
1

Reinforcement Learning

Reinforcement Learning

• R&N Chapter 21

• Demos and Data Contributions from

Vivek Mehta (vivekm@cs.cmu.edu)

Rohit Kelkar (ryk@cs.cmu.edu)

2

Reinforcement Learning

• Same (fully observable) MDP as before except:

– We don’t know the model of the environment

– We don’t know T(.,.,.)

– We don’t know R(.)

• Task is still the same:

– Find an optimal policy

+1

-1

3

2

1

1 2 3 4

0.10.1

0.8

Intended
action a:

T(s,a,s’)

General Problem

• All we can do is try to execute actions and
record the resulting rewards
– World: You are in state 102, you have a choice of 4

actions

– Robot: I’ll take action 2

– World: You get a reward of 1 and you are now in state
63, you have a choice of 3 actions

– Robot: I’ll take action 3

– World: You get a reward of -10 and you are now in
state 12, you have a choice of 4 actions

– …………..

Learning from experience ….

3

Classes of Techniques

Model-Based
• Try to learn an

explicit model of
T(.,.,.) and R(.)

Reinforcement Learning

Model-Free
• Recover an optimal

policy without ever
estimating a model

Model-Based

• If we knew a good estimate Test(.,.,.) of
T(.,.,.) and R(.), we could evaluate the
optimal policy by solving the fundamental
MDP relations:

Uest(s) = R(s) + γ γ γ γ maxa (Σs’ Test(s,a,s’) Uest(s’))

π*(s) = argmaxa (Σs’ Test(s,a,s’) Uest(s’))

4

Model Estimation

I observed a trajectory during
which, when I moved Up from
s = (1,1), I ended up in

s1 = (1,2) 10 times

s2 = (2,1) 2 times

T(s, Up, s1) ~ 10/(10+2) = 0.83

T(s, Up, s2) ~ 2/(10+2) = 0.17

+1

-1

3

2

1

1 2 3 4

s1

s2s

Model-Based

• Move through the environment by
executing a sequence of actions

• Evaluate T and R:
– R(s) = Reward received when visiting state s

– Test(s, a, s’) ~ (# times we moved from s to s’
on action a)/(# times we applied action a from
s)

• This gives us an estimated model of the
Markov system

5

Model-Based
• Given Test and R, we can now estimate the value at

each state:

Uest(s)=R(s)+γγγγ maxa(Σs’T
est(s,a,s’) Uest(s’))

– Value iteration

– Policy iteration

• This can be expensive if we do that at each step

• May require matrix inversion (size = number of
states) or

• Many iterations of value iteration

• (Certainty Equivalent learning)

Best Policy?

6

π*(S1) = a2

π*(S2) = a2

Problems

• Separates learning the model from using
the model (not on-line learning)

• Expensive because entire set of equations
is solved to find Uest

• How should the environment be explored?
� No guidance until model is built

• Cannot handle changing environments

7

Solution
• Update Uest for state s only instead of solving

for all the states

Uest(s) R(s) + γ γ γ γ maxa (Σs’ Test(s,a,s’) Uest(s’))

• Similar to one step of value iteration

• Terminology � Backup step

• Advantage:

– Computation interleaved with exploration

– Less computation at each step

Example: Model-Based Learning

• Update the current estimate of U(s) =
expected sum of future discounted reward
using estimated T(.,.,.)

Uest(s) R(s) + γ γ γ γ maxa (Σs’ Test(s,a,s’) Uest(s’))

π(s) = argmaxa (Σs’ Test(s,a,s’) Uest(s’))

8

Two Problems

• Which states to update? Uest may have
already converged for some states, so that
the update does not make any difference

• How to explore the environment? We have
not said how we generate the actions a

Which State to Update: Prioritized
Sweeping

• Idea: Update the predecessors of the
states that yield the largest change in Uest

Uest(s) = 5

s1

s2

a1

a2

Uest(s) = 100

s1

s2

a1

a2

After update
of Uest(s)

9

Uest(s) = 5

s1

s2

a1

a2

Uest(s) = 100

s1

s2

a1

a2

After update
of Uest(s)

Uest(s) has changed a lot and

Uest(s1) = R(s1) + …. + T(s1,a1,s)Uest(s)

So Uest(s1) is probably going to change a
lot too so we should update it right away

Uest(s) = 5

s1

s2

a1

a2

Uest(s) = 5.2

s1

s2

a1

a2

After update
of Uest(s)

Uest(s) has not changed a lot and

Uest(s1) = R(s1) + …. + T(s1,a1,s)Uest(s)

