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Course themes: 

Designing computer systems that scale 
(running faster given more resources) 

Designing computer systems that are efficient 
(running faster under constraints on resources) 

Techniques discussed: 
Exploiting parallelism in applications 
Exploiting locality in applications 
Leveraging hardware specialization (earlier lecture)
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Claim: most software uses modern hardware 
resources inefficiently

▪ Consider a piece of sequential C code 
- Let’s consider the performance of this code “baseline performance” 

▪ Well-written sequential C code: ~ 5-10x faster 

▪ Assembly language program: another small constant factor faster 

▪ Java, Python, PHP, etc. ?? 

 3Credit: Pat Hanrahan
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 4Data from: The Computer Language Benchmarks Game: http://shootout.alioth.debian.org  

Java Scala C# (Mono) Haskell Go Javascript
(V8)

Lua PHP Python 3 Ruby 
(JRuby)
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http://shootout.alioth.debian.org
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Variety of programming models to abstract HW
▪ Machines with very different performance characteristics 

▪ Worse: different technologies and performance characteristics within 
the same machine at different scales 

- Within a core: SIMD, multi-threading: fine grained sync and comm 

- Abstractions: SPMD programming (ISPC, Cuda, OpenCL, Metal, Renderscript) 

- Across cores: coherent shared memory via fast on-chip network 

- Abstractions: OpenMP pragma, Cilk, TBB 

- Hybrid CPU+GPU multi-core: incoherent (potentially) shared memory 

- Abstractions: OpenCL 

- Across racks: distributed memory, multi-stage network 

- Abstractions: message passing (MPI, Go, Spark, Legion, Charm++)

 5Credit: Pat Hanrahan
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This is a huge challenge
▪ Machines with very different performance characteristics 

▪ Worse: different performance characteristics within the same 
machine at different scales 

▪ To be efficient, software must be optimized for HW characteristics 
- Difficult even in the case of one level of one machine 
- Combinatorial complexity of optimizations when considering a 

complex machine, or different machines 
- Loss of software portability 

 6
Credit: Pat Hanrahan
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The [magical] ideal parallel programming language

 7

Completeness 
(applicable to most problems we 

want to write a program for)

Productivity 
(ease of development)

??

High Performance 
(software is scalable and efficient) 

Credit: Pat Hanrahan
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Successful programming languages

 8

Completeness 
(applicable to most problems we 

want to write a program for)

Productivity 
(ease of development)

High Performance 
(software is scalable and efficient) 

Credit: Pat Hanrahan

Here: definition of success = widely used

??
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Growing interest in domain-specific programming systems 
To realize high performance and productivity: willing to sacrifice completeness

 9

High Performance 
(software is scalable and efficient) 

Completeness 
(applicable to most problems we 

want to write a program for)

Productivity 
(ease of development)

Domain-specific 
languages (DSL) and 

programming 
frameworks

Credit: Pat Hanrahan

??
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Domain-specific programming systems
▪ Main idea: raise level of abstraction for expressing programs 

▪ Introduce high-level programming primitives specific to an 
application domain 
- Productive: intuitive to use, portable across machines, primitives correspond to 

behaviors frequently used to solve problems in targeted domain 

- Performant: system uses domain knowledge to provide efficient, optimized 
implementation(s) 

- Given a machine: system knows what algorithms to use, parallelization 
strategies to employ for this domain 

- Optimization goes beyond efficient mapping of software to hardware! The 
hardware platform itself can be optimized to the abstractions as well 

▪ Cost: loss of generality/completeness

 10
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Two domain-specific programming examples
1. Liszt: for scientific computing on meshes 

2. Halide: for image processing 

What are other domain specific languages? 
(SQL is another good example)

 11
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Example 1: 
Lizst: a language for solving PDE’s on meshes

 12
http://liszt.stanford.edu/

[DeVito et al. Supercomputing 11, SciDac ’11]

Slide credit for this section of lecture: 
Pat Hanrahan and Zach Devito (Stanford)

http://liszt.stanford.edu


What a Liszt program does

val	Position	=	FieldWithConst[Vertex,Float3](0.f,	0.f,	0.f)	
val	Temperature	=	FieldWithConst[Vertex,Float](0.f)	
val	Flux	=	FieldWithConst[Vertex,Float](0.f)	
val	JacobiStep	=	FieldWithConst[Vertex,Float](0.f)
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A Liszt program is run on a mesh 
A Liszt program defines, and compute the value of, fields defined on the mesh

Notes: 
Fields are a higher-kinded type 
(special function that maps a type to a new type)

Position is a field defined at each mesh vertex. 
The field’s value is represented by a 3-vector. 



