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Representing Uncertainty + 

Probabilistic Learning

R&N Chapter 13

A bit of 20.2

Uncertainty

• Most real-world problems deal with 
uncertain information
– Diagnosis: Likely disease given observed 

symptoms

– Equipment repair: Likely component failure 
given sensor reading

– Help desk: Likely operation based on past 
operations

– Cannot be represented by deterministic rules

Headache => Fever
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Uncertainty

• Correct framework for representing 

uncertainty: Probability

• Outline:

– Review of basic probability tools (much of it 
well-known, but still important to review)

– Bayes rule and its use in uncertain reasoning 
and probabilistic learning 

Probability

• P(A) = Probability of event A = percentage 

of all possible worlds in which A is true.

1)P(0 ≤≤ A

All the possible worlds

Worlds in which 
A is true

P(A) =
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Probability
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• Other ideas:
– Fuzzy logic

– Non-monotonic logic

– Multi-valued logic

– Evidence theory (Dempster-Shafer)

• Probability is the only system that is “consistent”
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Probability

• Immediately derived properties

)(1)( APAP −=¬

),(),()( BAPBAPAP ¬+=

Denotes not-A = All the worlds 

in which A does not occur

Short hand for “A and B”

Probability
• A random variable is a variable X that can take 

values x1,..,xn with a probability P(X= xi)

attached to each i = 1,..,n

Worlds in 

which X=x1

Worlds in 

which X=x2

Worlds in 

which X=x4

Worlds in 

which X=x3

( ) 1P
1

==∑
=

n

i

ixX
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Conditional Probability

• P(A|B) = Fraction of those worlds in which 

B is true for which A is also true.

B

A

Conditional Probability Example
• H = Headache              P(H) = 1/2

• F = Flu                          P(F) = 1/8

P(H|F) = 1/2

H F
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Conditional Probability Example
• H = Headache              P(H) = 1/2

• F = Flu                          P(F) = 1/8

P(H|F) = (Area of “H and F” region)

(Area of F region)

P(H|F) = P(H,F)/P(F)

P(H|F) = 1/2

H F

Conditional Probability

• Definition:

• Chain rule:

)P(

),P(
)|P(

B

BA
BA =

)P()|P(),P( BBABA =
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Conditional Probability

• Other useful relations:

1)|()|( =¬+ BAPBAP

1)|( ==∑ BxXP
i

i

Probabilistic Inference
• Suppose H is true

• Suppose that you know P(H|F) = ½ = 0.5

• What is the probability that F is true? 0.5?

H F

• P(H) = 1/2

• P(F) = 1/8

• P(H|F) = 0.5 
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Probabilistic Inference
• Correct reasoning:

• We know P(H), P(F), P(H|F) and the two 
chain rules:

• Substituting the values:

)P()|P(),P( FFHFH =

)P(

),P(
)|P(

H

FH
HF =

8/1
2/1

16/1
)|P( ==HF

16/18/15.0),P( =×=FH

Probabilistic Inference
• Correct reasoning:

• We know P(H), P(F), P(H|F) and the two 
chain rules:

• Substituting the values:

)P()|P(),P( FFHFH =

)P(

),P(
)|P(

H

FH
HF =

8/1
2/1

16/1
)|P( ==HF

16/18/15.0),P( =×=FH

The key difference is 
that we took into 
account the fact that 
catching the flu is 
unlikely (P(F) is 

small)
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Bayes Rule

)P(

)P()|P(
)|P(

A

BBA
AB =

Introduced circa 1763

Probabilistic Inference

)P(

)P()|P(
)|P(

A

BBA
AB =

We want: Posterior

probability that B occurs 

given that A occurs

We know: Likelihood that A

occurs given that B occurs

We know: Prior 

probability that B

occurs in the 
absence of any 

other information



10

Bayes Rule

• What if we do not know P(A)???

