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Course themes:

Designing computer systems that scale
(running faster given more resources)

Designing computer systems that are efficient
(running faster under constraints on resources)

Techniques discussed:
Exploiting parallelism in applications
Exploiting locality in applications
Leveraging hardware specialization (earlier lecture)
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Claim: most software uses modern hardware
resources inefficiently

m (Consider a piece of sequential C code
- Let’s consider the performance of this code “baseline performance”

m Well-written sequential C code: ~ 5-10x faster

m Assembly language program: another small constant factor faster
m Java, Python, PHP, etc. ??
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Code performance: relative to C (single core)

GCC-03 (no manual vector optimizations)
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http://shootout.alioth.debian.org

Variety of programming models to abstract HW

B Machines with very different performance characteristics

m Worse: different technologies and performance characteristics within
the same machine at different scales

- Within a core: SIMD, multi-threading: fine grained sync and comm

- Abstractions: SPMD programming (ISPC, Cuda, OpenCL, Metal, Renderscript)

= Across cores: coherent shared memory via fast on-chip network

- Abstractions: OpenMP pragma, Cilk, TBB

= Hybrid CPU+GPU multi-core: incoherent (potentially) shared memory
- Abstractions: OpenCL

- Across racks: distributed memory, multi-stage network

- Abstractions: message passing (MPI, Go, Spark, Legion, Charm++)
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This is a huge challenge

B Machines with very different performance characteristics

B Worse: different performance characteristics within the same
machine at different scales

m To be efficient, software must be optimized for HW characteristics
- Difficult even in the case of one level of one machine

- Combinatorial complexity of optimizations when considering a
complex machine, or different machines

- Loss of software portability

Credit: Pat Hanrahan
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The [magical] ideal parallel programming language

High Performance
(software is scalable and efficient)

Productivity Completeness
(ease of development) (applicable to most problems we
want to write a program for)

Credit: Pat Hanrahan
7  CMU15-418/618, Fall 2018



Successful programming languages

Here: definition of success = widely used

High Performance
(software is scalable and efficient)

C/C++

Productivity Completeness
(ease of development) (applicable to most problems we
" want to write a program for)

Credit: Pat Hanrahan
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Growing interest in domain-specific programming systems
To realize high performance and productivity: willing to sacrifice completeness

High Performance
(software is scalable and efficient)

\ 4 N
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N Domain-specific *
' languages (DSL) and °
L programming ¢

’
. frameworks

C/C++

Productivity Completeness
(ease of development) .| (applicable to most problems we
want to write a program for)

Credit: Pat Hanrahan
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Domain-specific programming systems

m Main idea: raise level of abstraction for expressing programs

® |ntroduce high-level programming primitives specific to an
application domain

- Productive: intuitive to use, portable across machines, primitives correspond to
behaviors frequently used to solve problems in targeted domain

- Performant: system uses domain knowledge to provide efficient, optimized
implementation(s)

- Given a machine: system knows what algorithms to use, parallelization
strategies to employ for this domain

- Optimization goes beyond efficient mapping of software to hardware! The
hardware platform itself can be optimized to the abstractions as well

m (Cost: loss of generality/completeness
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Two domain-specific programming examples

1. Liszt: for scientific computing on meshes

2. Halide: for image processing

What are other domain specific lanquages?
(SQL is another good example)
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Example 1:
Lizst: a lanquage for solving PDE’s on meshes

[DeVito et al. Supercomputing 11, SciDac"11]

o'd

-
-~
”
"
”~
”~
”~
r 4

sy

Slide credit for this section of lecture:
Pat Hanrahan and Zach Devito (Stanford)

http://liszt.stanford.edu/
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What a Liszt program does

A Liszt program is run on a mesh
A Liszt program defines, and compute the value of, fields defined on the mesh

. Position is a field defined at each mesh vertex.
““““ The field’s value is represented by a 3-vector.

y
val = FieldWithConst[ ,Float3](e.f, 0.f, 0.f)
val = FieldWithConst]| ,Float](o0.f)
val = FieldWithConst] ,Float](0.f)
val = FieldWithConst|[ ,Float](o0.f) E
Color key:
H
C
Notes:
Fields are a higher-kinded type