Liszt program: heat conduction on mesh

var	i	=	0;
while	(	i	<	1000	)	{
		Flux(vertices(mesh))	=	0.f;
		JacobiStep(vertices(mesh))	=	0.f;
		for	(e	<-	edges(mesh))	{
				val	v1	=	head(e)
				val	v2	=	tail(e)
				val	dP	=	Position(v1)	-	Position(v2)
				val	dT	=	Temperature(v1)	-	Temperature(v2)
				val	step	=	1.0f/(length(dP))
				Flux(v1)	+=	dT*step
				Flux(v2)	-=	dT*step
				JacobiStep(v1)	+=	step
				JacobiStep(v2)	+=	step
		}	
		i	+=	1
}
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Program computes the value of fields defined on meshes

Color key: 
Fields
Mesh
Topology functions
Iteration over set

Set flux for all vertices to 0.f;

Independently, for each 
edge in the mesh

Access value of field 
at mesh vertex v2Given edge, loop body accesses/modifies field 

values at adjacent mesh vertices



Liszt’s topological operators
Used to access mesh elements relative to some input vertex, edge, face, etc. 
Topological operators are the only way to access mesh data in a Liszt program 
Notice how many operators return sets (e.g., “all edges of this face”)
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Liszt programming
▪ A Liszt program describes operations on fields of an abstract mesh 

representation  

▪ Application specifies type of mesh (regular, irregular) 
and its topology 

▪ Mesh representation is chosen by Liszt (not by the programmer) 

 16

Well, that’s interesting.  I write a program, and the compiler decides what data 
structure it should use based on what operations my code performs.
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Compiling to parallel computers
Recall challenges you have faced in your assignments 

1. Identify parallelism 
2. Identify data locality 
3. Reason about required synchronization

 17

Now consider how to automate this process in the Liszt compiler.
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Key: determining program dependencies
1. Identify parallelism 

- Absence of dependencies implies code can be executed in parallel 

2. Identify data locality 
- Partition data based on dependencies (localize dependent 

computations for faster synchronization) 

3. Reason about required synchronization 
- Synchronization is needed to respect dependencies (must wait until the 

values a computation depends on are known) 

In general programs, compilers are unable to infer dependencies at global 
scale: a[f(i)]	+=	b[i]	   (must execute f(i) to know if dependency exists 
across loop iterations i)

 18



Statically analyze code to find stencil of each top-level for loop 
- Extract nested mesh element reads 
- Extract field operations

for	(e	<-	edges(mesh))	{
		val	v1	=	head(e)
		val	v2	=	tail(e)
		val	dP	=	Position(v1)	-	Position(v2)
		val	dT	=	Temperature(v1)	-	Temperature(v2)
		val	step	=	1.0f/(length(dP))
		Flux(v1)	+=	dT*step
		Flux(v2)	-=	dT*step
		JacobiStep(v1)	+=	step
		JacobiStep(v2)	+=	step
}
…	

e in 
edges(mesh)

head(e) tail(e)

Write Flux, JacobiStep Write Flux, JacobiStep
Read Position,Temperature Read Position, Temperature

vertices(mesh)

Read/Write Flux

Write Temperature
Read/Write JacobiStep

Liszt is constrained to allow dependency analysis 
Lizst infers “stencils”: “stencil” = mesh elements accessed in an iteration of loop 

                   = dependencies for the iteration
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Edge 6’s read stencil is D and F



Restrict language for dependency analysis
Language restrictions: 

- Mesh elements are only accessed through built-in topological functions: 

cells(mesh),	…
- Single static assignment: 

val	v1	=	head(e)

- Data in fields can only be accessed using mesh elements: 
								 Pressure(v)	

- No recursive functions 

Restrictions allow compiler to automatically infer stencil for a loop iteration.



Portable parallelism: use dependencies to implement 
different parallel execution strategies

I’ll discuss two strategies… 

Strategy 1: mesh partitioning 

Strategy 2: mesh coloring
Owned Cell

Ghost Cell

1 58 1011 73 0 24 9

Batch 4Batch 3Batch 2Batch 1

Schedule set of nonconflicting threads per color
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Imagine compiling a Lizst program to the late days cluster

 22

(multiple nodes, distributed address space)

How might Liszt distribute a graph across these nodes?



Distributed memory implementation of Liszt 
Mesh + Stencil → Graph → Partition
for(f	<-	faces(mesh))	{	
		rhoOutside(f)	=			
				calc_flux(f,	rho(outside(f)))	+	
				calc_flux(f,	rho(inside(f)))	
}

Initial Partition 
(by ParMETIS)

Consider distributed memory implementation 
Store region of mesh on each node in a cluster 
(Note: ParMETIS is a tool for partitioning meshes)



Ghost 
Cells

Each processor also needs data for neighboring cells to 
perform computation (“ghost cells”) 
Listz allocates ghost region storage and emits required 
communication to implement topological operators.
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Imagine compiling a Lizst program to a GPU

 25

(single address space, many tiny threads)



GPU implementation: parallel reductions

Threads 1 edge assigned to 1 thread

Memory

Force
Field: 

1 5 8 10 11730 2 4 6 9

A C E F HGDB

for	(e	<-	edges(mesh))	{	
		…	
		Flux(v1)	+=	dT*step	
		Flux(v2)	-=	dT*step	
		…	
}

Different edges share a vertex: requires 
atomic update of per-vertex field data

In previous example, one region of mesh assigned per processor (or node in MPI cluster) 
On GPU, natural parallelization is one edge per CUDA thread

Threads (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)



GPU implementation: conflict graph
Threads 1 edge assigned to 1 thread

Memory

Force
Field: 

1 5 8 10 11730 2 4 6 9

A C E F HGDB

1 5 8 10

11730

2 4 6 9

Identify mesh edges with colliding writes 
(lines in graph indicate presence of collision) 

Can simply run program once to get this 
information. 
(results valid for subsequent executions 
provided mesh does not change)

Threads (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)



Threads 1 edge assigned to 1 thread

Memory

Force
Field: 

1 5 8 10 11730 2 4 6 9

A C E F HGDB

1 5 8 10

11730

2 4 6 9

GPU implementation: conflict graph

“Color” nodes in graph such that no 
connected nodes have the same color 

Can execute on GPU in parallel, without 
atomic operations, by running all nodes with 
the same color in a single CUDA launch. 