• Use the relation:

• More general Bayes rule:

)P()|P()P()|P()P( BBABBAA ¬¬+=

)P()|P()P()|P(

)P()|P(
)|P(

BBABBA

BBA
AB

¬¬+
=

Bayes Rule
• Same rule for a non-binary random variable, 

except we need to sum over all the possible 

events X = xi

∑ ==

==
==

k

kk

ii
i

xXxXA

xXxXA
AxX

)P()|P(

)P()|P(
)|P(

)P(

)P()|P(
)|P(

A

xXxXA
AxX ii

i

==
==

This is actually 
just P(A)
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Joint Distribution
• Joint Distribution Table:

• Given a set of 
variables A,B,C,….

• Generate a table with 
all the possible 
combinations of 
assignments to the 
variables in the rows
• For each row, list the 
corresponding joint 
probability
• For M binary 

variables � size 2M

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA

Using the Joint Distribution: 
Computing Other Probabilities

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBACompute the probability 

of event E:

∑=

E

PEP

 containing
 rows all

)row()(

=),( BAP 0.25 + 0.10 = 0.35



12

Using the Joint Distribution: Doing 
Inference

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBAGiven that event E1 occurs, 
what is the probability that E2

occurs:

)(

),(
)|(

1

12
12

EP

EEP
EEP =

Using the Joint Distribution: Doing 
Inference

0.10111

0.25011

0.10101

0.05001

0.05110

0.10010

0.05100

0.30000

ProbCBA

)(

),,(
)|,(

CP

CBAP
CBAP =

0.10
0.05+0.05+0.10+0.10

0.10
0.30

==
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Inference

• General view: I have some evidence 

(Headache) how likely is a particular 

conclusion (Fever)

• Important in many industries: Medical, 

pharmaceutical, Help Desk, Fault 

Diagniosis…. 

Learning the Joint Distribution

• Three possible ways of generating the 

joint distribution:

1. Human experts (very difficult!)

2. Using known conditionally probabilities (e.g., 
if we know P(C|A,B), P(B|A), and P(A), we 

know P(A,B,C) = P(C|A,B)P(B|A)P(A) �
This is the basis for Bayes Nets, to be 
covered later….)

3. Learning from data
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Learning the Joint Distribution

?111

?011

?101

?001

?110

?010

?100

?000

ProbCBA

Suppose that we have 
recorded a lot of training data:

(0,1,1)

(1,0,1)

(1,1,0)

(0,0,0)
(1,1,0)………..

# of data entries with A=1, B=1, C=0

Total number of data entries

The entry for P(A,B,¬C) in 
the table is:

Learning the Joint Distribution

?111

?011

?101

?001

?110

?010

?100

?000

ProbCBA
Suppose that we have 
recorded a lot of training data:

More generally, the entry for 
P(E) in the table is:

# of data entries with E

Total number of data entries

(0,1,1)

(1,0,1)

(1,1,0)
(0,0,0)

(1,1,0)………..
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Real-Life Joint Distribution

• UCI Census Database

Real-Life Joint Distribution
• UCI Census Database

P(Male|Poor) = 0.4654/0.7604 = 0.612
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So Far….

• Basic probability concepts

• Bayes rule

• What are joint distributions

• Inference using joint distributions

• Learning joint distributions from data

• Problem: If we have M variables, we need 2M

entries in the joint distribution table � An 
independence assumption leads to an efficient 
way to learn and to do inference

Independence

• A and B are independent iff:

• In words: Knowing B does not affect how 

likely we think that A is true

)P()|P( ABA =
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Key Properties

• Symmetry:

• Joint distribution:

• Independence of complements:

)P()|P()P()|P( BABABA =⇔=

)P()P(),P( BABA =

)P()|P()P()|P( ABAABA =¬¬=¬

Naïve Bayes

• Suppose that A, B, C are independent

• Then any value of the joint distribution can 

be computed easily:

• In fact, we need only M numbers instead 

of 2M for binary variables!!

