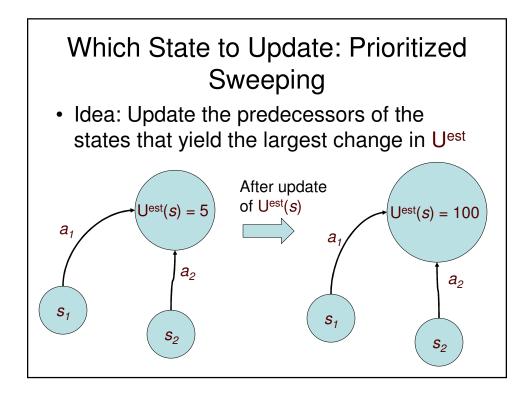
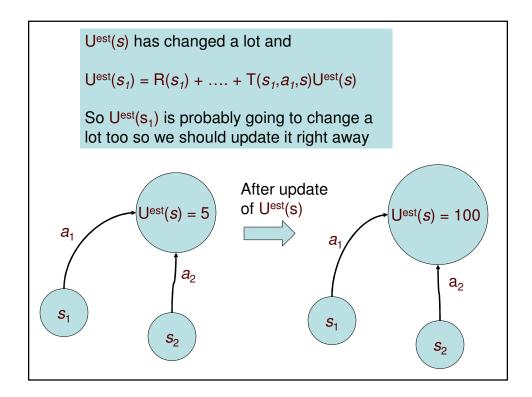
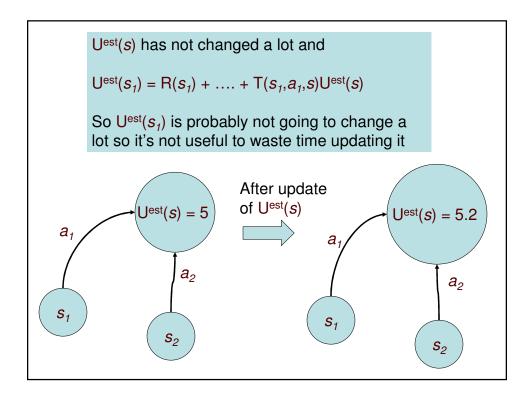


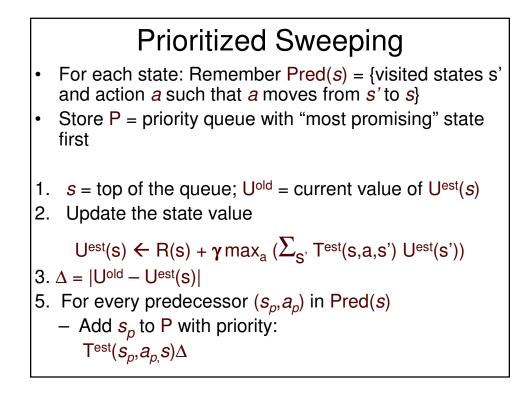
Two Problems

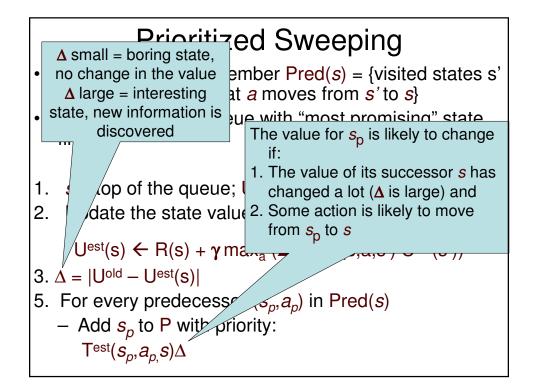
- Which states to update? U^{est} may have already converged for some states, so that the update does not make any difference
- How to explore the environment? We have not said how we generate the actions *a*