Threads (each edge assigned to 1 CUDA thread)

Flux field values (per vertex)



Cluster performance of Lizst program
256 nodes, 8 cores per node (message-passing implemented using MPI)
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Cores

Euler
23M cell mesh

Liszt
C++

32

128

256

512

1024

32 128 256 512 1024
Cores

Navier-Stokes
21M cell mesh

Liszt
C++

Important: performance portability! 
Same Liszt program also runs with high efficiency on GPU (results not shown here). 
But uses a different algorithm when compiled to GPU! (graph coloring)
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Liszt summary
▪ Productivity: 

- Abstract representation of mesh: vertices, edges, faces, fields (concepts that a scientist 
thinks about already!) 

- Intuitive topological operators 

▪ Portability 
- Same code runs on large cluster of CPUs (MPI) and GPUs (and combinations thereof!) 

▪ High-performance 
- Language is constrained to allow compiler to track dependencies 
- Used for locality-aware partitioning in distributed memory implementation 
- Used for graph coloring in GPU implementation 
- Compiler knows how to chooses different parallelization strategies for different 

platforms 
- Underlying mesh representation can be customized by system based on usage and 

platform (e.g, don’t store edge pointers if code doesn’t need it, choose struct of arrays 
vs. array of structs for per-vertex fields) 

 30
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Example 2: 
Halide: a domain-specific language for image processing

 31

Jonathan Ragan-Kelley, Andrew Adams et al. 
[SIGGRAPH 2012, PLDI 13]



 CMU 15-418/618, Fall 2018

Halide used in practice
▪ Halide used to implement Android HDR+ app 

▪ Halide code used to process all images uploaded to Google Photos

 32



 CMU 15-418/618, Fall 2018

A quick tutorial on high-performance 
image processing

 33
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What does this C code do?
int	WIDTH	=	1024;	

int	HEIGHT	=	1024;	

float	input[(WIDTH+2)	*	(HEIGHT+2)];	

float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1.0/9,	1.0/9,	1.0/9,	

																			1.0/9,	1.0/9,	1.0/9,	

																			1.0/9,	1.0/9,	1.0/9};	

for	(int	j=0;	j<HEIGHT;	j++)	{	

		for	(int	i=0;	i<WIDTH;	i++)	{	

				float	tmp	=	0.f;	

				for	(int	jj=0;	jj<3;	jj++)	

						for	(int	ii=0;	ii<3;	ii++)	

								tmp	+=	input[(j+jj)*(WIDTH+2)	+	(i+ii)]	*	weights[jj*3	+	ii];	

				output[j*WIDTH	+	i]	=	tmp;	

		}	

}

 34
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3x3 box blur

 35
(Zoom view)
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3x3 image blur
int	WIDTH	=	1024;	

int	HEIGHT	=	1024;	

float	input[(WIDTH+2)	*	(HEIGHT+2)];	

float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1.0/9,	1.0/9,	1.0/9,	

																			1.0/9,	1.0/9,	1.0/9,	

																			1.0/9,	1.0/9,	1.0/9};	

for	(int	j=0;	j<HEIGHT;	j++)	{	

		for	(int	i=0;	i<WIDTH;	i++)	{	

				float	tmp	=	0.f;	

				for	(int	jj=0;	jj<3;	jj++)	

						for	(int	ii=0;	ii<3;	ii++)	

								tmp	+=	input[(j+jj)*(WIDTH+2)	+	(i+ii)]	*	weights[jj*3	+	ii];	

				output[j*WIDTH	+	i]	=	tmp;	

		}	

}

 36

Total work per image = 9 x WIDTH x HEIGHT

For NxN filter:  N2 x WIDTH x HEIGHT
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Two-pass 3x3 blur
int	WIDTH	=	1024;	
int	HEIGHT	=	1024;	
float	input[(WIDTH+2)	*	(HEIGHT+2)];	
float	tmp_buf[WIDTH	*	(HEIGHT+2)];	
float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1.0/3,	1.0/3,	1.0/3};	

for	(int	j=0;	j<(HEIGHT+2);	j++)	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	ii=0;	ii<3;	ii++)	
						tmp	+=	input[j*(WIDTH+2)	+	i+ii]	*	weights[ii];	
				tmp_buf[j*WIDTH	+	i]	=	tmp;	
		}	

for	(int	j=0;	j<HEIGHT;	j++)	{	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	jj=0;	jj<3;	jj++)	
						tmp	+=	tmp_buf[(j+jj)*WIDTH	+	i]	*	weights[jj];	
				output[j*WIDTH	+	i]	=	tmp;	
		}	
}

