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The Memory Latency Problem
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* N processor speed >> /N memory speed
e caches help, but are not a panacea
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Even Worse: Remote Latencies in a NUMA Multiprocessors
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* Long cache miss latencies due to:

— remote memory accesses

— cache coherence
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Impact of Memory Latency in these Parallel Machines
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e 16-processor shared-address space machine (similar to DASH multiprocessor)
— directory-based cache coherence
— latencies=1:15:30:100 : 130 processor cycles
— 6 of 8 spend > 50% of time stalled for memory!
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Tolerating Latency Through Prefetching

Without Prefetching With Prefetching
Prefetch A —>

Time PrefetchB —>
Fetch A |
| Fetch B
Load A —> Load A —> |

Load B —>

_>|

Fetch A

Load B —>

~ e

Fetch B . Executing Instructions

| . Stalled Waiting for Data

e overlap memory accesses with computation and other accesses
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Benefits of Prefetching

e Prefetch early enough
— completely hides memory latency

e Issue prefetches in blocks
— pipeline the misses
— only the first reference stalls

e Prefetch with ownership
— reduces write latency, coherence messages
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Types of Prefetching

e Large cache blocks
— limitations: spatial locality, false sharing

* Hardware-controlled prefetching
— modern processors detect (and prefetch) simple strided access patterns
— limitations: simple patterns, page boundaries, potential cache pollution

e Software-controlled prefetching
— explicit instructions in modern instruction sets
— advantages: more sophisticated access patterns

— limitations: instruction overhead?
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Compiler-Based Prefetching

* How well can we do if we fully-automate prefetch insertion?

* What access patterns can we can handle successfully?
— arrays, pointers?

* Improving performance requires:
— maximizing benefit, while
— minimizing overhead
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Prefetching Concepts

possible only if addresses can be determined ahead of time
coverage factor = fraction of misses that are prefetched
unnecessary if data is already in the cache

effective if data is in the cache when later referenced

Analysis: what to prefetch
— maximize coverage factor

— minimize unnecessary prefetches

Scheduling: when/how to schedule prefetches

— maximize effectiveness
— minimize overhead per prefetch
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Let’s Start with Prefetching for Sequential Applications

memory access st:
instructions
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Applications from SPEC, SPLASH, and NAS Parallel.
Memory subsystem typical of MIPS R4000 (100 MHz):
— 8K/ 256K direct-mapped caches, 32 byte lines
— miss penalties: 12 / 75 cycles
8 of 13 spend > 50% of time stalled for memory
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Reducing Prefetching Overhead

* instructions to issue prefetches
e extra demands on memory system

Hit Rates for Array Accesses
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Benchmarks

e important to minimize unnecessary prefetches
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Compiler Algorithm

Analysis: what to prefetch
* Locality Analysis

Scheduling: when/how to issue prefetches
* Loop Splitting
* Software Pipelining
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Steps in Locality Analysis

1. Find data reuse
— if caches were infinitely large, we would be finished

2. Determine “localized iteration space”

— set of inner loops where the data accessed by an iteration is expected
to fit within the cache

3. Find data locality:

— reuse N localized iteration space = locality
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Data Locality Example

for i = 0 to 2

for j = 0 to 100 O Hit
A[i][3] = B[3j]1[0] + B[j+1][0]; @ WMiss
A[i] [3] B[j+1][0] B[j]1[0]

‘"@0000000 00000000 00000000

Q0000000 O000000O0 O000000O0
00 00eo0eo 0000000 @O0 000000
J J J

Spatial Temporal Group
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Localized Iteration Space

Given finite cache, when does reuse result in locality?

for i = 0 to 2
for j = 0 to 8

for i = 0 to 2
for j = 0 to 1000000

A[il[§] = B[31[0] + B[3+1][0]; A[il[§] = B[31[0] + B[3+1][0];
| 00000000 | ‘eoooo\00o00
B[J+11[0] o0o00000OO0OO B[J+11[0] eoeee@f/e0@ee
00000000 oo o0oo0\0000