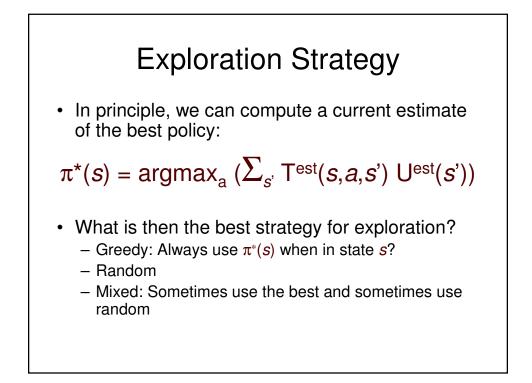


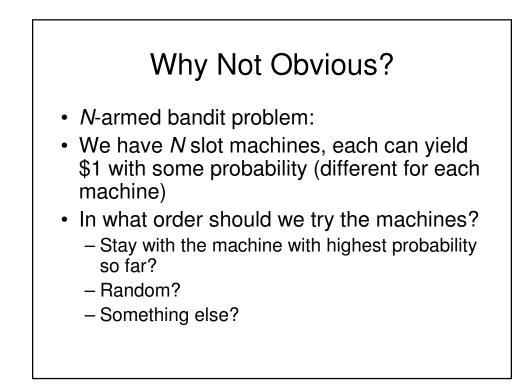


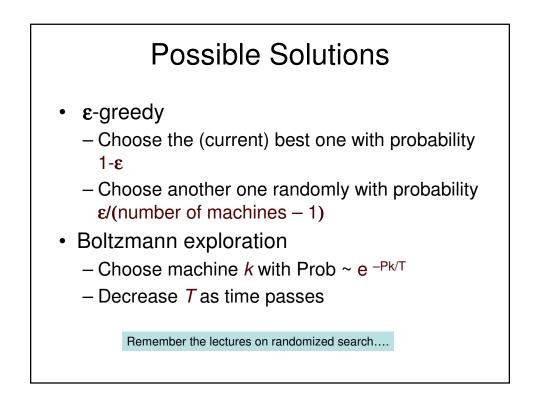


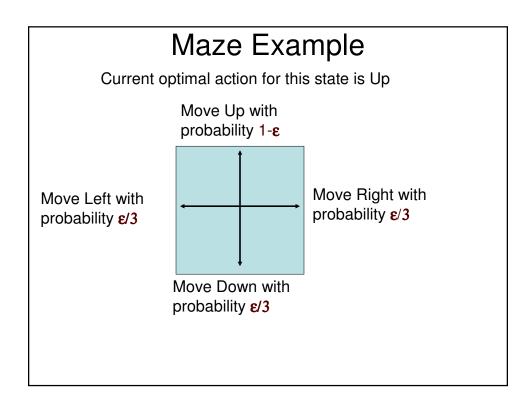






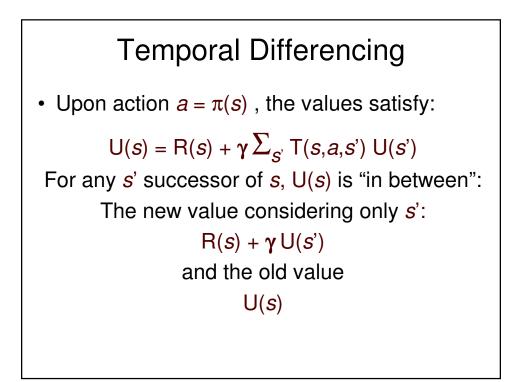


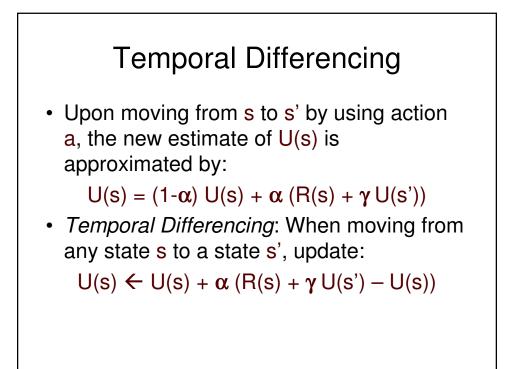


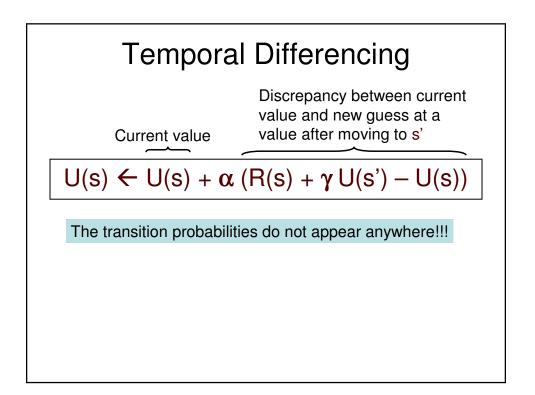


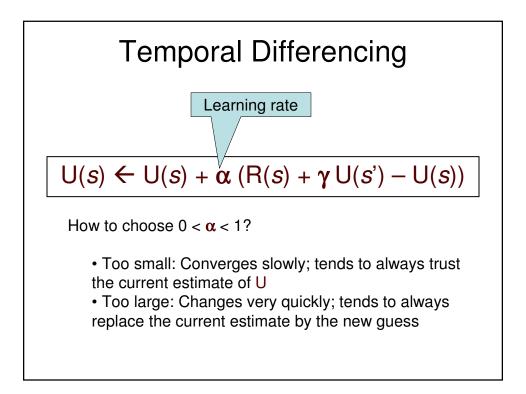
Model-Free

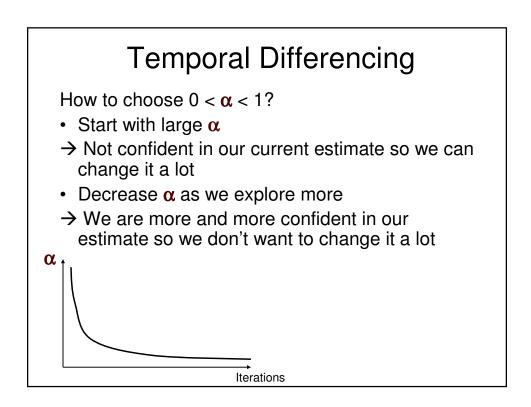
- We are not interested in T(.,,,), we are only interested in the resulting values and policies
- Can we compute something without an explicit model of T(.,.,.) ?
- First, let's fix a policy and compute the resulting values