(special function that maps a type to a new type)



Liszt program: heat conduction on mesh
Program computes the value of fields defined on meshes

Set flux for all vertices to 0.f;

var 1 =06; 7 Color key:
while ( i < 1000 ) {
( (mesh)) = 0.f;
( (mesh)) = 0.f;
vai(l ) _ g e) )) A v Indep.endently,foreach
----------- > val _ (e) edge in the mesh
val dP = (vi) - (v2) E
val dT = (vl) - (v2)
val step = 1.0f/(length(dP)) A
(vl) += dT*step :
(v2) -= dT*step H
(vl) += step
(v2) += step
}
i+=1
) Access value of field

feeeeeeeeeneeneenens Given edge, .Ioop body access.es/modiﬁes field at mesh vertex v2
values at adjacent mesh vertices A



Liszt's topological operators

Used to access mesh elements relative to some input vertex, edge, face, etc.
Topological operators are the only way to access mesh data in a Liszt program
Notice how many operators return sets (e.g., “all edges of this face”)

BoundarySetIUWE <: MeshElement](name : String) : Set[ME]

vertices(e : Mesh) : Set[Vertex]
<:a;£l cells(e : Mesh) : Set[Cell]

edges(e : Mesh) : Set[Edge]

faces(e : Mesh) : Set[Face]

. 1ls(e : Cell) : Set[Cell]
vertices(e : Vertex) : Set[Vertex] cel s . .
cells(e : Vertex) : Set[Cell] vertices(e : Cell) : Set[Vertex]

- - faces(e : Cell) : Set[Face]
® edges(e : Vertex) : Set[Edge. . .
faces(e : Vertex) : Set[Face edges(e : Cell) : Set[Edge]

cells(e : Face) : Set[Cell]

) edgesCCWQ(e : Face) : Set[Edge]
facesCCW"(e : Edge) : Set[Face] vertices(e : Face) : Set[Vertex]
o o), e S p e e
tail(e : Edge) : Vertex outside’'(e : Face) : Cell

f11p4(e : Edge) : Edge flip4(e : Face) : Face

towards’(e : Edge, t : Vertex) : Edge towards’(e : Face,t : Cell) : Face

vertices(e : Edge) : Set[Vertex]

® o



Liszt programming

m A lLiszt program describes operations on fields of an abstract mesh
representation

B Application specifies type of mesh (regular, irregular)
and its topology

m Mesh representation is chosen by Liszt (not by the programmer)

N Well, that’s interesting. | write a program, and the compiler decides what data
structure it should use based on what operations my code performs.
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Compiling to parallel computers

Recall challenges you have faced in your assignments

1. Identify parallelism
2. Ildentify data locality
3. Reason abhout required synchronization

Now consider how to automate this process in the Liszt compiler.
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Key: determining program dependencies

1. Identify parallelism
- Absence of dependencies implies code can be executed in parallel

2. ldentify data locality

- Partition data based on dependencies (localize dependent
computations for faster synchronization)

3. Reason about required synchronization

- Synchronization is needed to respect dependencies (must wait until the
values a computation depends on are known)

In general programs, compilers are unable to infer dependencies at global
scale:a[f(i)] += b[i] (mustexecute f(i) to know if dependency exists

across loop iterations i)
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Liszt is constrained to allow dependency analysis

Lizst infers “stencils”: “stencil” = mesh elements accessed in an iteration of loop
= dependencies for the iteration

Statically analyze code to find stencil of each top-level for loop
—  Extract nested mesh element reads

- Extract field operations N E
Edge 6's read stencilis D and F
for (e <- ( )) A
val = (e) H
val = (e)
val dP = (vl) - (v2)
val dT = (vl) - (v2)
val step = 1.0f/(length(dP))
(v1i) += dT*step e in
(v2) -= dT*step # edges(mesh)
(vl) += step
(v2) += step
} head(e) tail(e)

Read Position,Temperature Read Position, Temperature
Write Flux, JacobiStep Write Flux, JacobiStep



Restrict language for dependency analysis

Language restrictions:

— Mesh elements are only accessed through built-in topological functions:

(mesh),

- Single static assignment:

val = (e)
- Data in fields can only be accessed using mesh elements:

\"/

— No recursive functions

Restrictions allow compiler to automatically infer stencil for a loop iteration.