J J

Localized: both i and j loops Localized: j loop only

Localized if accesses less data than effective cache size
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Prefetch Predicate

Locality Type Miss Instance Predicate
None Every Iteration True
Temporal First Iteration i=0
Spatial Every | iterations (L modl)=0
(I = cache line size)

Example: for i = 0 to 2
for j = 0 to 100
A[i][3] = B[3j][0] + B[j+1][0];
Reference Locality Predicate

A[i]l[7] il _ none (3 mod2)=0
. ~ | spatial

B[j+1][O] i] _ | temporal i=0
. - none
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Compiler Algorithm

Analysis: what to prefetch
* Locality Analysis

Scheduling: when/how to issue prefetches
* Loop Splitting
e Software Pipelining
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-]
Loop Splitting

* Decompose loops to isolate cache miss instances
— cheaper than inserting IF statements

Locality Type Loop Transformation
None None
Temporal Peel loop i
Spatial Unroll loop 1 by |

* Apply transformations recursively for nested loops

e Suppress transformations when loops become too large

— avoid code explosion
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Software Pipelining

Iterations Ahead = |_?l-—|

where / = memory latency, s = shortest path through loop body

Software Pipelined Loop

Original Loop (5 iterations ahead)
for (i = 0; i<100; i++) for (i = 0; i<5; i++) /* Prolog */
af[i] = O0; prefetch (&ali]) ;

for (i = 0; i<95; i++) { /* Steady State*/
prefetch (&a[i+5]) ;
af[i] = 0;

}

for (i = 95; i<100; i++) /*Epilog */
a[i] = 0;
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Example Revisited

Original Code Code with Prefetching
for (i =0; 1i < 3; i++) — prefetch(&A[0][0]) ;
for (j = 0; j < 100; j++) for (% : g,( g[<_+$];[g]‘)|'= 2) {
s1741 = B[S : . prefetch (&B[] ;
A[i] [3] = B[jl1[0] + B[j+1][0]; prefetch (sB[3+2] [01) ;
prefetch (&A[0] [j+1]1) ;
}
: for (§j =0; § <94; j +=2) {
O Cache Hit prefetch (&B[j+7]1[0]) ;
. . Cache Miss 1=0 < prefetch (&B[j+8] [0]) ;
prefetch (&A[0] [§+71) ;
ST R
. . A j+1] = B[j+ +B[j+ ;
A[i][]] }
i ] for (j = 94; j < 100; j += 2) {
A[0][3j] = B[3j]1[0]+B[j+1][O];
Q0000000 A[0] [3+1] = B[3+1] [01+B[3+2] [0];
— }
‘O‘O‘0.0 — for (i =1; i < 3; i++) {
prefetch (&A[1i][0]) ;
[ NoN FoX NeoX¥ Neo for (3 = 0; § < 6; § += 2)
j prefetch (&A[i] [j+1]);
for (§j =0; § < 94; j +=2) {
) prefetch (&A[i] [§+71)
B[j+1][0] {50 — A[i][3] = BI31[0] + BI3+1](0];
i 1 A[i] [j+1] = B[j+1]1[0] + B[j+2][0];
}
O0000000O0 for (§ = 94; 3§ < 100; § += 2) {
A[i] [3] = B[j1[0] + B[j+1][0];
00000000 A[i] [j+1] = B[j+1]1[0] + B[j+2][0];
00000000 : }
J
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Performance of Prefetching Algorithm

prefetch memory overhead
memory access stalls
instructions
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(N = No Prefetching, S = Selective Prefetching)

* memory stalls reduced by 50% to 90%
e instruction and memory overheads typically low
6 0of 13 have speedups over 45%
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Effectiveness of Locality Analysis (Continued)

Unnecessary Prefetches Coverage Factor

-
o
o
-
o
o

Indiscriminate
Selective

Percentage
(0]