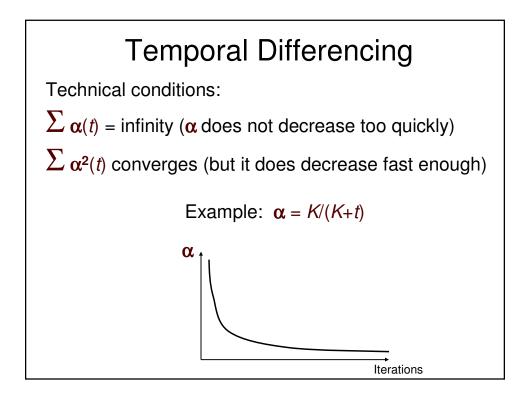


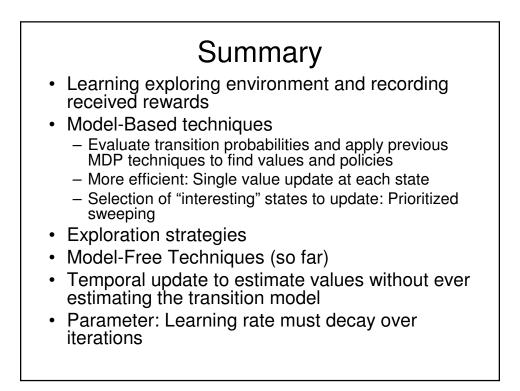


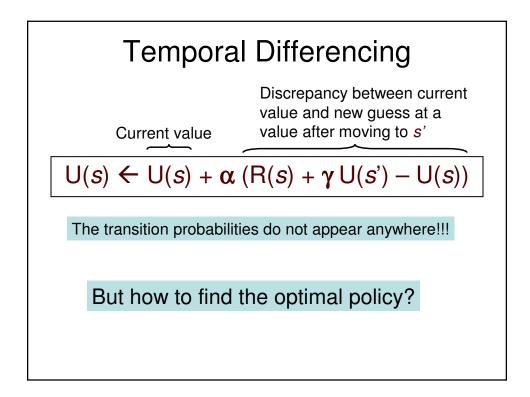


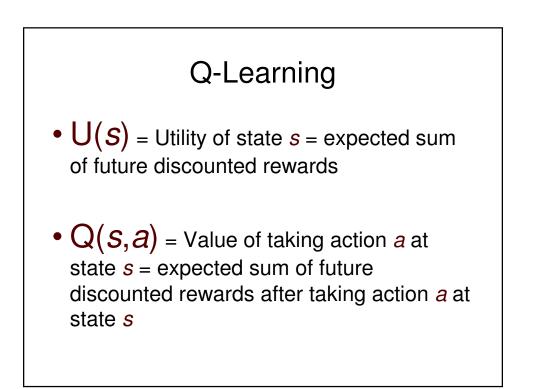


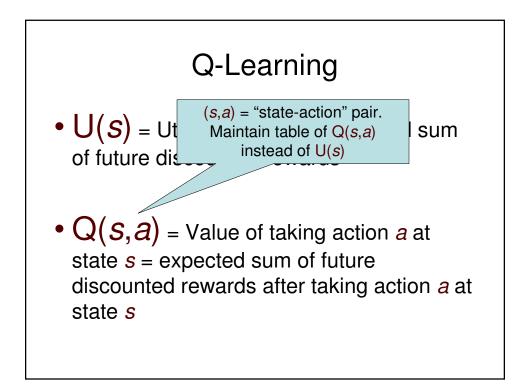


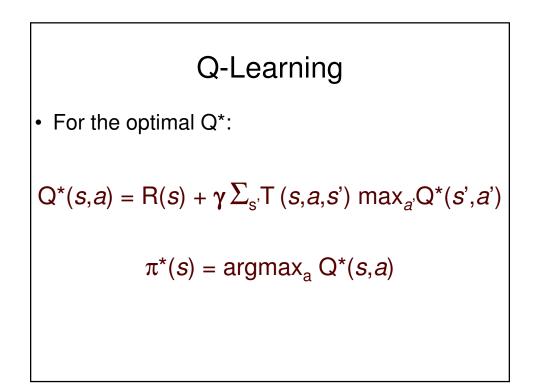


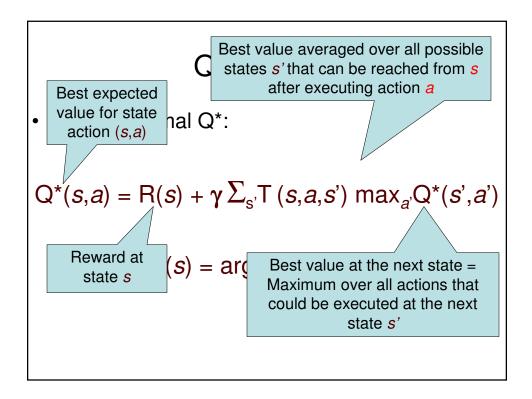


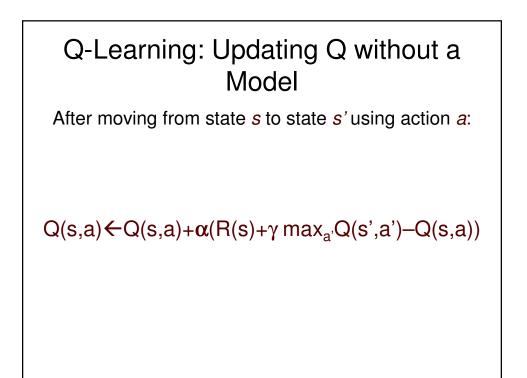


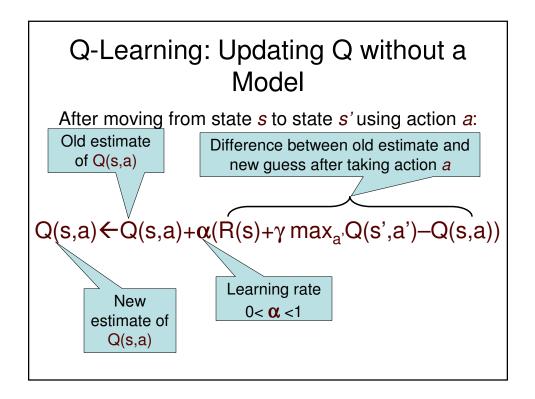