Portable parallelism: use dependencies to implement
different parallel execution strategies

I'll discuss two strategies... ’
I 14
o
Strategy 1: mesh partitioning LS
1 6
10 3
Strategy 2: mesh coloring 1
< 19
\
Schedule
Batch 1 Batch 2 Batch 3 Batch 4
1 (3|8 [11]0 7110/ 4|9 |2




Imagine compiling a Lizst program to the late days cluster
(multiple nodes, distributed address space)

How might Liszt distribute a graph across these nodes?
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Distributed memory implementation of Liszt

Mesh + Stencil = Granh — Partition
for(f <- faces(mesh)) {

rhoOutside(f) =
calc flux(f, rho(outside(f))) + ‘
calc_flux(f, rho(inside(f)))

Initial Partition
(by ParMETIS)

Consider distributed memory implementation
Store region of mesh on each node in a cluster
(Note: ParMETIS is a tool for partitioning meshes)



- @

Each processor also needs data for neighboring cells to
perform computation (“ghost cells”)

Listz allocates ghost region storage and emits required
communication to implement topological operators.




Imagine compiling a Lizst program to a GPU
(single address space, many tiny threads)
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GPU implementation: parallel reductions

In previous example, one region of mesh assigned per processor (or node in MPI cluster)
On GPU, natural parallelization is one edge per CUDA thread

Threads (each edge assigned to 1 CUDA thread)
0

/|8 9 (10|11

112 |3|4]|5]|6
N S Ve V2
B |C | D

E F | G H

A

Flux field values (per vertex)

for (e <- ( )) A
(v1l) += dT*step Different edges share a vertex: requires
(v2) -= dT*step atomic update of per-vertex field data



GPU implementation: conflict graph

Threads (each edge assigned to 1 CUDA thread)

0

11

A

112 |3|4|5|6|7]|8]|9]10
N VeV s
B|C |D E F | G

H

Flux field values (per vertex)

5 Q 10 |dentify mesh edges with colliding writes
(lines in graph indicate presence of collision)
\y \ B// Can simply run program once to get this
| 4 6 O information.
2 (results valid for subsequent executions
/ \ provided mesh does not change)




GPU implementation: conflict graph

Threads (each edge assigned to 1 CUDA thread)

0

11

A

112 (13 (4|5 |67 8|9 |10
N s e
B | C|D E F | G

H

Flux field values (per vertex)

8 10 “Color” nodes in graph such that no
O connected nodes have the same color
W \ B// Can execute on GPU in parallel, without
4 6 0 atomic operations, by running all nodes with
2 [ the same color in a single CUDA launch.




Cluster performance of Lizst program

256 nodes, 8 cores per node (message-passing implemented using MPI)

Euler Navier- Stokes
1024 1024
23M cell mesh 21M cell mesh
(o
=)
3
o 512 512 +
(o
)
256 | 256 |
128 | Liszt 128 | Liszt
C++ C++
32 l l l 32 l l l
32 128 256 512 1024 32 128 256 512 1024
Cores Cores

Important: performance portability!
Same Liszt program also runs with high efficiency on GPU (results not shown here).
But uses a different algorithm when compiled to GPU! (graph coloring)




Liszt summary

m Productivity:

Abstract representation of mesh: vertices, edges, faces, fields (concepts that a scientist
thinks about already!)