S
Percentage
(0]

S

(o))
o

60

B
o

40

N
o

20

o

Benchmarks Benchmarks

 fewer unnecessary prefetches
e comparable coverage factor
* reduction in prefetches ranges from 1.5 to 21 (average = 6)
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Effectiveness of Software Pipelining

-
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o

Original Miss Breakdown ™ nopf-miss
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* Large pf-miss = ineffective scheduling
— conflicts replace prefetched data (CHOLSKY, TOMCATV)
— prefetched data still found in secondary cache
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Prefetching Indirections

for (i = 0; i<100; i++)
sum += A[index[i]];

Analysis: what to prefetch
— both dense and indirect references
— difficult to predict whether indirections hit or miss

Scheduling: when/how to issue prefetches

— modification of software pipelining algorithm

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 40 Prefetching



Software Pipelining for Indirections

Original Loop

for (i = 0; i<100; i++)
sum += A[index[i]];

Software Pipelined Loop
(5 iterations ahead)

for (1 = 0; i<5; i++) /* Prolog 1 */
prefetch (&index[i]) ;

for (1 = 0; i<5; i++) { /* Prolog 2 */
prefetch (&index[i+5]) ;
prefetch (&A[index[i]]) ;

}

for (i = 0; i<90; i++) { /* Steady State*/
prefetch (&index[i+10]) ;
prefetch (&A[index[i+5]]) ;
sum += A[index[i]];

}

for (i = 90; i<95; i++) { /*Epilog1*/
prefetch (&A[index[i+5]]) ;
sum += A[index[i]];

}

for (i = 95; i<100; i++) /*Epilog2*/
sum += A[index[i]];

I Carnegic Melion [N

CMU 15-418/618, Fall 2019

41 Prefetching



Indirection Prefetching Results

140 prefetch memory overhead
memory access stalls
120 instructions
100 100 100
100 92 92 of
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(N = No Prefetching, D = Dense-Only Prefetching, | = Indirection Prefetching)

e larger overheads in computing indirection addresses
e significant overall improvements for IS and CG
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-
Prefetching for Parallel Shared-Address-Space Machines

Processor Processor Processor
Cache Cache Cache
000
Memory Memory Memory
[ Scalable Interconnection Network }

 Main memory is physically distributed (aka NUMA)
— but logically a single, shared address space
 Hardware cache coherence
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Prefetching for Multiprocessors

* Non-binding vs. binding prefetches:

— use non-binding since data remains coherent until accessed later

prefetch (&x) ;

LOCK (L) ;
X =x+ 1;
UNLOCK (L) ;

— no restrictions on when prefetches can be issued

e Dealing with coherence misses:

— localized iteration space takes explicit synchronization into account

e Further optimizations:

— prefetching in exclusive-mode in read-modify-write situations

I Carnegic Melion I

CMU 15-418/618, Fall 2019 44 Prefetching



Multiprocessor Results

o " prefetch memory overhead
§ 140 synchronization
= memory access stalls
s 120 instructions
3 100 o
()
X
W go
ko)
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£
s 40
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*  Memory stalls reduced by 50% to 90%
e Synchronization stalls reduced in some cases
- 4 of 5 have speedups over 45%
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Effectiveness of Software Pipelining

I nopf-miss
- - pf-miss: too late
O pf-miss: invalidated

pf-miss: replaced
pf-miss: in s-cache
pf-hit

Percentage
o)
o

60
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20
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* Large pf-miss = ineffective scheduling
— prefetched data still found in secondary cache
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Exclusive-Mode Prefetching

Normalized Message Traffic Shared-Mode Only
120 Exclusive-Mode

100
80
60
40

20

0
OCEAN LU MP3D CHOLESKY LOCUS

* Message traffic reduced by 7% to 29%
* Relaxed memory consistency = write latency already hidden
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Prefetching for Databases

e Hash Join

e Prefetching + SIMD in full queries
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Simple Hash Join

e Build a hash table to index all tuples of the smaller relation
* Probe this hash table using all tuples of the larger relation