 37

Total work per image = 6 x WIDTH x HEIGHT

For NxN filter:  2N x WIDTH x HEIGHT

1D horizontal blur

1D vertical blur

WIDTH x HEIGHT extra storage 
3X lower arithmetic intensity than 3D blur

input	
(W+2)x(H+2)

tmp_buf	
W	x	(H+2)

output	
W	x	H
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Two-pass image blur: locality
int	WIDTH	=	1024;	
int	HEIGHT	=	1024;	
float	input[(WIDTH+2)	*	(HEIGHT+2)];	
float	tmp_buf[WIDTH	*	(HEIGHT+2)];	
float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1.0/3,	1.0/3,	1.0/3};	

for	(int	j=0;	j<(HEIGHT+2);	j++)	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	ii=0;	ii<3;	ii++)	
						tmp	+=	input[j*(WIDTH+2)	+	i+ii]	*	weights[ii];	
				tmp_buf[j*WIDTH	+	i]	=	tmp;	
		}	

for	(int	j=0;	j<HEIGHT;	j++)	{	
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	jj=0;	jj<3;	jj++)	
						tmp	+=	tmp_buf[(j+jj)*WIDTH	+	i]	*	weights[jj];	
				output[j*WIDTH	+	i]	=	tmp;	
		}	
}

 38

Data from input reused three times.  (immediately reused in next 
two i-loop iterations after first load, never loaded again.) 
- Perfect cache behavior: never load required data more than once 
- Perfect use of cache lines (don’t load unnecessary data into cache)

Data from tmp_buf reused three times (but three 
rows of image data are accessed in between) 
- Never load required data more than once… if 

cache has capacity for three rows of image 
- Perfect use of cache lines (don’t load unnecessary 

data into cache)

Two pass: loads/stores to tmp_buf are overhead (this memory traffic 
is an artifact of the two-pass implementation: it is not intrinsic to 
computation being performed)

Intrinsic bandwidth requirements of algorithm: 
Application must read each element of input image and 
must write each element of output image.
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Two-pass image blur, “chunked” (version 1)
int	WIDTH	=	1024;	
int	HEIGHT	=	1024;	
float	input[(WIDTH+2)	*	(HEIGHT+2)];	
float	tmp_buf[WIDTH	*	3];	
float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1.0/3,	1.0/3,	1.0/3};	

for	(int	j=0;	j<HEIGHT;	j++)	{	

		for	(int	j2=0;	j2<3;	j2++)	
				for	(int	i=0;	i<WIDTH;	i++)	{	
						float	tmp	=	0.f;	
						for	(int	ii=0;	ii<3;	ii++)	
								tmp	+=	input[(j+j2)*(WIDTH+2)	+	i+ii]	*	weights[ii];	
						tmp_buf[j2*WIDTH	+	i]	=	tmp;	
			
		for	(int	i=0;	i<WIDTH;	i++)	{	
				float	tmp	=	0.f;	
				for	(int	jj=0;	jj<3;	jj++)	
						tmp	+=	tmp_buf[jj*WIDTH	+	i]	*	weights[jj];	
				output[j*WIDTH	+	i]	=	tmp;	
		}	
}

 39

input	
(W+2)x(H+2)

tmp_buf

output	
W	x	H

(Wx3)

Produce 3 rows of tmp_buf 
(only what’s needed for one 
row of output)

Total work per row of output: 
- step 1: 3 x 3 x WIDTH work 
- step 2: 3 x WIDTH work 

Total work per image = 12 x WIDTH x HEIGHT    ???? 

Loads from tmp_buffer are cached (assuming 
tmp_buffer fits in cache)

Combine them together to get one row of output

Only 3 rows of intermediate 
buffer need to be allocated
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Two-pass image blur, “chunked” (version 2)
int	WIDTH	=	1024;	
int	HEIGHT	=	1024;	
float	input[(WIDTH+2)	*	(HEIGHT+2)];	
float	tmp_buf[WIDTH	*	(CHUNK_SIZE+2)];	
float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1.0/3,	1.0/3,	1.0/3};	

for	(int	j=0;	j<HEIGHT;	j+CHUNK_SIZE)	{	

		for	(int	j2=0;	j2<CHUNK_SIZE+2;	j2++)	
				for	(int	i=0;	i<WIDTH;	i++)	{	
						float	tmp	=	0.f;	
						for	(int	ii=0;	ii<3;	ii++)	
								tmp	+=	input[(j+j2)*(WIDTH+2)	+	i+ii]	*	weights[ii];	
						tmp_buf[j2*WIDTH	+	i]	=	tmp;	
			
		for	(int	j2=0;	j2<CHUNK_SIZE;	j2++)	
				for	(int	i=0;	i<WIDTH;	i++)	{	
						float	tmp	=	0.f;	
						for	(int	jj=0;	jj<3;	jj++)	
								tmp	+=	tmp_buf[(j2+jj)*WIDTH	+	i]	*	weights[jj];	
						output[(j+j2)*WIDTH	+	i]	=	tmp;	
				}	
}  40

input	
(W+2)x(H+2)

tmp_buf

output	
W	x	H

W	x	(CHUNK_SIZE+2)

Produce  enough rows of 
tmp_buf to produce a 
CHUNK_SIZE number of 
rows of output

Total work per chuck of output: 
(assume CHUNK_SIZE = 16) 

