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Reinforcement Learning

• Same (fully observable) MDP as before except:

– We don’t know the model of the environment

– We don’t know T(.,.,.)

– We don’t know R(.)

• Task is still the same:

– Find an optimal policy
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action a:

T(s,a,s’)

General Problem

• All we can do is try to execute actions and 
record the resulting rewards
– World: You are in state 102, you have a choice of 4 

actions

– Robot: I’ll take action 2

– World: You get a reward of 1 and you are now in state 
63, you have a choice of 3 actions

– Robot: I’ll take action 3

– World: You get a reward of -10 and you are now in 
state 12, you have a choice of 4 actions

– …………..

Learning from experience ….
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Classes of Techniques

Model-Based
• Try to learn an 

explicit model of 
T(.,.,.) and R(.)

Reinforcement Learning

Model-Free
• Recover an optimal 

policy without ever 
estimating a model

Model-Based

• If we knew a good estimate Test(.,.,.) of 
T(.,.,.) and R(.), we could evaluate the 
optimal policy by solving the fundamental 
MDP relations:

Uest(s) = R(s) + γ γ γ γ maxa (Σs’ Test(s,a,s’) Uest(s’))

π*(s) = argmaxa (Σs’ Test(s,a,s’) Uest(s’))
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Model Estimation

I observed a trajectory during 
which, when I moved Up from 
s = (1,1), I ended up in

s1 = (1,2) 10 times

s2 = (2,1)  2 times

T(s, Up, s1) ~ 10/(10+2) = 0.83

T(s, Up, s2) ~ 2/(10+2) = 0.17
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Model-Based

• Move through the environment by 
executing a sequence of actions

• Evaluate T and R:
– R(s) = Reward received when visiting state s

– Test(s, a, s’) ~ (# times we moved from s to s’
on action a)/(# times we applied action a from 
s)

• This gives us an estimated model of the 
Markov system
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Model-Based
• Given Test and R, we can now estimate the value at 

each state:

Uest(s)=R(s)+γγγγ maxa(Σs’T
est(s,a,s’) Uest(s’))

– Value iteration

– Policy iteration

• This can be expensive if we do that at each step

• May require matrix inversion (size = number of 
states) or

• Many iterations of value iteration

• (Certainty Equivalent learning)

Best Policy?
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π*(S1) = a2

π*(S2) = a2

Problems

• Separates learning the model from using 
the model (not on-line learning)

• Expensive because entire set of equations 
is solved to find Uest

• How should the environment be explored? 
� No guidance until model is built

• Cannot handle changing environments
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Solution
• Update Uest for state s only instead of solving 

for all the states 

Uest(s)  R(s) + γ γ γ γ maxa (Σs’ Test(s,a,s’) Uest(s’))

• Similar to one step of value iteration

• Terminology � Backup step

• Advantage: 

– Computation interleaved with exploration

– Less computation at each step

Example: Model-Based Learning

• Update the current estimate of U(s) = 
expected sum of future discounted reward 
using estimated T(.,.,.)

Uest(s) R(s) + γ γ γ γ maxa (Σs’ Test(s,a,s’) Uest(s’))

π(s) = argmaxa (Σs’ Test(s,a,s’) Uest(s’))
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Two Problems

• Which states to update? Uest may have 
already converged for some states, so that 
the update does not make any difference

• How to explore the environment? We have 
not said how we generate the actions a

Which State to Update: Prioritized 
Sweeping

• Idea: Update the predecessors of the 
states that yield the largest change in Uest

Uest(s) = 5 

s1

s2

a1

a2

Uest(s) = 100 

s1

s2

a1

a2

After update 
of Uest(s)
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Uest(s) = 5 

s1

s2

a1
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Uest(s) = 100 

s1

s2

a1

a2

After update 
of Uest(s)

Uest(s) has changed a lot and

Uest(s1) = R(s1) + …. + T(s1,a1,s)Uest(s)

So Uest(s1) is probably going to change a 
lot too so we should update it right away

Uest(s) = 5

s1

s2

a1

a2

Uest(s) = 5.2

s1

s2

a1

a2

After update 
of Uest(s)

Uest(s) has not changed a lot and

Uest(s1) = R(s1) + …. + T(s1,a1,s)Uest(s)

So Uest(s1) is probably not going to change a 
lot so it’s not useful to waste time updating it
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Prioritized Sweeping
• For each state: Remember Pred(s) = {visited states s’

and action a such that a moves from s’ to s}

• Store P = priority queue with “most promising” state 
first

1. s = top of the queue; Uold = current value of Uest(s)