Intuitive topological operators

m Portability

Same code runs on large cluster of CPUs (MPI) and GPUs (and combinations thereof!)

m High-performance

Language is constrained to allow compiler to track dependencies

Used for locality-aware partitioning in distributed memory implementation

Used for graph coloring in GPU implementation

Compiler knows how to chooses different parallelization strategies for different
platforms

Underlying mesh representation can be customized by system based on usage and
platform (e.g, don’t store edge pointers if code doesn’t need it, choose struct of arrays

vs. array of structs for per-vertex fields)
30 (MU 15-418/618, Fall 2018



Example 2:
Halide: a domain-specific language for image processing

Jonathan Ragan-Kelley, Andrew Adams et al.
[SIGGRAPH 2012, PLDI 13]
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Halide used in practice

B Halide used to implement Android HDR+ app
B Halide code used to process all images uploaded to Google Photos
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A quick tutorial on high-performance
Image processing
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What does this C code do?

int WIDTH = 1024;

int HEIGHT = 1024;

float input[ (WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.0/9, 1.0/9, 1.0/9,
1.9/9, 1.0/9, 1.0/9,
1.0/9, 1.9/9, 1.0/9};

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.F;
for (int jj=0; jj<3; Jjj++)

for (int ii=0; ii<3; ii++)

tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

output[j*WIDTH + i] = tmp;
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3x3 box blur

—

(Zoom view)



3x3 image blur

int WIDTH = 1624; Total work perimage = 9 x WIDTH x HEIGHT
int HEIGHT = 1024;
For NxN filter: N2x WIDTH x HEIGHT

float input[ (WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.0/9, 1.0/9, 1.0/9,
1.9/9, 1.0/9, 1.0/9,
1.0/9, 1.9/9, 1.0/9};

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.F;
for (int jj=0; jj<3; jj++)
for (int ii=@; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + i] = tmp;
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Two-pass 3x3 blur

int WIDTH = 1024; Total work perimage =6 x WIDTH x HEIGHT
pe Tttt For NxN filter: 2N x WIDTH x HEIGHT

float input[ (WIDTH+2) * (HEIGHT+2)];

float tmp buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT]; WIDTH x HEIGHT extra storage

3X lower arithmetic intensity than 3D blur

float weights[] = {1.0/3, 1.0/3, 1.0/3};
for (int j=0; jJj<(HEIGHT+2); j++) . ;npu;cl ,
for (int i=0; i<WIDTH; i++) { (W+2)x(H+2)
float tmp = @.f; 1D horizontal blur
for (int 1ii=0; ii<3; ii++) ‘l
tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[J*WIDTH + i] = tmp;
} tmp_buf
W x (H+2)
for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f; ‘l
for (int jj=0; jj<3; jj++) 1D vertical blur
tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jjl; output
output[j*WIDTH + i] = tmp; W x H
}

}

37 (MU 15-418/618, Fall 2018



Two-pass image blur: locality

Intrinsic bandwidth requirements of algorithm:
Application must read each element of input image and
must write each element of output image.

int WIDTH = 1024;

int HEIGHT = 1024;

float input[ (WIDTH+2) * (HEIGHT+2)];
float tmp buf[WIDTH * (HEIGHT+2)];

float output[WIDTH * HEIGHT];
Data from input reused three times. (immediately reused in next

float weights[] = {1.0/3, 1.0/3, 1.0/3}; two i-loop iterations after first load, never loaded again.)
- Perfect cache behavior: never load required data more than once
for (int j=0; j<(HEIGHT+2); j++) - Perfect use of cache lines (don’t load unnecessary data into cache)

for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int ii=0; ii<3; ii++)
tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[J*WIDTH + i] = tmp; Two pass: loads/stores to tmp _buf are overhead (this memory traffic

is an artifact of the two-pass implementation: it is not intrinsic to
computation being performed)

Data from tmp buf reused three times (but three
/ rows of image data are accessed in between)
- Never load required data more than once... if

}

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;

for (int jj=0; jj<3;4j++)
tmp += tmp_buf[ (J"‘JJ ) *WIDTH + j_] % weights [JJ ] ; cache has capacity for three rows of imagg
output[j*WIDTH + i] = tmp; - Perfect use of cache lines (dont load unnecessary
} data into cache)

}
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Two-pass image blur, “chunked” (version 1)