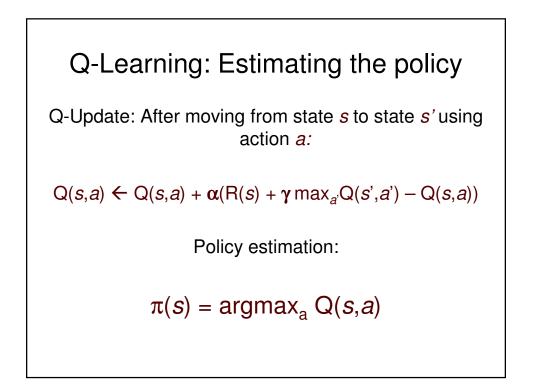


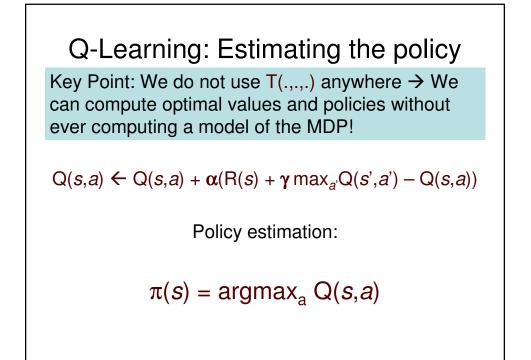


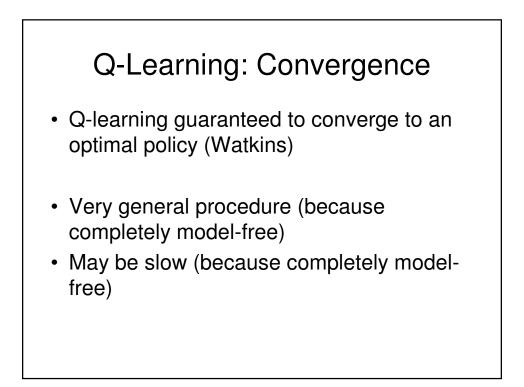






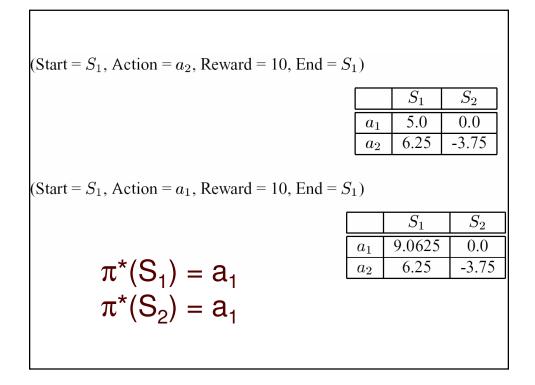


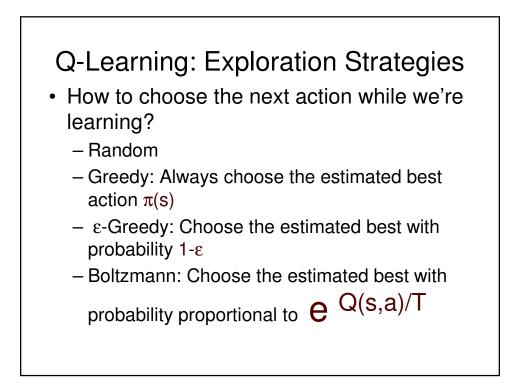


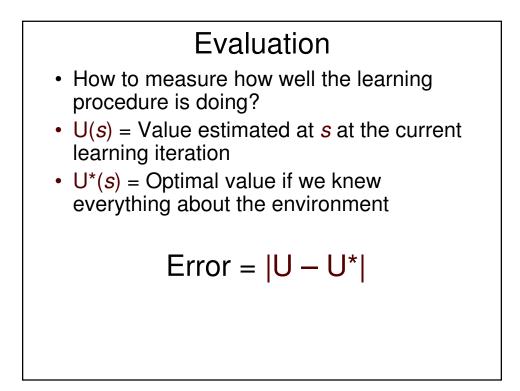


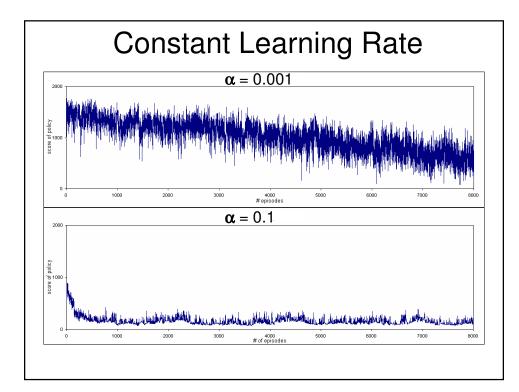
$(\text{Start} = S_1, \text{Action} = a_1, \text{Reward})$	$\mathbf{i} = 10, \mathrm{End} = S_2)$		
		S_1	S_2
	a_1		
	a_2		
(Start = S_2 , Action = a_2 , Reward	$I = -10$, End $= S_1$)	
		S_1	S_2
	a_1		
	a_2		
(Start = S_1 , Action = a_2 , Reward	$\mathbf{I} = 10, \mathrm{End} = S_1)$		
		S_1	S_2
	a_1		
	a_2		
(Start = S_1 , Action = a_1 , Reward	$\mathbf{l} = 10, \mathrm{End} = S_1)$		
		S_1	S_2
	a_1		
	a_2		