2.   Update the state value

Uest(s)  R(s) + γ γ γ γ maxa (Σs’ Test(s,a,s’) Uest(s’))

3. ∆ = |Uold – Uest(s)|

5.  For every predecessor (sp,ap) in Pred(s)

– Add sp to P with priority:

Test(sp,ap,s)∆

Prioritized Sweeping
• For each state: Remember Pred(s) = {visited states s’

and action a such that a moves from s’ to s}

• Store P = priority queue with “most promising” state 
first

1. s = top of the queue; Uold = current value of Uest(s)

2.   Update the state value

Uest(s)  R(s) + γ γ γ γ maxa (Σs’ Test(s,a,s’) Uest(s’))

3. ∆ = |Uold – Uest(s)|

5.  For every predecessor (sp,ap) in Pred(s)

– Add sp to P with priority:

Test(sp,ap,s)∆

∆∆∆∆ small = boring state, 
no change in the value

∆∆∆∆ large = interesting 
state, new information is 

discovered The value for sp is likely to change 
if:

1. The value of its successor s has 
changed a lot (∆∆∆∆ is large) and

2. Some action is likely to move 
from sp to s
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Exploration Strategy

• In principle, we can compute a current estimate 
of the best policy:

π*(s) = argmaxa (Σs’ Test(s,a,s’) Uest(s’))

• What is then the best strategy for exploration?
– Greedy: Always use π∗(s) when in state s?

– Random

– Mixed: Sometimes use the best and sometimes use 
random

Why Not Obvious?

• N-armed bandit problem:

• We have N slot machines, each can yield 
$1 with some probability (different for each 
machine)

• In what order should we try the machines?
– Stay with the machine with highest probability 

so far?

– Random?

– Something else?
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Possible Solutions

• εεεε-greedy

– Choose the (current) best one with probability 
1-εεεε

– Choose another one randomly with probability 
ε/(ε/(ε/(ε/(number of machines – 1))))

• Boltzmann exploration

– Choose machine k with Prob ~ e –Pk/T

– Decrease T as time passes

Remember the lectures on randomized search….

Maze Example
Current optimal action for this state is Up

Move Up with 
probability 1-εεεε

Move Right with 
probability εεεε/3333

Move Left with 
probability ε/3ε/3ε/3ε/3

Move Down with 
probability ε/3ε/3ε/3ε/3
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Model-Free

• We are not interested in T(.,.,.), we are 
only interested in the resulting values and 
policies

• Can we compute something without an 
explicit model of T(.,.,.) ?

• First, let’s fix a policy and compute the 
resulting values

Temporal Differencing

• Upon action a = π(s) , the values satisfy:

U(s) = R(s) + γ γ γ γ Σs’ T(s,a,s’) U(s’)

For any s’ successor of s, U(s) is “in between”:

The new value considering only s’:

R(s) + γ γ γ γ U(s’)

and the old value

U(s)
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Temporal Differencing

• Upon moving from s to s’ by using action 
a, the new estimate of U(s) is 
approximated by:

U(s) = (1-αααα) U(s) + αααα (R(s) + γγγγ U(s’))

• Temporal Differencing: When moving from 
any state s to a state s’, update:

U(s)  U(s) + αααα (R(s) + γγγγ U(s’) – U(s))

Temporal Differencing

U(s)  U(s) + αααα (R(s) + γγγγ U(s’) – U(s))

Discrepancy between current 
value and new guess at a 
value after moving to s’Current value

The transition probabilities do not appear anywhere!!!
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Temporal Differencing

U(s)  U(s) + αααα (R(s) + γγγγ U(s’) – U(s))

How to choose 0 < αααα < 1?

• Too small: Converges slowly; tends to always trust 
the current estimate of U
• Too large: Changes very quickly; tends to always 
replace the current estimate by the new guess

Learning rate

Temporal Differencing

How to choose 0 < αααα < 1?