- Step 1: 18 x 3 x WIDTH work 
- Step 2: 16 x 3 x WIDTH work 

Total work per image: (34/16) x 3 x WIDTH x HEIGHT  
                                                 = 6.4 x WIDTH x HEIGHT

Produce CHUNK_SIZE rows of output

Sized to fit in cache 
(capture all producer-
consumer locality)

Trends to ideal 6 x WIDTH x HEIGHT as CHUNK_SIZE is increased! 
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Conflicting goals (once again...)
▪ Want to be work efficient (perform fewer operations) 

▪ Want to take advantage of locality when present 
- Otherwise work-efficient code will be bandwidth bound 

- Ideally: bandwidth cost of implementation is very close to intrinsic cost of 
algorithm: data is loaded from memory once and reused as much as needed 
prior to being discarded from processor’s cache 

▪ Want to execute in parallel (multi-core, SIMD within core)

 41
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Optimized C++ code: 3x3 image blur
Good: 10x faster: on a quad-core CPU than my original two-pass code  
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

 42

use of SIMD vector intrinsics

Modified iteration order: 
256x32 block-major iteration 
(to maximize cache hit rate)

Multi-core execution 
(partition image vertically)

two passes fused into one: 
tmp data read from cache
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//	Halide	3x3	blur	program	definition	
Func	halide_blur(Func	in)	{	
			
			
		Func	blurx,	out;	
		Var		x,	y;	

			
		blurx(x,y)	=	(in(x-1,	y)	+	in(x,y)	+	in(x+1,y))	/	3.0f;	
		out(x,y)			=	(blurx(x,y-1)	+	blurx(x,y)	+	blurx(x,y+1))	/	3.0f;	
		return	out;	
}

Halide blur (algorithm description)

NOTE: execution order and storage are unspecified by the abstraction.  The 
implementation can evaluate, reevaluate, cache individual points as desired!

Images are pure functions 
Functions map integer coordinates (in up to a 4D domain) 
to values (e.g., colors of corresponding pixels) 
(in, blurx and out are functions)

Algorithms are a series of functions (think: pipeline stages)

Value of blurx at coordinate (x,y) 
is given by expression accessing 
three values of in

//	top-level	calling	code	
Image<uint8_t>	input	=	load_image(“myimage.png”);													//	define	input	image	
Func	my_program	=	halide_blur(input);																									//	define	pipeline	
Image<uint8_t>	output	=	my_program.realize(input.width(),	input.height(),	
																																											input.channels());	//	execute	pipeline	
output.save(“myblurredimage.png”);
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Think of a Halide program as a pipeline

in

blurx

out

//	Halide	3x3	blur	program	definition	
Func	halide_blur(Func	in)	{	
			
		Func	blurx,	out;	
		Var		x,	y;	
			
		blurx(x,y)	=	(in(x-1,	y)	+	in(x,y)	+	in(x+1,y))	/	3.0f;	
		out(x,y)			=	(blurx(x,y-1)	+	blurx(x,y)	+	blurx(x,y+1))	/	3.0f;	
		return	out;	
}

 44
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Halide schedule describes how to execute a pipeline

//	Halide	program	definition	
Func	halide_blur(Func	in)	{	
			
		Func	blurx,	out;	
		Var		x,	y,	xi,	yi	

		//	the	“algorithm	description”		(what	to	do)	
		blurx(x,y)	=	(in(x-1,	y)	+	in(x,y)	+	in(x+1,y))	/	3.0f;	
		out(x,y)			=	(blurx(x,y-1)	+	blurx(x,y)	+	blurx(x,y+1))	/	3.0f;	

		//	“the	schedule”	(how	to	do	it)	
		out.tile(x,	y,	xi,	yi,	256,	32).vectorize(xi,8).parallel(y);	
			
			
		blurx.chunk(x).vectorize(x,	8);	

		return	out;	
}
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When evaluating out, use 2D tiling order 
(loops named by x, y, xi, yi). 
Use tile size 256 x 32.

Vectorize the xi loop (8-wide) 

Use threads to parallelize the y loop

Produce only chunks of  blurx at a time. 
Vectorize the x (innermost) loop
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//	Halide	program	definition	
Func	halide_blur(Func	in)	{	
			
		Func	blurx,	out;	
		Var		x,	y,	xi,	yi	

		//	the	“algorithm	description”		(what	to	do)	
		blurx(x,y)	=	(in(x-1,	y)	+	in(x,y)	+	in(x+1,y))	/	3.0f;	
		out(x,y)			=	(blurx(x,y-1)	+	blurx(x,y)	+	blurx(x,y+1))	/	3.0f;	

		//	“the	schedule”	(how	to	do	it)	
		out.tile(x,	y,	xi,	yi,	256,	32).vectorize(xi,8).parallel(y);	
		blurx.chunk(x).vectorize(x,	8);	
		return	out;	
}

void	halide_blur(uint8_t*	in,	uint8_t*	out)	{	
			#pragma	omp	parallel	for	
			for	(int	y=0;	y<HEIGHT;	y+=32)	{					//	tile	loop	
						for	(int	x=0;	y<WIDTH;	x+=256)	{		//	tile	loop	

									//	buffer		
									uint8_t*	blurx[34	*	256];	