)P()P()P(),,P( CBACBA ¬=¬

)P()P()P(),,P( CBACBA =
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Naïve Bayes: General Case
• If X1,..,XM are independent variables:

• Under the “Naïve” assumption, we can 

compute any value of the joint distribution

• We can answer any inference query

• How do we learn the distributions?

)P()P()P(

),,,P(

2211

2211

MM

MM

xXxXxX

xXxXxX

===

====

K

K

Naïve Bayes: Learning

nsobservatioofNumberTotal

withnsobservatioofNumber
)(

xX
xXP i

i

=
==

• Learning the distributions from data is simple 
and efficient

• In practice, the independence assumption may 
not be met but it is often a very useful 
approximation (see examples at the end)



19

So Far….
• Basic probability concepts

• Bayes rule

• What are joint distributions

• Inference using joint distributions

• Learning joint distributions from data

• Independence assumption

• Naïve Bayes

• Problem: We now have the joint distribution. 
How can we use it to make decision � Bayes
Classifier

Problem Example
• Three variables: 

– Hair = {blond, dark}

– Height = {tall,short}
– Country = {Gromland, Polvia}

• Training data: Values of (Eye,Height,Country) 
collected over population

(B,T,G)
(D,T,G)
(D,T,G)
(D,T,G)
(B,T,G)
(B,S,G)

(B,S,G)
(D,S,G)

(B,T,P)
(B,T,P)
(B,T,P)
(D,T,P)
(D,T,P)
(D,S,P)

(B,S,P)
(D,S,P)

Joint Distribution Table:
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Learn Joint Probabilities
• Three variables: 

– Hair = {blond, dark}

– Height = {tall,short}

– Country = {Gromland, Polvia}

• Training data: Values of (Eye,Height,Country) collected over 
population

(B,T,G)

(D,T,G)

(D,T,G)

(D,T,G)

(B,T,G)

(B,S,G)

(B,S,G)

(D,S,G)

(B,T,P)

(B,T,P)

(B,T,P)

(D,T,P)

(D,T,P)

(D,S,P)

(B,S,P)

(D,S,P)

P(B,S,G)= 2/16

P(B,T,G)= 2/16

P(D,S,G)= 1/16

P(D,T,G)= 3/16

P(B,S,P)= 1/16

P(B,T,P)= 3/16

P(D,S,P)= 2/16
P(D,T,P)= 2/16

Compute other Joint Or Conditional 
Distributions

P(Hair = B,Height = S|Country=G) =

P(Hair = B,Height = S,Country=G)
=

P(Country=G)

2/16

= 4/16
1/2

P(B,S,G)= 2/16

P(B,T,G)= 2/16

P(D,S,G)= 1/16
P(D,T,G)= 3/16

P(B,S,P)= 1/16

P(B,T,P)= 3/16

P(D,S,P)= 2/16

P(D,T,P)= 2/16
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Classifier Example
• Three variables: 

– Hair = {blond, dark}

– Height = {tall,short}
– Country = {Gromland, Polvia}

• Training data: Values of (Eye,Height,Country) 
collected over population

(B,T,G)
(D,T,G)
(D,T,G)
(D,T,G)

(B,T,G)
(B,S,G)
(B,S,G)
(D,S,G)

(B,T,P)
(B,T,P)
(B,T,P)
(D,T,P)

(D,T,P)
(D,S,P)
(B,S,P)
(D,S,P)

If I observe a new 
individual tall with 
blond hair, what is the 
most likely country of 
origin?

Classifiers

• How to recover from which class the input 
data comes?

Input Data Attributes

Classifier

Class 

prediction

Y = y

X1=x1

Xn=xn
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Classifiers

• How to recover from which class the input 
data comes?

Input Data Attributes

Classifier

Class 

prediction

Y = y

X1=x1

Xn=xn

Y is called a “class” label here for 
presentation convenience. In fact, it 
could be any attribute that can be 

predicted from the data.

Classifiers

• How to recover from which class the input 
data comes?

Input Data Attributes

Classifier

Class 

prediction

Country = ?