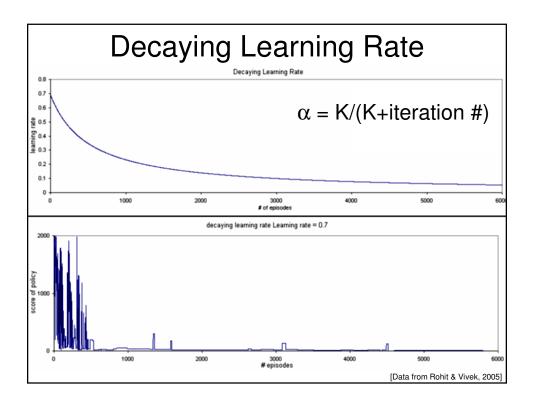
(Start = S_1 , Action = a_1 , Reward = 10, End = S_2)		
		S_1	S_2
	a_1	5.0	0.0
	a_2	0.0	0.0
(Start = S_2 , Action = a_2 , Reward = -10, End = S	1)		
		S_1	S_2
	a_1	S_1 5.0	S_2 0.0
	$egin{array}{c} a_1 \ a_2 \end{array}$	_	
		5.0	0.0
		5.0	0.0
		5.0	0.0

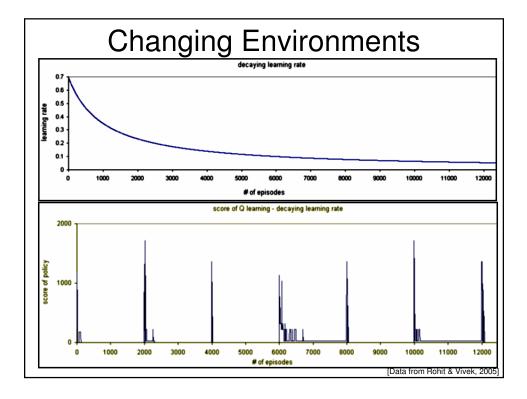


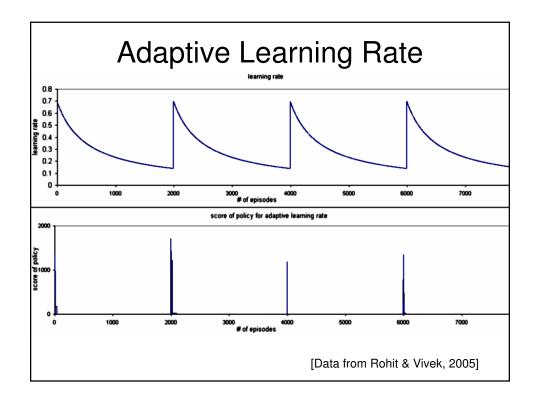


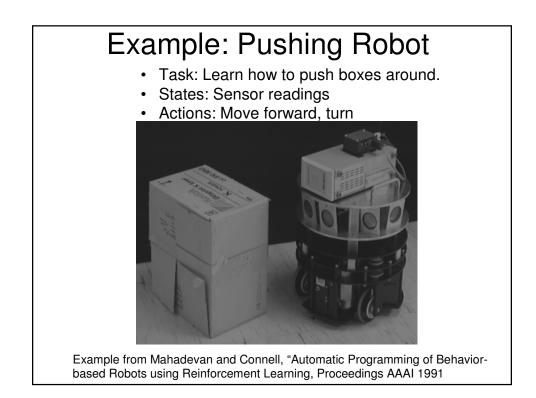


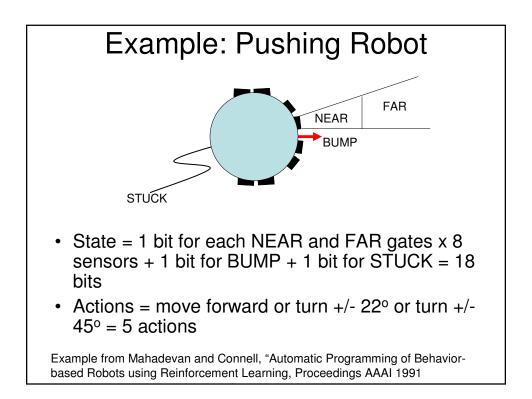


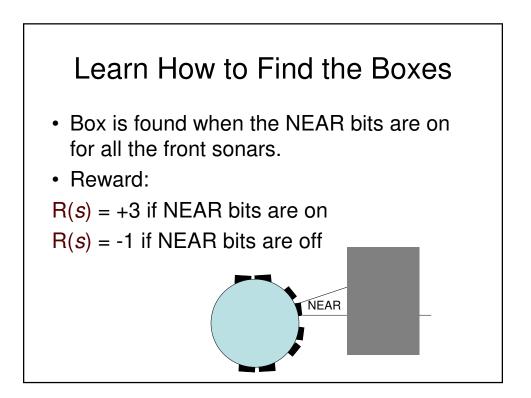