Hash Table

—

Probe
Relation

Build
Relation

* Random access patterns: little spatial or temporal locality
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-]
Challenges

Hash Cell
__(hash code, ptr to build tuple)

| _—

Hash = 7 Build
Bucket > : Partition

Headers A
—— =

* Naive approach: prefetch within the processing of a single tuple

AT

— e.g., prefetch within a single hash table visit
* Does not work!
— dependencies essentially form a critical path
— addresses would be generated too late for prefetching
— randomness makes prediction almost impossible
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A Simplified Probing Algorithm

Hash Cell
__(hash code, ptr to build tuple)

e e | | =
Hash [ = — Build

Bucket | ———> I Partition

Headers ///E
—— =T

foreach tuple in probe partition {
compute hash bucket number;
visit the hash bucket header;
visit the hash cell array;

visit the matching build tuple to
compare keys and produce output tuple;

}

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 52 Prefetching




-]
An Intuitive Way to Represent the Algorithm

0
I
1
foreach tuple in probe partition { 1
0 compute hash bucket number; i
3 0
/ !
1 visit the hash bucket header; 1
Cache |
miss 2
I
latency o 3
2 visit the hash cell array; 0
I
\ !
I
3 visit the matching build tuple to 2
compare keys and produce output tuple; ;
} |
1
I
2
I
3
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Group Prefetching

foreach group of tuples in probe partition {
foreach tuple in the group {
compute hash bucket number;
prefetch the target bucket header;
}
foreach tuple in the group {
visit the hash bucket header;
prefetch the hash cell array;
}
foreach tuple in the group {
visit the hash cell array;
prefetch the matching build tuple;

}
foreach tuple in the group {

W =N = = O
W =N = = O
W =N = = O

W e N = = 0O
W e N = = 0O
W e N = = 0O

Wem N =R =0
Wem N =R =0
Wem N =R =0

visit the matching build tuple to
compare keys and produce output tuple;

}
}
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Applying Prefetching & SIMD to Queries: e.g., TPC-C Q19

SELECT SUM(...) AS revenue
FROM LineItem JOIN Part ON 1_partkey = p_partkey

WHERE (CLAUSE1) OR (CLAUSE2) OR (CLAUSE3) m
£
Py 450
i E
e
| P3 = 300
1 E
I o 150
Q
X
J9 (11]
I Baseline
P1 > P2 Optimizations
/ \ o1 Modification: P2 = (LineItem — 01 — =1 —=b>d— 09 — I)
Description: Apply SIMD to predicate o1 (LineItem).
part o1 02 Modification: —
Description: Use = to prefetch buckets during probe of <.
’I 03 Modification: P2 = (Lineltem — 07 — =] —=<— S5 —
L. It o9 —+ =23 — 1)
Ineltem Description: Insert staging points between every pair of operators.

e SIMD and prefetching are complementary: over 2X speedup
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-
A More Complex Query from TPC-C: Q3

D0 P1 (O6d P2 NN P3 B P4

Q m
£
| P4 < 1200
Sort £
| T 800
9
Mo (Group) P3 =
/ \ o
My P2 o3 i
P1 0 .
/ \ ‘ I Baseline O1
I‘ ‘ I o1 Modification: P1 = (Customer — o1 — =1 —x<1)
Description: Apply SIMD to predicate oy (Cutomer).
customer orders 02 Modification: P2 = (Orders — 02 — Zo —bxi;—<l2)
Description: Apply SIMD to predicate o2 (Orders).
Modification: —

03
Description: Use =5 to prefetch buckets during 0<1; probe.

Modification: P2 = (Orders — 02 — S5 —<1— Z3 —I<ig)
Description: Use =3 to prefetch buckets during build of t<ia.
Modification: P3 = (LineItem — o3 — =4 —b<io— Sort)
05 . .