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float tmp buf[WIDTH * 3]; <¢—————t Only3rows ofintermediate
float output[WIDTH * HEIGHT]; buffer need to be allocated

input
(W+2)x(H+2)

}

tmp_buf (Wx3)

float weights[] = {1.0/3, 1.0/3, 1.0/3};

for (int j=0; j<HEIGHT; j++) { 'l

Produce 3 rows of tmp_buf
(only what’s needed for one output
row of output)

for (int j2=0; j2<3; j2++)
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int ii=0; ii<3; ii++)
tmp += input[(j+j2)*(WIDTH+2)
tmp_buf[j2*WIDTH + i] = tmp;

i+ii] * weights[ii];

Combine them together to get one row of output

for (int i=0; i<WIDTH; i++) {

float tmp = 0.f; Total work per row of output:

for (int §j=0; jj<3; jj++) - step 1: 3 x 3 x WIDTH work
tmp += tmp_buf[jj*WIDTH + i] * weights[jj]; - step 2: 3 x WIDTH work
output[j*WIDTH + i] = tmp; Total work perimage =12 x WIDTH x HEIGHT ??7?
}
} Loads from tmp_buffer are cached (assuming

tmp_buffer fits in cache) 39 CMU 15-418/618, Fall 2018



Two-pass image blur, “chunked” (version 2)

int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)]; Sized to fit in cache
float tmp buf[WIDTH * (CHUNK SIZE+2)]; <& (captureallproducer- 1nput
float output[WIDTH * HEIGHT]; consumer locality) (H+2)x(H+2)
float weights[] = {1.0/3, 1.0/3, 1.0/3}; Produce enough rows of tmjbuf
tmp_buf to producea —
for (int j=@; j<HEIGHT; j+CHUNK_SIZE) { CHUNK_SIZE number of l W x (CHUNK_SIZE+2)
rows of output
for (int j2=0; j2<CHUNK_ SIZE+2; j2++)
for (int i=0; i<WIDTH; i++) { output
float tmp = O0.f; W x H
for (int ii=@; ii<3; ii++)

tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j2*WIDTH + i] = tmp;

for (int j2=0; j2<CHUNK_SIZE; j2++) 4— Produce CHUNK_SIZE rows of output

for (int i=@; i<WIDTH; i++) { Total work per chuck of output:
float tmp = 0.f; (assume CHUNK_SIZE = 16)
for (int jj=0; jj<3; jj++) - Step 1: 18 x 3 x WIDTH work
tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj]; - Step 2: 16 x 3 x WIDTH work
output[(j+j2)*WIDTH + i] = tmp; Total work per image: (34/16) x 3 x WIDTH x HEIGHT
} » =6.4X WIDTH x HEIGHT

} Trends to ideal 6 x WIDTH x HEIGHT as CHUNK _SIZE is increased! 40 CMU 15-418/618, Fall 2018



Conflicting goals (once again...)

m Want to be work efficient (perform fewer operations)
m Want to take advantage of locality when present

- Otherwise work-efficient code will be bandwidth bound

- ldeally: bandwidth cost of implementation is very close to intrinsic cost of
algorithm: data is loaded from memory once and reused as much as needed
prior to being discarded from processor’s cache

m Want to execute in parallel (multi-core, SIMD within core)
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Optimized C++ code: 3x3 image blur

Good: 10x faster: on a quad-core CPU than my original two-pass code
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

void fast_blur (const Image &in, Image &blurred) {
~.ml28i one_third = _mm setl_epil6(21846); eeo e .
jpragma omp parallel for (partition image vertically)

for (int yTile = 0; yTile < in.height(); yTile += 32) {
-ml28i a, b, ¢, sum, avg;
~ml28i tmp[(256/8) % (32+2)]; . . .
~ <«——— Modified iteration order

for (int xTile = 0; xTile < imnwidth(); xTile += 256) {
- ml28i *tmpPtr = tmp;
for (int y = -1; y < 32+1; y++)
const uintlé_t *inPtr = &(in(xTile, yTile+y));
for (int x = 0; x < 256; x += 8) {
a _mm loadu_sil28((..ml28ix) (inPtr-1));
b _mm loadu_sil28((..ml28ix) (inPtr+l));
c mm load sil28((..ml28ix) (inPtr));
S _mm_add epilé(_mm add epilé(a, b), c);
avg _mm mulhi epil6(sum, one_third);
_mm_ store_sil28 (tmpPtr++, avgqg);
inPtr += 8;