									//	produce	intermediate	buffer	
									for	(int	yi=0;	yi<34;	yi++)	{	
												//	SIMD	vectorize	this	loop	(not	shown)	
												for	(int	xi=0;	xi<256;	xi++)	{	
															blurx[yi*256+xi]	=	
																			(in[(y+yi-1)*WIDTH+x+xi-1]	+	
																			in[(y+yi-1)*WIDTH+x+xi]	+	
																			in[(y+yi-1)*WIDTH+x+xi+1])	/	3.0;	
												}	
									}	

									//	consumer	intermediate	buffer	
									for	(int	yi=0;	yi<32;	yi++)	{	
												//	SIMD	vectorize	this	loop	(not	shown)	
												for	(int	xi=0;	xi<256;	xi++)	{	
															out[(y+yi)*256+(x+xi)]	=	
																			(blurx[yi*256+xi]	+		
																			blurx[(yi+1)*256+xi]	+	
																			blurx[(yi+2)*256+xi])	/	3.0;	
												}	
									}	
					}	//	loop	over	tiles	
			}		//	loop	over	tiles	
}

Halide schedule describes how to execute a pipeline

Given a schedule, Halide carries out mechanical 
process of implementing the specified schedule
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Halide: two domain-specific co-languages 
▪ Functional language for describing image processing operations 

▪ Domain-specific language for describing schedules 

▪ Design principle: separate “algorithm specification” from its schedule 
- Programmer’s responsibility: provide a high-performance schedule 

- Compiler’s responsibility: carry out mechanical process of generating threads, SIMD 
instructions, managing buffers, etc. 

- Result: enable programmer to rapidly explore space of schedules  

- (e.g., “tile these loops”, “vectorize this loop”, “parallelize this loop across cores”) 

▪ Domain scope: 
- All computation on regular N-D coordinate spaces 

-  Only feed-forward pipelines (includes special support for reductions and fixed 
recursion depth) 

- All dependencies inferable by compiler

 47
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Producer/consumer scheduling primitives
Four basic scheduling primitives shown below

 48

in tmp blurred in tmp blurred

“Root” “Inline”

in tmp blurred

“Sliding Window” “Chunked”

in tmp blurred
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Producer/consumer scheduling primitives
//	Halide	program	definition	
Func	halide_blur(Func	in)	{	
			
		Func	blurx,	out;	
		Var		x,	y,	xi,	yi	

		//	the	“algorithm	description”		(what	to	do)	
		blurx(x,y)	=	(in(x-1,	y)	+	in(x,y)	+	in(x+1,y))	/	3.0f;	
		out(x,y)			=	(blurx(x,y-1)	+	blurx(x,y)	+	blurx(x,y+1))	/	3.0f;	

		//	“the	schedule”	(how	to	do	it)	
		blurx.compute_at(ROOT);	
		return	out;	
}
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void	halide_blur(uint8_t*	in,	uint8_t*	out)	{	
				uint8_t	blurx[WIDTH	*	HEIGHT];	

				for	(int	y=0;	y<HEIGHT;	y++)	{	
						for	(int	x=0;	y<WIDTH;	x++)	{	
										blurx[]	=	...	

				for	(int	y=0;	y<HEIGHT;	y++)	{	
						for	(int	x=0;	y<WIDTH;	x++)	{	
										out[]	=	...	
}

//	Halide	program	definition	
Func	halide_blur(Func	in)	{	
			
		Func	blurx,	out;	
		Var		x,	y,	xi,	yi	

		//	the	“algorithm	description”		(what	to	do)	
		blurx(x,y)	=	(in(x-1,	y)	+	in(x,y)	+	in(x+1,y))	/	3.0f;	
		out(x,y)			=	(blurx(x,y-1)	+	blurx(x,y)	+	blurx(x,y+1))	/	3.0f;	

		//	“the	schedule”	(how	to	do	it)	
		blurx.inline();	
		return	out;	
}

void	halide_blur(uint8_t*	in,	uint8_t*	out)	{	
				for	(int	y=0;	y<HEIGHT;	y++)	{	
						for	(int	x=0;	y<WIDTH;	x++)	{	
										out[]	=	(((in[(y-1)*WIDTH+x-1]	+	
																					in[(y-1)*WIDTH+x]	+	
																					in[(y-1)*WIDTH+x+1])	/	3)	+	
																			((in[y*WIDTH+x-1]	+	
																					in[y*WIDTH+x]	+	
																					in[y*WIDTH+x+1])	/	3)	+	
																			((in[(y+1)*WIDTH+x-1]	+	
																					in[(y+1)*WIDTH+x]	+	
																					in[(y+1)*WIDTH+x+1])	/	3));	
}

“Root”: 
compute all points of the producer, 
then run consumer (minimal locality)

“Inline”: 
revaluate producer at every use site 
in consumer (maximal locality)
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Domain iteration primitives

 50

Specify both order and how to parallelize 
(multi-thread, SIMD vector)

2D blocked iteration order
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Example Halide results
▪ Camera RAW processing pipeline 

(Convert RAW sensor data to RGB image) 

- Original: 463 lines of hand-tuned 
ARM NEON assembly 

- Halide: 2.75x less code, 5% faster
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▪ Bilateral filter 
(Common image filtering operation used in many applications) 