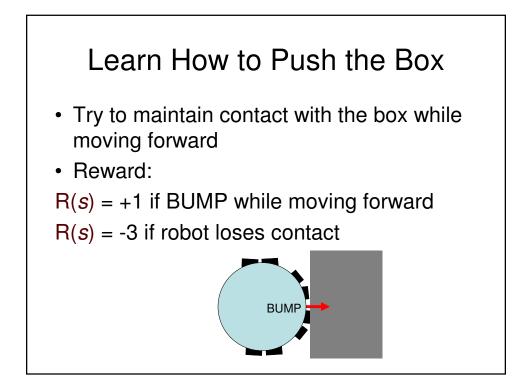


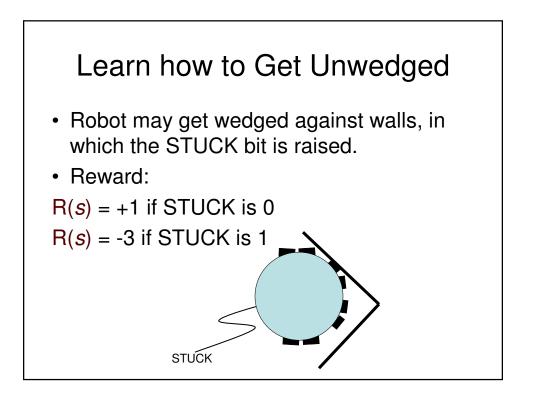






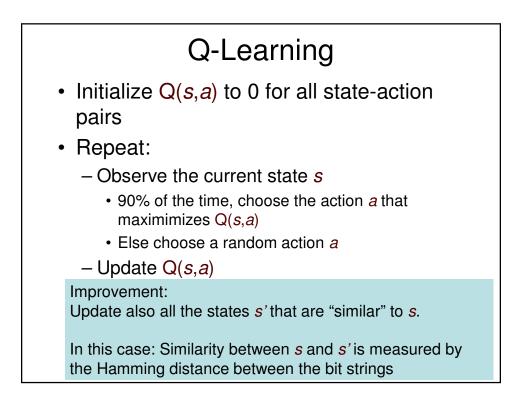


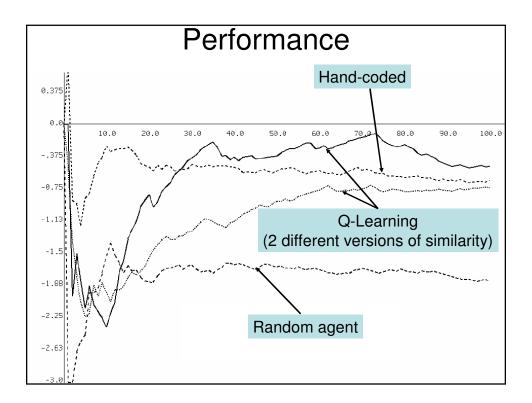


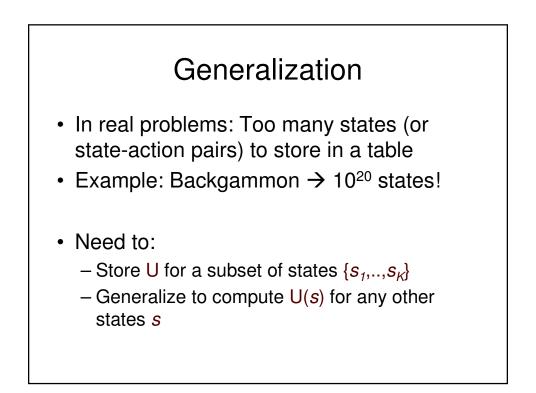


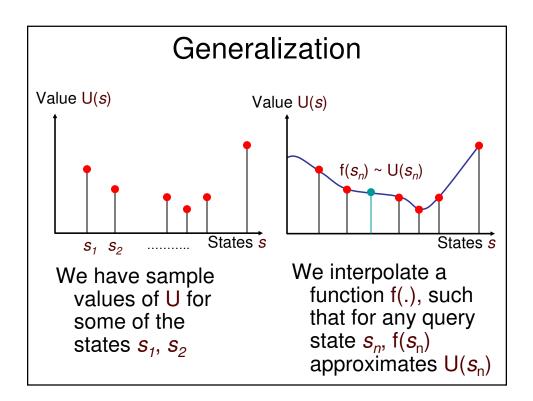
Q-Learning

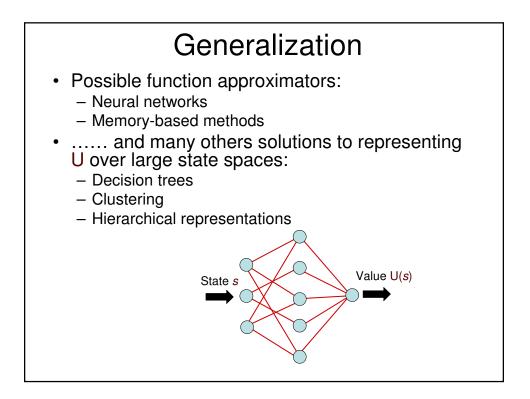
- Initialize Q(s,a) to 0 for all stateaction pairs
- Repeat:
 - -Observe the current state s
 - 90% of the time, choose the action a that maximimizes Q(s,a)
 - Else choose a random action a
 - -Update Q(s,a)