• Start with large αααα

� Not confident in our current estimate so we can 
change it a lot

• Decrease αααα as we explore more

� We are more and more confident in our 
estimate so we don’t want to change it a lot

Iterations

αααα
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Temporal Differencing
Technical conditions:

Σ αααα(t) = infinity (αααα does not decrease too quickly)

Σ αααα2(t) converges (but it does decrease fast enough)

Example:  αααα = K/(K+t)

Iterations

αααα

Summary
• Learning exploring environment and recording 

received rewards
• Model-Based techniques

– Evaluate transition probabilities and apply previous 
MDP techniques to find values and policies

– More efficient: Single value update at each state
– Selection of “interesting” states to update: Prioritized 

sweeping

• Exploration strategies
• Model-Free Techniques (so far)
• Temporal update to estimate values without ever 

estimating the transition model
• Parameter: Learning rate must decay over 

iterations
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Temporal Differencing

U(s)  U(s) + αααα (R(s) + γγγγ U(s’) – U(s))

Discrepancy between current 
value and new guess at a 
value after moving to s’Current value

The transition probabilities do not appear anywhere!!!

But how to find the optimal policy?

Q-Learning

• U(s) = Utility of state s = expected sum 

of future discounted rewards

• Q(s,a) = Value of taking action a at 

state s = expected sum of future 
discounted rewards after taking action a at 
state s
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Q-Learning

• U(s) = Utility of state s = expected sum 

of future discounted rewards

• Q(s,a) = Value of taking action a at 

state s = expected sum of future 
discounted rewards after taking action a at 
state s

(s,a) = “state-action” pair. 
Maintain table of Q(s,a)

instead of U(s)

Q-Learning

• For the optimal Q*:

Q*(s,a) = R(s) + γ γ γ γ Σs’T (s,a,s’) maxa’Q*(s’,a’)

π*(s) = argmaxa Q*(s,a)



19

Q-Learning

• For the optimal Q*:

Q*(s,a) = R(s) + γ γ γ γ Σs’T (s,a,s’) maxa’Q*(s’,a’)

π*(s) = argmaxa Q*(s,a)

Best expected 
value for state 

action (s,a)

Reward at 
state s

Best value at the next state = 
Maximum over all actions that 
could be executed at the next 

state s’

Best value averaged over all possible 
states s’ that can be reached from s

after executing action a

Q-Learning: Updating Q without a 
Model

After moving from state s to state s’ using action a:

Q(s,a)Q(s,a)+αααα(R(s)+γ maxa’Q(s’,a’)–Q(s,a))
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Q-Learning: Updating Q without a 
Model

After moving from state s to state s’ using action a:

Q(s,a)Q(s,a)+αααα(R(s)+γ maxa’Q(s’,a’)–Q(s,a))

New 
estimate of 

Q(s,a)

Old estimate 
of Q(s,a)

Learning rate 

0< αααα <1

Difference between old estimate and 
new guess after taking action a

Q-Learning: Estimating the policy

Q-Update: After moving from state s to state s’ using 
action a:

Q(s,a)  Q(s,a) + αααα(R(s) + γγγγ maxa’Q(s’,a’) – Q(s,a))

Policy estimation:

π(s) = argmaxa Q(s,a)



21

Q-Learning: Estimating the policy

Q-Update: After moving from state s to state s’ using 
action a:

Q(s,a)  Q(s,a) + αααα(R(s) + γγγγ maxa’Q(s’,a’) – Q(s,a))

Policy estimation:

π(s) = argmaxa Q(s,a)

Key Point: We do not use T(.,.,.) anywhere � We 
can compute optimal values and policies without 
ever computing a model of the MDP!

Q-Learning: Convergence

• Q-learning guaranteed to converge to an 
optimal policy (Watkins)

• Very general procedure (because 
completely model-free)

• May be slow (because completely model-
free)
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π*(S1) = a1

π*(S2) = a1

Q-Learning: Exploration Strategies
• How to choose the next action while we’re 

learning?

– Random

– Greedy: Always choose the estimated best 
action π(s)

– ε-Greedy: Choose the estimated best with 
probability 1-ε

– Boltzmann: Choose the estimated best with 

probability proportional to  e Q(s,a)/T
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Evaluation
• How to measure how well the learning 

procedure is doing?