- Original 122 lines of C++ 
- Halide: 34 lines algorithm + 6 lines schedule 

- CPU implementation: 5.9x faster 
- GPU implementation: 2x faster than hand-written CUDA
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Stepping back: what is Halide?
▪ Halide is a DSL for helping good developers optimize image 

processing code more rapidly 
- Halide doesn’t decide how to optimize a program for a novice programmer 

- Halide provides primitives for a programmer (that has strong knowledge of code 
optimization, such as a 418 student) to rapidly express what optimizations the 
system should apply 

- Halide carries out the nitty-gritty of mapping that strategy to a machine

 52
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Automatically generating Halide schedules
Extend Halide compiler to automatically generate schedule for programmer 
- Compiler input: Halide program + size of expected input/output images

 53

[Mullapudi 2016]
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“Racing” top Halide programmers

Halide auto-scheduler produced schedules 
that were better than those of expert Google 
Halide programmers in two of three cases (it 
got beat in one!)
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Online Submission ID: 0442
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Figure 9: Performance (given as throughput 1/sec) of auto-scheduled Halide programs relative to expert manually-optimized and naively
optimized schedules. Experiments were performance running code on one- and four-cores of the ARM CPU in the Tegra X1. (Note: performance
of LENSBLUR and VGG are given with vectorization disabled due to an LLVM code generation bug – see Section 5.2)
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Figure 10: Two professional Halide developers were tasked to de-
velop schedules for new programs. In two of three cases, even after
nearly an hour of work, the manually-authored schedules (blue lines)
perform worse than the result generated by the auto-scheduler in
seconds (red line).

would take for an expert Halide developer to match the performance704

of auto-scheduler when starting from scratch, we recruited two pro-705

fessional Halide developers (whose daily job involves optimizing706

many Halide pipelines) to "race" the auto-scheduler.707

The experts selected three benchmarks (LENSBLUR, NLMEANS, and708

MAXFILTER) that they had never scheduled before, and implemented709

the original Halide algorithm for these programs. For each of the710

benchmarks, each expert programmer independently developed a711

schedule in single programmer session. The programmer stopped712

optimizing after converging on a solution they considered their best.713

While developing the schedules the developers documented their714

progress by measuring the performance of their current schedule715

at various points of time in each session. We then compared the716

auto-scheduled code’s performance to that of the manually authored717

schedules. We note that all auto-scheduler compiler development718

was completed prior to creating these new benchmark applications.719

(That is, we were not aware of these benchmarks when developing720

the scheduling algorithm: LENSBLUR, NLMEANS, and MAXFILTER721

can be thought of a "test set" for evaluating compiler performance.)722

Results of the comparison are shown in Figure 10. The X-axis in723

each of the graphs indicates development time (in minutes) for the724

manually developed schedules. The Y-axis shows the performance725

of the benchmark (we measure throughput, so higher is better).726

The horizontal line corresponds to the performance of the schedule727

generated by the auto-scheduler (recall the auto-scheduler produces728

a schedule in seconds). Each blue trend line corresponds to the729

progress of one the expert programmers. The races were conducted730

using four cores of an Intel E5-2690 Xeon processor resident in a731

machine owned by the developers, not the Xeon CPU used in our732

prior results.733

On both the LENSBLUR and NLMEANS pipelines, the auto-scheduler734

outperforms the experts (by over a factor of two on NLMEANS). The735

experts outperform the auto-scheduler on MAXFILTER. (One of the736

experts found a solution nearly three times faster on this machine.737

Performance between this schedule and the auto-scheduler’s result738

is within 2⇥ on 6-core test machine in Figure 8). Inspection of the739

expert’s manually-authored schedule reveals used global knowledge740

of the program to group a high-input reuse function with its con-741

sumer, and chose a tile size that simultaneously achieved both input742

reuse locality and producer-consumer locality. The auto-scheduler743

correctly classified the function as a candidate for high input reuse744

transformations, preventing its grouping with other functions. Recall745

from Section 4 that our algorithm either tiles for input reuse and746

producer-consumer locality, but does not attempt to simultaneously747

tile groups for both.748

As shown in Figure 10, arriving at a good schedule requires sig-749

nificant optimization effort, even for experts. Even in the case of750

MAXFILTER, where the experts devise schedules that outperform the751

auto-scheduler, they only reach this point after at least 25 minutes752

of optimization. In the other examples, the experts optimized for753

nearly an hour or two, without ever matching the performance of the754

auto-scheduler.755

10
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Darkroom/Rigel
▪ Directly synthesize FGPA implementation of image processing 

pipeline from a high-level description (a constrained “Halide-like” 
language)
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[Hegarty 2014, Hegarty 2016]

Darkroom: Compiling High-Level Image Processing Code into Hardware Pipelines

James Hegarty John Brunhaver Zachary DeVito Jonathan Ragan-Kelley† Noy Cohen Steven Bell

Artem Vasilyev Mark Horowitz Pat Hanrahan

Stanford University †MIT CSAIL

Line-buffered pipeline

ISP

Corner Detection

Edge Detection

bx#=#im(x,y)#
##(I(x,1,y)#+#
###I(x,y)#+#
###I(x+1,y))/3#
end
by#=#im(x,y)#
##(bx(x,y,1)#+#
###bx(x,y)#+#
###bx(x,y+1))/3
end
sharpened#=#im(x,y)#
##I(x,y)#+#0.1*
##(I(x,y)#,#by(x,y))#
end Stencil Language

FPGA

ASIC

CPU

Darkroom

Corner Detection

Darkroom

Figure 1: Our compiler translates programs written in a high-level language for image processing into a line-buffered pipeline, modeled after
optimized image signal processor hardware, which is automatically compiled to an ASIC design, or code for FPGAs and CPUs. We implement
a number of example applications including a camera pipeline, edge and corner detectors, and deblurring, delivering real-time processing
rates for 60 frames per second video from 480p to 16 megapixels, depending on the platform.