}}

tmpPtr = tmp;

for (int y = 0; y < 32; y++) { :
ml28i soutPtr = (.ml128i %) (& (blurred(xTile, yTile+y))); two passes fused into one:
for (int x = 0; x < 256; x += 8) { tmp data read from cache

Multi-core execution

256x32 block-major iteration
(to maximize cache hit rate)

use of SIMD vector intrinsics

g i unu
| II|

a = _mm;load;si128(tmthr+(2*256)/8);
b =_mm load sil28 (tmpPtr+256/8);
¢ = _mm load sil28 (tmpPtr++);
sum = _mm_add epilé6(_mm add_epilé(a, b), c);
avg = _mm_mulhi epil6(sum, one_third);
_mm_ store_sil28 (outPtr++, avgqg);
(3334
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Halide blur (algorithm description)

Func halide_blur(Func in) { Images are pure functions

t Functions map integer coordinates (in up to a 4D domain)
to values (e.g., colors of corresponding pixels)
Func bi urx, out; (in,blurxand out are functions)

Var X, Vy;
Algorithms are a series of functions (think: pipeline stages)

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; |

return out; Value of blurx at coordinate (x,y)
} is given by expression accessing
three values of 1n

Image<uint8_t> input = load_image(“myimage.png”);

Func my_program = halide_blur(input);

Image<uint8_t> output = my program.realize(input.width(), input.height(),
input.channels());

output.save(“myblurredimage.png”);

NOTE: execution order and storage are unspecified by the abstraction. The

implementation can evaluate, reevaluate, cache individual points as desired!
43 (MU 15-418/618, Fall 2018



Think of a Halide program as a pipeline

Func halide_blur(Func in) {

Func blurx, out;
Var X, Vy;

in
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; l
return out;
}
blurx
out

44 (MU 15-418/618, Fall 2018



Halide schedule describes how to execute a pipeline

Func halide blur(Func in) {

Func blurx, out;
Var X, y, xi, yi

blurx(x,y)
out(x,y)

(in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
(blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

When evaluating out, use 2D tiling order
(loops named by x, y, xi, yi).

blurx.chunk(x).vectorize(x, 8); Use tile size 256 x 32

return out; Vectorize the xi loop (8-wide)

Use threads to parallelize the y loop

Produce only chunks of b1urx at a time.
Vectorize the x (innermost) loop
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Halide schedule describes how to execute a pipeline

void halide blur(uint8 t* in, uint8 t* out) {
#pragma omp parallel for
for (int y=0; y<HEIGHT; y+=32) {
for (int x=0; y<WIDTH; x+=256) {

Func halide_blur(Func in) {
Func blurx, out;
Var x, y, xi, yi
uint8 t* blurx[34 * 256];

(in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
(blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

blurx(x,y)
out(x,y)

for (int yi=0; yi<34; yi++) {

// SIMD vectorize this loop (not shown)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y); - for (int xi=0; xi<256; xi++) {

. % _—
blurx.chunk(x).vectorize(x, 8); blurzgz;(ziszfii*&IDTH+x+xi-1] N
return out; y+y

in[ (y+yi-1)*WIDTH+x+xi] +

; in[ (y+yi-1)*WIDTH+x+xi+1]) / 3.0;
}
}
. . . . for (int yi=0; yi<32; yi++) {
Given a schedule, Halide carries out mechanical [/ Sy vectordze this loop (rot shour)
or (1Int Xi=0; X1< y X1++
process of implementing the specified schedule out[ (y+yi)*256+(x+xi)] =

(blurx[yi*256+xi] +
blurx[ (yi+1)*256+xi] +
blurx[ (yi+2)*256+xi]) / 3.0;
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Halide: two domain-specific co-lanquages

B Functional language for describing image processing operations
®m  Domain-specificlanguage for describing schedules
B Design principle: separate “algorithm specification” from its schedule

- Programmer’s responsibility: provide a high-performance schedule

- Compiler’s responsibility: carry out mechanical process of generating threads, SIMD
instructions, managing buffers, etc.