• U(s) = Value estimated at s at the current 
learning iteration

• U*(s) = Optimal value if we knew 
everything about the environment

Error = |U – U*|

Constant Learning Rate

αααα = 0.1

αααα = 0.001
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Decaying Learning Rate

[Data from Rohit & Vivek, 2005]

α = K/(K+iteration #)

Changing Environments

[Data from Rohit & Vivek, 2005]
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Adaptive Learning Rate

[Data from Rohit & Vivek, 2005]

Example: Pushing Robot
• Task: Learn how to push boxes around.
• States: Sensor readings
• Actions: Move forward, turn

Example from Mahadevan and Connell, “Automatic Programming of Behavior-
based Robots using Reinforcement Learning, Proceedings AAAI 1991
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Example: Pushing Robot

• State = 1 bit for each NEAR and FAR gates x 8 
sensors + 1 bit for BUMP + 1 bit for STUCK = 18 
bits

• Actions = move forward or turn +/- 22o or turn +/-
45o = 5 actions

Example from Mahadevan and Connell, “Automatic Programming of Behavior-
based Robots using Reinforcement Learning, Proceedings AAAI 1991

NEAR
FAR

BUMP

STUCK

Learn How to Find the Boxes

• Box is found when the NEAR bits are on 
for all the front sonars.

• Reward:

R(s) = +3 if NEAR bits are on

R(s) = -1 if NEAR bits are off

NEAR
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Learn How to Push the Box

• Try to maintain contact with the box while 
moving forward

• Reward:

R(s) = +1 if BUMP while moving forward

R(s) = -3 if robot loses contact

BUMP

Learn how to Get Unwedged

• Robot may get wedged against walls, in 
which the STUCK bit is raised.

• Reward:

R(s) = +1 if STUCK is 0

R(s) = -3 if STUCK is 1

STUCK
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Q-Learning

• Initialize Q(s,a) to 0 for all state-
action pairs

• Repeat:

–Observe the current state s

• 90% of the time, choose the action a
that maximimizes Q(s,a)

• Else choose a random action a

–Update Q(s,a)

Q-Learning

• Initialize Q(s,a) to 0 for all state-action 
pairs

• Repeat:

– Observe the current state s

• 90% of the time, choose the action a that 
maximimizes Q(s,a)

• Else choose a random action a

– Update Q(s,a)
Improvement: 
Update also all the states s’ that are “similar” to s.

In this case: Similarity between s and s’ is measured by 
the Hamming distance between the bit strings
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Performance

Q-Learning
(2 different versions of similarity)

Hand-coded

Random agent

Generalization

• In real problems: Too many states (or 
state-action pairs) to store in a table

• Example: Backgammon � 1020 states!

• Need to:

– Store U for a subset of states {s1,..,sK}

– Generalize to compute U(s) for any other 
states s
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Generalization

We have sample 
values of U for 
some of the 
states s1, s2

States s States s

Value U(s) Value U(s)

s1 s2
………..

f(sn) ~ U(sn)

We interpolate a 
function f(.), such 
that for any query 
state sn, f(sn)
approximates U(sn)

Generalization
• Possible function approximators:

– Neural networks
– Memory-based methods

• …… and many others solutions to representing 
U over large state spaces:
– Decision trees
– Clustering
– Hierarchical representations

State s Value U(s)
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Example: Backgammon

• States: Number of white and black checkers at 
each location 

� Order 1020 states!!!!
� Branching factor prevents direct search
• Actions: Set of legal moves from any state

Example from: G. Tesauro. Temporal Difference Learning and TD-Gammon. 
Communications of the ACM, 1995

Example: Backgammon

• Represent mapping from states to expected 
outcomes by multilayer neural net

• Run a large number of “training games”
– For each state s in a training game:

– Update using temporal differencing

– At every step of the game � Choose best move 
according to current estimate of U

• Initially: Random moves

• After learning: Converges to good selection of 
moves
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Performance

• Can learn starting with no knowledge at all!

• Example: 200,000 training games with 40 
hidden units.

• Enhancements use better encoding and 
additional hand-designed features

• Example:
– 1,500,000 training games

– 80 hidden units

– -1 pt/40 games (against world-class opponent)

Example: Control and Robotics

• Devil-stick juggling (Schaal and Atkeson): Non-
linear control at 200ms per decision. Program 
learns to keep juggling after ~40 trials. A human 
requires 10 times more practice.

• Helicopter control (Andrew Ng): Control of a 
helicopter for specific flight patterns. Learning 
policies from simulator. Learns policies for 
control pattern that are difficult even for human 
experts (e.g., inverted flight).
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Summary

• Certainty equivalent learning for estimating 
future rewards

• Exploration strategies

• One-backup update, prioritized sweeping

• Model free (Temporal Differencing = TD) for 
estimating future rewards

• Q-Learning for model-free estimation of future 
rewards and optimal policy

• Exploration strategies and selection of actions 
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