So Uest(s1) is probably not going to change a
lot so it’s not useful to waste time updating it

10

Prioritized Sweeping
• For each state: Remember Pred(s) = {visited states s’

and action a such that a moves from s’ to s}

• Store P = priority queue with “most promising” state
first

1. s = top of the queue; Uold = current value of Uest(s)

2. Update the state value

Uest(s) R(s) + γ γ γ γ maxa (Σs’ Test(s,a,s’) Uest(s’))

3. ∆ = |Uold – Uest(s)|

5. For every predecessor (sp,ap) in Pred(s)

– Add sp to P with priority:

Test(sp,ap,s)∆

Prioritized Sweeping
• For each state: Remember Pred(s) = {visited states s’

and action a such that a moves from s’ to s}

• Store P = priority queue with “most promising” state
first

1. s = top of the queue; Uold = current value of Uest(s)

2. Update the state value

Uest(s) R(s) + γ γ γ γ maxa (Σs’ Test(s,a,s’) Uest(s’))

3. ∆ = |Uold – Uest(s)|

5. For every predecessor (sp,ap) in Pred(s)

– Add sp to P with priority:

Test(sp,ap,s)∆

∆∆∆∆ small = boring state,
no change in the value

∆∆∆∆ large = interesting
state, new information is

discovered The value for sp is likely to change
if:

1. The value of its successor s has
changed a lot (∆∆∆∆ is large) and

2. Some action is likely to move
from sp to s

11

Exploration Strategy

• In principle, we can compute a current estimate
of the best policy:

π*(s) = argmaxa (Σs’ Test(s,a,s’) Uest(s’))

• What is then the best strategy for exploration?
– Greedy: Always use π∗(s) when in state s?

– Random

– Mixed: Sometimes use the best and sometimes use
random

Why Not Obvious?

• N-armed bandit problem:

• We have N slot machines, each can yield
$1 with some probability (different for each
machine)

• In what order should we try the machines?
– Stay with the machine with highest probability

so far?

– Random?

– Something else?

12

Possible Solutions

• εεεε-greedy

– Choose the (current) best one with probability
1-εεεε

– Choose another one randomly with probability
ε/(ε/(ε/(ε/(number of machines – 1))))

• Boltzmann exploration

– Choose machine k with Prob ~ e –Pk/T

– Decrease T as time passes

Remember the lectures on randomized search….

Maze Example
Current optimal action for this state is Up

Move Up with
probability 1-εεεε

Move Right with
probability εεεε/3333

Move Left with
probability ε/3ε/3ε/3ε/3

Move Down with
probability ε/3ε/3ε/3ε/3

13

Model-Free

• We are not interested in T(.,.,.), we are
only interested in the resulting values and
policies

• Can we compute something without an
explicit model of T(.,.,.) ?

• First, let’s fix a policy and compute the
resulting values

Temporal Differencing

• Upon action a = π(s) , the values satisfy:

U(s) = R(s) + γ γ γ γ Σs’ T(s,a,s’) U(s’)

For any s’ successor of s, U(s) is “in between”:

The new value considering only s’:

R(s) + γ γ γ γ U(s’)

and the old value

U(s)

14

Temporal Differencing

• Upon moving from s to s’ by using action
a, the new estimate of U(s) is
approximated by:

U(s) = (1-αααα) U(s) + αααα (R(s) + γγγγ U(s’))

• Temporal Differencing: When moving from
any state s to a state s’, update:

U(s) U(s) + αααα (R(s) + γγγγ U(s’) – U(s))

Temporal Differencing

U(s) U(s) + αααα (R(s) + γγγγ U(s’) – U(s))

Discrepancy between current
value and new guess at a
value after moving to s’Current value

The transition probabilities do not appear anywhere!!!

15

Temporal Differencing

U(s) U(s) + αααα (R(s) + γγγγ U(s’) – U(s))

How to choose 0 < αααα < 1?

• Too small: Converges slowly; tends to always trust
the current estimate of U
• Too large: Changes very quickly; tends to always
replace the current estimate by the new guess

Learning rate

Temporal Differencing

How to choose 0 < αααα < 1?