- Result: enable programmer to rapidly explore space of schedules

n i

- (e.g., “tile these loops’, “vectorize this loop”, “parallelize this loop across cores”)

® Domain scope:

- All computation on reqular N-D coordinate spaces

= Only feed-forward pipelines (includes special support for reductions and fixed
recursion depth)

- All dependencies inferable by compiler
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Producer/consumer scheduling primitives

Four basic scheduling primitives shown below

blurred blurred
breadth first: each function is total fusion: values are computed
entirely evaluated before the next on the fly each time that they are
one. . 4 needed. .

Root “Inline”

blurred blurred
sliding window: values are tiles: overlapping regions are
computed when needed then processed in parallel, functions
stored until not useful anymore. are evaluated one after another.

“Sliding Window” “Chunked”
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Producer/consumer scheduling primitives

”ROOt”' void halide blur(uint8 t* in, uint8_t* out) {
Func halide_blur(Func in) { ) . uint8_t blurx[WIDTH * HEIGHT];
compute all points of the producer,

then run consumer (minimal locality) for (int y=0; y<HEIGHT; y++) {

for (int x=0; y<WIDTH; x++) {
blurx[] = ...

Func blurx, out;
Var X, y, xi, yi

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f; for (int y=0; y<HEIGHT; y++) {
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; for (int x=0; y<WIDTH; x++) {
out[] = ...
}

blurx.compute_at(ROOT);
return out;

}
“Inline”:
) . o void halide blur(uint8 t* in, uint8_t* out) {
Func halide_blur(Func in) { revaluate producer at every use site for (int y=0; y<HEIGHT; yi+) {
in consumer (maximal locality) for (int x=@; y<WIDTH; x++) {

Func blurx, out;

t[] = in[(y-1)*WIDTH+x-1
Var x, y, xi, yi out[] (((}n.(y ) +x-1] +

in[ (y-1)*WIDTH+x] +

in[ (y-1)*WIDTH+x+1]) / 3) +
((in[y*WIDTH+x-1] +

in[y*WIDTH+x] +

in[y*WIDTH+x+1]) / 3) +
((in[ (y+1)*WIDTH+x-1] +

in[ (y+1)*WIDTH+x] +

in[ (y+1)*WIDTH+x+1]) / 3));

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.of;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.ef;

blurx.inline();
return out;
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Domain iteration primitives

Specify both order and how to parallelize
(multi-thread, SIMD vector)

3 4|7 8|11 12
15 16/19 20|23 24

o5 26/29 30 2D blocked iteration order
27 28|31 32|35 36

serial y parallel y split x into 2x_+x,,
vectorized x vectorized x splity into 2y +y,,
serialy , X , Y, X
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Example Halide results

B (Camera RAW processing pipeline
(Convert RAW sensor data to RGB image)

- Original: 463 lines of hand-tuned
ARM NEON assembly

- Halide: 2.75x less code, 5% faster

Denoise

Demosaic

Color correct

Tone curve

m  Bilateral filter
(Common image filtering operation used in many applications)

- Original 122 lines of (++
- Halide: 34 lines algorithm + 6 lines schedule
- (PUimplementation: 5.9x faster
- GPU implementation: 2x faster than hand-written CUDA

-
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Stepping back: what is Halide?

m Halideis a DSL for helping good developers optimize image
processing code more rapidly

- Halide doesn’t decide how to optimize a program for a novice programmer

- Halide provides primitives for a programmer (that has strong knowledge of code
optimization, such as a 418 student) to rapidly express what optimizations the

system should apply
- Halide carries out the nitty-gritty of mapping that strategy to a machine

52 (MU 15-418/618, Fall 2018



Automatically generating Halide schedules

[Mullapudi 2016]