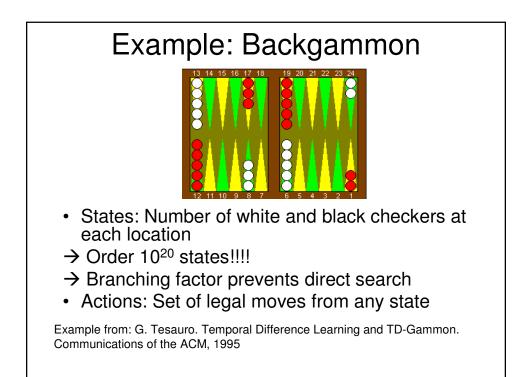


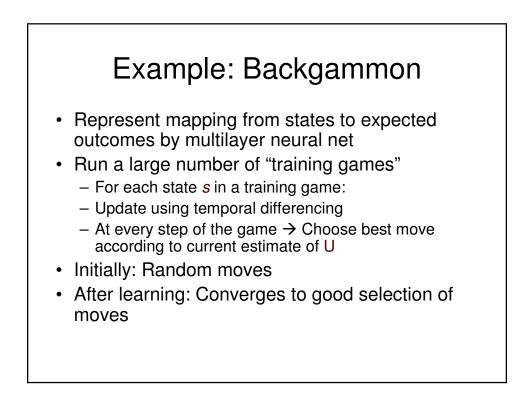


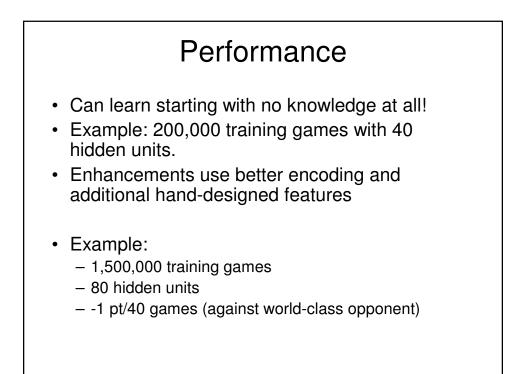


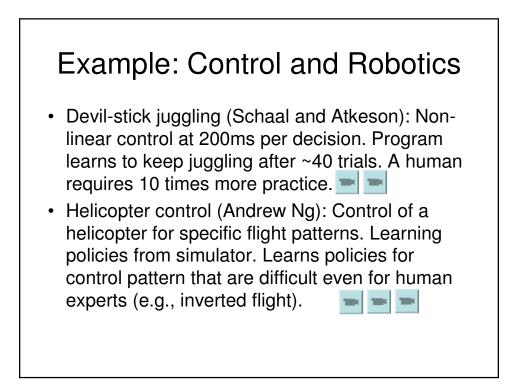












Summary

- Certainty equivalent learning for estimating future rewards
- Exploration strategies
- One-backup update, prioritized sweeping
- Model free (Temporal Differencing = TD) for estimating future rewards
- Q-Learning for model-free estimation of future rewards and optimal policy
- Exploration strategies and selection of actions