• Start with large αααα

� Not confident in our current estimate so we can
change it a lot

• Decrease αααα as we explore more

� We are more and more confident in our
estimate so we don’t want to change it a lot

Iterations

αααα

16

Temporal Differencing
Technical conditions:

Σ αααα(t) = infinity (αααα does not decrease too quickly)

Σ αααα2(t) converges (but it does decrease fast enough)

Example: αααα = K/(K+t)

Iterations

αααα

Summary
• Learning exploring environment and recording

received rewards
• Model-Based techniques

– Evaluate transition probabilities and apply previous
MDP techniques to find values and policies

– More efficient: Single value update at each state
– Selection of “interesting” states to update: Prioritized

sweeping

• Exploration strategies
• Model-Free Techniques (so far)
• Temporal update to estimate values without ever

estimating the transition model
• Parameter: Learning rate must decay over

iterations

17

Temporal Differencing

U(s) U(s) + αααα (R(s) + γγγγ U(s’) – U(s))

Discrepancy between current
value and new guess at a
value after moving to s’Current value

The transition probabilities do not appear anywhere!!!

But how to find the optimal policy?

Q-Learning

• U(s) = Utility of state s = expected sum

of future discounted rewards

• Q(s,a) = Value of taking action a at

state s = expected sum of future
discounted rewards after taking action a at
state s

18

Q-Learning

• U(s) = Utility of state s = expected sum

of future discounted rewards

• Q(s,a) = Value of taking action a at

state s = expected sum of future
discounted rewards after taking action a at
state s

(s,a) = “state-action” pair.
Maintain table of Q(s,a)

instead of U(s)

Q-Learning

• For the optimal Q*:

Q*(s,a) = R(s) + γ γ γ γ Σs’T (s,a,s’) maxa’Q*(s’,a’)

π*(s) = argmaxa Q*(s,a)

19

Q-Learning

• For the optimal Q*:

Q*(s,a) = R(s) + γ γ γ γ Σs’T (s,a,s’) maxa’Q*(s’,a’)

π*(s) = argmaxa Q*(s,a)

Best expected
value for state

action (s,a)

Reward at
state s

Best value at the next state =
Maximum over all actions that
could be executed at the next

state s’

Best value averaged over all possible
states s’ that can be reached from s

after executing action a

Q-Learning: Updating Q without a
Model

After moving from state s to state s’ using action a:

Q(s,a)Q(s,a)+αααα(R(s)+γ maxa’Q(s’,a’)–Q(s,a))

20

Q-Learning: Updating Q without a
Model

After moving from state s to state s’ using action a:

Q(s,a)Q(s,a)+αααα(R(s)+γ maxa’Q(s’,a’)–Q(s,a))

New
estimate of

Q(s,a)

Old estimate
of Q(s,a)

Learning rate

0< αααα <1

Difference between old estimate and
new guess after taking action a

Q-Learning: Estimating the policy

Q-Update: After moving from state s to state s’ using
action a:

Q(s,a) Q(s,a) + αααα(R(s) + γγγγ maxa’Q(s’,a’) – Q(s,a))

Policy estimation:

π(s) = argmaxa Q(s,a)

21

Q-Learning: Estimating the policy

Q-Update: After moving from state s to state s’ using
action a:

Q(s,a) Q(s,a) + αααα(R(s) + γγγγ maxa’Q(s’,a’) – Q(s,a))

Policy estimation:

π(s) = argmaxa Q(s,a)

Key Point: We do not use T(.,.,.) anywhere � We
can compute optimal values and policies without
ever computing a model of the MDP!

Q-Learning: Convergence

• Q-learning guaranteed to converge to an
optimal policy (Watkins)

• Very general procedure (because
completely model-free)

• May be slow (because completely model-
free)

22

23

π*(S1) = a1

π*(S2) = a1

Q-Learning: Exploration Strategies
• How to choose the next action while we’re

learning?

– Random

– Greedy: Always choose the estimated best
action π(s)

– ε-Greedy: Choose the estimated best with
probability 1-ε

– Boltzmann: Choose the estimated best with

probability proportional to e Q(s,a)/T

24

Evaluation
• How to measure how well the learning

procedure is doing?

• U(s) = Value estimated at s at the current
learning iteration

• U*(s) = Optimal value if we knew
everything about the environment

Error = |U – U*|

Constant Learning Rate

αααα = 0.1

αααα = 0.001

25

Decaying Learning Rate

[Data from Rohit & Vivek, 2005]

α = K/(K+iteration #)

Changing Environments

[Data from Rohit & Vivek, 2005]

26

Adaptive Learning Rate

[Data from Rohit & Vivek, 2005]

Example: Pushing Robot
• Task: Learn how to push boxes around.
• States: Sensor readings
• Actions: Move forward, turn

Example from Mahadevan and Connell, “Automatic Programming of Behavior-
based Robots using Reinforcement Learning, Proceedings AAAI 1991

27

Example: Pushing Robot

• State = 1 bit for each NEAR and FAR gates x 8
sensors + 1 bit for BUMP + 1 bit for STUCK = 18
bits

• Actions = move forward or turn +/- 22o or turn +/-
45o = 5 actions

Example from Mahadevan and Connell, “Automatic Programming of Behavior-
based Robots using Reinforcement Learning, Proceedings AAAI 1991

NEAR
FAR

BUMP

STUCK

Learn How to Find the Boxes

• Box is found when the NEAR bits are on
for all the front sonars.