Extend Halide compiler to automatically generate schedule for programmer
- Compiler input: Halide program + size of expected input/output images

BLUR UNSHARP

HARRIS LOCAL_LAPLACIAN

MSCALE_INTERP

0.5

0.5

0.5

1 thread 6 threads

BILATERAL

1 thread 6 threads

CONVLAYER

1 thread 6 threads

12 threads

12 threads

12 threads

0.5

0.5

—_

0.5

1 thread

1 thread

1 thread

6 threads

CAMERA

6 threads

MATMUL

6 threads

12 threads

12 threads

12 threads

0.5

2.5

1 thread

6 threads

NLMEANS

12 threads

1 thread

1 thread

6 threads

HIST_EQ

6 threads

12 threads

12 threads

0.5

0.5

1 thread 6 threads

LENS_BLUR

1 thread 6 threads

VGG

1 thread 6 threads

12 threads

12 threads

12 threads

0.5

1 thread 6 threads 12 threads

MAXFILTER

1 thread 6 threads

12 threads

B =Automatically generated schedule (no autotuning, ~ seconds)
B = Automatically generated, with auto-tuning (~ 10 minutes)

= Naive schedule

B = Expert manual schedule

(best human-created schedule) B = Automatically generated, auto-tuning over 3 days.,
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“Racing” top Halide programmers

Halide auto-scheduler produced schedules
that were better than those of expert Google
Halide programmers in two of three cases (it
got beat in one!)

Throughput (1/ms) Throughput (1/ms)

Throughput (1/ms)

Optimization of Manually Authored Schedules

LENSBLUR /\~

0 40 80 120

MAXFILTER

——
/\ \/ -
0 15 30 45
NL MEANS
0 10 20 30 40 50

Schedule development time (minutes)
] = Auto-scheduler

= Programmer 1 B = Programmer 2
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Darkroom/Rigel

[Hegarty 2014, Hegarty 2016]

Directly synthesize FGPA implementation of image processing
pipeline from a high-level description (a constrained “Halide-like”
language)

r

.

bx = im(x,y)
(I(x-1,y) +
I(x,y) +
I(x+1,y))/3

end

by = im(x,y)
(bx(x,y-1) +
bx(x,y) +
bx(x,y+1))/3

end

sharpened = im(x,y)
I(x,y) + 0.1%*
(I(x,y) - by(x,y))

end

Stencil Language]

m  Goal: ultra high efficiency image processing

Darkroom

Line-buffered pipeline )

Darkroom

ASIC

CPU
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Many other recent domain-specific programming systems

Less domain specific than examples given today,

but still designed specifically for: G ra h‘ -’l ‘

data-parallel computations on big data for amegle s iy

distributed syst “Map-Reduce”
istributed systems (*Map-Reduce”) DSL for graph-based machine Iearning computations

Also see Green-Marl, Ligra
(DSLs for describing operations on graphs)

Model-view-controller paradigm for
web-applications

Ongoing efforts in many domains...

Simit: a language for physical simulation [MIT]

56 (MU 15-418/618, Fall 2018



Domain-specific programming system development

m (Can develop DSL as a stand-alone language
- Graphics shading languages
- MATLAB, SQL

m “Embed” DSL in an existing generic language
- e.g., (++ library (GraphLab, OpenGL host-side APl, Map-Reduce)

- Lizst syntax above was all valid Scala code

B Active researchidea:

- Design genericlanguages that have facilities that assist rapid embedding of
new domain-specificlanguages

- “What is a good language for rapidly making new DSLs?”
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Summary

B Modern machines: parallel and heterogeneous
- Only way to increase compute capability in energy-constrained world

B Most software uses small fraction of peak capability of machine
- Very challenging to tune programs to these machines
- Tuning efforts are not portable across machines

® Domain-specific programming environments trade-off

generality to achieve productivity, performance, and portability

- (Case studies today: Liszt, Halide
- Common trait: lanquages provide abstractions that make dependencies known

- Understanding dependencies is necessary but not sufficient: need domain
restrictions and domain knowledge for system to synthesize efficient
implementations
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