. . Description: Apply SIMD to predicate o3.

e SIMD + Prefetching = large improvement Modification: —

06
Description: Use =4 to prefetch buckets for p<iz probe.
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-
Prefetching Only Works if there is Sufficient Memory Bandwidth

Without Prefetching With Prefetchin
Prefetch A —>

Time PrefetchB —>
Fetch A |

Fetch B
LoadA —> LoadA —>
I Load B —>
Fetch A
Load B —>
Fetch B . Executing Instructions

| . Stalled Waiting for Data

e |f you are already bandwidth-limited, then prefetching cannot help
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How Can We Provide Sufficient Memory Bandwidth?

Recent enabling technology: 3D stacking of DRAM chips
— DRAMs connected via through-silicon-vias (TSVs) that run through the chips

* TSVs provide highly parallel connection between logic layer and DRAMs
— Base layer of stack “logic layer” is memory controller, manages requests from processor
— Silicon “interposer” serves as high-BW interconnect between DRAM stack and processor

SV
Microbump

PHY GPU/CPU/Soc Die

000000000 0 0 000

Package Substrate

Technologies:
— Micron/Intel’s Hybrid Memory Cube (HMC)
— AMD’s High-Bandwidth Memory (HBM): 1024 bit interface to stack
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GPUs Have Been Adopting HBM Technologies

_~ Stacked Memory

AMD Radeon Fury GPU (2015)

* 4096-bit interface:
* 4 HBM chips.x 1024 bit interface per chip

* 512 GB/sec BW

Logic Die “

_~ (PU/GPU

/ -~ Package

Substrate

Interposer

NVIDIA P100 GPU (2016)

*  4096-bit interface:
* 4 HBM2 chips x 1024 bit interface per chip

* 720 GB/sec peak BW
* 4x4GB=16 GB capacity
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-]
Xeon Phi (Knights Landing) MCDRAM

. 2x16 X4
16 GB in package stacked DRAM uwﬂ mﬂ 18 0 OMI mconam tmm
* Can be configured as either: |
— 16 GB last level cache

— 16 GB separate address space
* aka “flat mode”

PCle
Gen 3

connected by

2D Mesh
Interconnect

* |Intel’s claims:

wrmZZ>»ION & OO0 w
wrmEE>PIEIN X200 w

— ~same latency at DDR4
— ~5x bandwidth of DDR4
— ~5x less energy cost per bit transferred

// allocate buffer in MCDRAM (“high bandwidth” memory malloc)
float* foo = hbw malloc(sizeof (float) * 1024);
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Bonus Material: Prefetching for Recursive Data Structures

 Examples:
— linked lists, trees, graphs, ...
e A common method of building large data structures

— especially in non-numeric programs

e Cache miss behavior is a concern because:

— large data set with respect to the cache size
— temporal locality may be poor
— little spatial locality among consecutively-accessed nodes

Goal:
* Automatic Compiler-Based Prefetching for Recursive Data Structures
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Scheduling Prefetches for Recursive Data Structures

curre ntly visiting want to prefetch
ip
eeoe eee
p=4&n,
while (p ) load *p here
work(p->data), ~— |

p = p—>next;

Our Goal: fully hide latency
— thus achieving fastest possible computation rate of 1/W

e e.g.,ifL=3W, we must prefetch 3 nodes ahead to achieve this
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Performance without Prefetching

Time

while (p )
work(p->data);
p =p->next;

computation rate =1 / (L+W)
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Prefetching One Node Ahead

Time

while (p ){
pf(p->next);
work(p->data);
p = p->next;

visiting

©-...

prefetch

pf(pi->nxt)

loading n

work(n,)

= data dependence

66

 Computation is overlapped with memory accesses

computation rate = 1/L
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Prefetching Three Nodes Ahead

while (p X
- pf(p->next->next->next);

work(p->data);
p =p->next,

Time

*
*
e

¥

visiting

prefetch

A
pf(p;->next->next->next)

o

computation rate does not improve (still = 1/L)!