• Reward:

R(s) = +3 if NEAR bits are on

R(s) = -1 if NEAR bits are off

NEAR

28

Learn How to Push the Box

• Try to maintain contact with the box while
moving forward

• Reward:

R(s) = +1 if BUMP while moving forward

R(s) = -3 if robot loses contact

BUMP

Learn how to Get Unwedged

• Robot may get wedged against walls, in
which the STUCK bit is raised.

• Reward:

R(s) = +1 if STUCK is 0

R(s) = -3 if STUCK is 1

STUCK

29

Q-Learning

• Initialize Q(s,a) to 0 for all state-
action pairs

• Repeat:

–Observe the current state s

• 90% of the time, choose the action a
that maximimizes Q(s,a)

• Else choose a random action a

–Update Q(s,a)

Q-Learning

• Initialize Q(s,a) to 0 for all state-action
pairs

• Repeat:

– Observe the current state s

• 90% of the time, choose the action a that
maximimizes Q(s,a)

• Else choose a random action a

– Update Q(s,a)
Improvement:
Update also all the states s’ that are “similar” to s.

In this case: Similarity between s and s’ is measured by
the Hamming distance between the bit strings

30

Performance

Q-Learning
(2 different versions of similarity)

Hand-coded

Random agent

Generalization

• In real problems: Too many states (or
state-action pairs) to store in a table

• Example: Backgammon � 1020 states!

• Need to:

– Store U for a subset of states {s1,..,sK}

– Generalize to compute U(s) for any other
states s

31

Generalization

We have sample
values of U for
some of the
states s1, s2

States s States s

Value U(s) Value U(s)

s1 s2
………..

f(sn) ~ U(sn)

We interpolate a
function f(.), such
that for any query
state sn, f(sn)
approximates U(sn)

Generalization
• Possible function approximators:

– Neural networks
– Memory-based methods

• …… and many others solutions to representing
U over large state spaces:
– Decision trees
– Clustering
– Hierarchical representations

State s Value U(s)

32

Example: Backgammon

• States: Number of white and black checkers at
each location

� Order 1020 states!!!!
� Branching factor prevents direct search
• Actions: Set of legal moves from any state

Example from: G. Tesauro. Temporal Difference Learning and TD-Gammon.
Communications of the ACM, 1995

Example: Backgammon

• Represent mapping from states to expected
outcomes by multilayer neural net

• Run a large number of “training games”
– For each state s in a training game:

– Update using temporal differencing

– At every step of the game � Choose best move
according to current estimate of U

• Initially: Random moves

• After learning: Converges to good selection of
moves

33

Performance

• Can learn starting with no knowledge at all!

• Example: 200,000 training games with 40
hidden units.

• Enhancements use better encoding and
additional hand-designed features

• Example:
– 1,500,000 training games

– 80 hidden units

– -1 pt/40 games (against world-class opponent)

Example: Control and Robotics

• Devil-stick juggling (Schaal and Atkeson): Non-
linear control at 200ms per decision. Program
learns to keep juggling after ~40 trials. A human
requires 10 times more practice.

• Helicopter control (Andrew Ng): Control of a
helicopter for specific flight patterns. Learning
policies from simulator. Learns policies for
control pattern that are difficult even for human
experts (e.g., inverted flight).

34

Summary

• Certainty equivalent learning for estimating
future rewards

• Exploration strategies

• One-backup update, prioritized sweeping

• Model free (Temporal Differencing = TD) for
estimating future rewards

• Q-Learning for model-free estimation of future
rewards and optimal policy

• Exploration strategies and selection of actions

(Some) References
• S. Sutton and A.G. Barto. Reinforcement

Learning: An Introduction. MIT Press.

• L. Kaelbling, M. Littman and A. Moore.
Reinforcement Learning: A Survey. Journal of
Artificial Intelligence Research. Volume 4, 1996.

• G. Tesauro. TD-Gammon, a self-teaching
backgammon program, achieves master-level
play. Neural Computation 6(2), 1995.

• http://ai.stanford.edu/~ang/

• http://www-all.cs.umass.edu/rlr/

