required
• Map nodes close in the traversal to contiguous memory

PrefetchingCMU 15-418/618, Fall 2019 73

8 9 11 15

1

2 3

4 5 6 7

10 12 13 14

preorder
traversal

1 2 4 8 9 10 11 6 12 7 14

prefetchprefetching distance= 3 nodes

5 3 13 15

Carnegie Mellon

Performance of Compiler-Inserted Greedy Prefetching

• Eliminates much of the stall time in programs with large load stall penalties
– half achieve speedups of 4% to 45%

PrefetchingCMU 15-418/618, Fall 2019 78

O = Original
G = Compiler-Inserted Greedy Prefetching

load stall
store stall
inst. stall
busy

Carnegie Mellon

Unnecessary Prefetches

• % dynamic pfs that are unnecessary because the data is in the D-cache
• 4 have >80% unnecessary prefetches
• Could reduce overhead by eliminating static pfs that have high hit rates

PrefetchingCMU 15-418/618, Fall 2019 80

100 = all unnecessary dynamic pfs

99 = exclude all static pfs with hit rates > 99%

95

90

Carnegie Mellon

Performance of History-Pointer Prefetching

• Applicable because a list structure does not change over time
• 40% speedup over greedy prefetching through:

– better miss coverage (64% -> 100%)
– fewer unnecessary prefetches (41% -> 29%)

• Improved accuracy outweighs increased overhead in this case

PrefetchingCMU 15-418/618, Fall 2019 82

O = original

G = greedy prefetching

H = history-pointer prefetching

Health

Carnegie Mellon

Performance of Data-Linearization Prefetching

• Creation order equals major traversal order in treeadd & perimeter
– hence data linearization is done without data restructuring

• 9% and 18% speedups over greedy prefetching through:
– fewer unnecessary prefetches:

• 94%->78% in perimeter, 87%->81% in treeadd
– while maintaining good coverage factors:

• 100%->80% in perimeter, 100%->93% in treeadd

PrefetchingCMU 15-418/618, Fall 2019 83

O = original
G = greedy prefetching
D = data-linearization prefetching

Carnegie Mellon

Conclusions

• Propose 3 schemes to overcome the pointer-chasing problem:
– Greedy Prefetching
– History-Pointer Prefetching
– Data-Linearization Prefetching

• Automated greedy prefetching in SUIF
– improves performance significantly for half of Olden
– memory feedback can further reduce prefetch overhead

• The other 2 schemes can outperform greedy in some situations

PrefetchingCMU 15-418/618, Fall 2019 84