Abstract

Specialized image signal processors (ISPs) exploit the structure of
image processing pipelines to minimize memory bandwidth using
the architectural pattern of line-buffering, where all intermediate data
between each stage is stored in small on-chip buffers. This provides
high energy efficiency, allowing long pipelines with tera-op/sec. im-
age processing in battery-powered devices, but traditionally requires
painstaking manual design in hardware. Based on this pattern, we
present Darkroom, a language and compiler for image processing.
The semantics of the Darkroom language allow it to compile pro-
grams directly into line-buffered pipelines, with all intermediate
values in local line-buffer storage, eliminating unnecessary com-
munication with off-chip DRAM. We formulate the problem of
optimally scheduling line-buffered pipelines to minimize buffering
as an integer linear program. Finally, given an optimally scheduled
pipeline, Darkroom synthesizes hardware descriptions for ASIC or
FPGA, or fast CPU code. We evaluate Darkroom implementations
of a range of applications, including a camera pipeline, low-level fea-
ture detection algorithms, and deblurring. For many applications, we
demonstrate gigapixel/sec. performance in under 0.5mm2 of ASIC
silicon at 250 mW (simulated on a 45nm foundry process), real-
time 1080p/60 video processing using a fraction of the resources
of a modern FPGA, and tens of megapixels/sec. of throughput on a
quad-core x86 processor.

CR Categories: B.6.3 [Logic Design]: Design Aids—Automatic
Synthesis; I.3.1 [Computer Graphics]: Hardware Architecture—
Graphics Processors; I.3.6 [Computer Graphics]: Methodology and
Techniques—Languages; I.4.0 [Image Processing and Computer
Vision]: General—Image Processing Software

Keywords: Image processing, domain-specific languages, hard-
ware synthesis, FPGAs, video processing.

Links: DL PDF WEB

1 Introduction

The proliferation of cameras presents enormous opportunities for
computational photography and computer vision. Researchers are
developing ways to acquire better images, including high dynamic
range imaging, motion deblurring, and burst-mode photography.
Others are investigating new applications beyond photography. For
example, augmented reality requires vision algorithms like optical
flow for tracking, and stereo correspondence for depth extraction.
However, real applications often require real-time throughput and
are limited by energy efficiency and battery life.

To process a single 16 megapixel sensor image, our implementation
of the camera pipeline requires approximately 16 billion operations.
In modern hardware, energy is dominated by storing and loading in-
termediate values in off-chip DRAM, which uses over 1,000⇥ more
energy than performing an arithmetic operation [Hameed et al. 2010].
Simply sending data from mobile devices to servers for processing
is not a solution, since wireless transmission uses 1,000,000⇥ more
energy than a local arithmetic operation.

Often the only option to implement these algorithms with the re-
quired performance and efficiency is to build specialized hardware.
Image processing on smartphones is performed by hardware image
signal processors (ISPs), implemented as deeply pipelined custom
ASIC blocks. Intermediate values in the pipeline are fed directly

▪ Goal: ultra high efficiency image processing
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Many other recent domain-specific programming systems

 56

DSL for graph-based machine learning computations

Less domain specific than examples given today, 
but still designed specifically for:  
data-parallel computations on big data for 
distributed systems (“Map-Reduce”) 

Model-view-controller paradigm for 
web-applications

Also see Green-Marl, Ligra 
(DSLs for describing operations on graphs)

Simit: a language for physical simulation [MIT]

Ongoing efforts in many domains...
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Domain-specific programming system development

▪ Can develop DSL as a stand-alone language 
- Graphics shading languages 

- MATLAB, SQL 

▪ “Embed” DSL in an existing generic language 
- e.g., C++ library (GraphLab, OpenGL host-side API, Map-Reduce) 

- Lizst syntax above was all valid Scala code 

▪ Active research idea: 
- Design generic languages that have facilities that assist rapid embedding of 

new domain-specific languages 

- “What is a good language for rapidly making new DSLs?”

 57
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Summary
▪ Modern machines: parallel and heterogeneous 

- Only way to increase compute capability in energy-constrained world 

▪ Most software uses small fraction of peak capability of machine 
- Very challenging to tune programs to these machines 
- Tuning efforts are not portable across machines 

▪ Domain-specific programming environments trade-off 
generality to achieve productivity, performance, and portability 
- Case studies today: Liszt, Halide 
- Common trait: languages provide abstractions that make dependencies known 

- Understanding dependencies is necessary but not sufficient: need domain 
restrictions and domain knowledge for system to synthesize efficient 
implementations 
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