Pointer-Chasing Problem:

* any scheme which follows the pointer chain is limited to a rate of 1/L
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-
Our Goal: Fully Hide Latency

Time
|
while (p X
visiting pf(&n;,3);
work(p->data);
p = p->next;
}

prefetch
-

» achieves the fastest possible computation rate of 1/W
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Overview

* Challenges in Prefetching Recursive Data Structures

* Three Prefetching Algorithms

— Greedy Prefetching
— History-Pointer Prefetching
— Data-Linearization Prefetching

* Experimental Results

e Conclusions

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 69 Prefetching



Overcoming the Pointer-Chasing Problem

Key:
* n;needs to know &n;,4 without referencing the d-1 intermediate nodes

Our proposals:

an existing pointer
* use existing pointer(s) in n; to approximate &n;.q4 m
: 9 ® o
— Greedy Prefetching - g

e add new pointer(s) to n; to approximate &n;,4 f
— History-Pointer Prefetching

&n;

&Nisg

 compute &n;.q directly from &n; (no ptr deref) i A !

— History-Pointer Prefetching °_>. ° '_>®

A=Add ressgenerating function
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Greedy Prefetching

* Prefetch all neighboring nodes (simplified definition)
— only one will be followed by the immediate control flow
— hopefully, we will visit other neighbors later

preorder (treeNode * t) {
if (t '= NULL){
pf (t->left) ;
pf (t->right) ;
process (t->data) ;
preorder (t->left) ;
preorder (t->right) ;

ey

@ it

: » partial
O iss > missS

* However, little control over the prefetching distance

* Reasonably effective in practice
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History-Pointer Prefetching

 Add new pointer(s) to each node
— history-pointers are obtained from some recent traversal

I
—— XX 2 1
<9 : !
' 4
youngest , 8
i 1 9
: 1 5
\ [ |
L I
oldest é : .
! ]
g ®
| preorder

e €X15 tiNg history-pointer @ currently visiting

/WWV-> history-pointer being added

* Trade space & time for better control over prefetching distances
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Data-Linearization Prefetching

* No pointer dereferences are required
* Map nodes close in the traversal to contiguous memory

preorder

traversal

prefetching distance= 3 nodes » prefetch
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Performance of Compiler-Inserted Greedy Prefetching
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* Eliminates much of the stall time in programs with large load stall penalties
— half achieve speedups of 4% to 45%
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Unnecessary Prefetches
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.I 100 = all unnecessary dynamic pfs 95

.I 99 = exclude all static pfs with hit rates > 99% ll 90

* % dynamic pfs that are unnecessary because the data is in the D-cache
* 4 have >80% unnecessary prefetches
* Could reduce overhead by eliminating static pfs that have high hit rates
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Performance of History-Pointer Prefetching
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* Applicable because a list structure does not change over time
* 40% speedup over greedy prefetching through:

— better miss coverage (64% -> 100%)

— fewer unnecessary prefetches (41% -> 29%)
* Improved accuracy outweighs increased overhead in this case

I Carnegic Melion [N

CMU 15-418/618, Fall 2019 82 Prefetching



Performance of Data-Linearization Prefetching
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* Creation order equals major traversal order in treeadd & perimeter
— hence data linearization is done without data restructuring
* 9% and 18% speedups over greedy prefetching through:

— fewer unnecessary prefetches:
* 94%->78% in perimeter, 87%->81% in treeadd

— while maintaining good coverage factors:
* 100%->80% in perimeter, 100%->93% in treeadd
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Conclusions

* Propose 3 schemes to overcome the pointer-chasing problem:
— Greedy Prefetching
— History-Pointer Prefetching
— Data-Linearization Prefetching

* Automated greedy prefetching in SUIF
— improves performance significantly for half of Olden

— memory feedback can further reduce prefetch overhead

 The other 2 schemes can outperform greedy in some situations
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