Hair =B

Height=T
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Classifiers

• We want to find the value of Y that is the 

most probable, given the observations 

X1,..,Xn

• Find y such that this is maximum:

),,|( 11 nn xXxXyYP === K

Classifiers

• We want to find the value of Y that is the 

most probable, given the observations 

X1,..,Xn

• Find y such that this is maximum:

),,|( 11 nn xXxXyYP === K

The maximum is called the Maximum 
A Posteriori (MAP) estimator
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Classifiers
• We want to find the value of Y that is the 

most probable, given the observations 

X1,..,Xn

• Find y such that this is maximum:

),,P(

)P()|,,P(

),,|P(

11

11

11

nn

nn

nn

xXxX

yYyYxXxX

xXxXyY

==

====

====

K

K

K

Classifiers
• We want to find the value of Y that is the 

most probable, given the observations 

X1,..,Xn

• Find y such that this is maximum:

),,P(

)P()|,,P(

),,|P(

11

11

11

nn

nn

nn

xXxX

yYyYxXxX

xXxXyY

==

====

====

K

K

K

Apply Bayes

rule

This denominator does not depend on y. It is a constant 

(as far as y is concerned) and can be ignored.
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Bayes Classifier
• We want to find the value of Y that is the 

most probable, given the observations 

X1,..,Xn

• Find y such that this is maximum:

)P()|,,P( 11 yYyYxXxX nn ==== K

Bayes Classifier

• We want to find the value of Y that is the most 

probable, given the observations X1,..,Xn

• Find y such that this is maximum:

)P()|,,P( 11 yYyYxXxX nn ==== K

Likelihood of observing (x1,..,xn) 
from data of class y. This is 
learned from training data

Probability of 
each class, also 

learned from 
training data
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Bayes Classifier
• Learning: 

– Collect all the observations (x1,..,xn) for each class y

and estimate:

• Classification:

– Given a new input (x1,..,xn), compute the best class:

)P()|,,P(maxarg 11 yYyYxXxXy nn
y

best
===== K

nsobservatioofNumberTotal

classinnsobservatio#
)P(

classinnsobservatioofNumberTotal

classin),,(withnsobservatio#

)|,,P(

11

11

y
yY

y

yxXxX

yYxXxX

nn

nn

==

==

====

K

K

Classifier Example
• Three variables: 

– Hair = {blond, dark}

– Height = {tall,short}
– Country = {Gromland, Polvia}

• Training data: Values of (Eye,Height,Country) 
collected over population

(B,T,G)
(D,T,G)
(D,T,G)
(D,T,G)

(B,T,G)
(B,S,G)
(B,S,G)
(D,S,G)

(B,T,P)
(B,T,P)
(B,T,P)
(D,T,P)

(D,T,P)
(D,S,P)
(B,S,P)
(D,S,P)

If I observe a new 
individual tall with 
blond hair, what is the 
most likely country of 
origin?

P(B,T|G)P(G) = 2/8 x 1/2 = 2/16
P(B,T|P)P(P) = 3/8 x 1/2 = 3/16

Conclusion: Country = P
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Classifier Example
• Three variables: 

– Hair = {blond, dark}

– Height = {tall,short}
– Country = {Gromland, Polvia}

• Training data: Values of (Eye,Height,Country) 
collected over population

(B,T,G)

(D,T,G)

(D,T,G)

(D,T,G)

(B,T,G)
(B,S,G)

(B,S,G)

(D,S,G)

(B,T,P)

(B,T,P)

(B,T,P)

(D,T,P)

(D,T,P)
(D,S,P)

(B,S,P)

(D,S,P)

If I observe a new 
individual tall with 
blond hair, what is the 
most likely country of 
origin?

P(B,T|G)P(G) = 2/8 x 2/3 = 4/24
P(B,T|P)P(P) = 3/8 x 1/3 = 3/24

Conclusion: Country = G

(B,T,G)

(D,T,G)

(D,T,G)

(D,T,G)

(B,T,G)
(B,S,G)

(B,S,G)

(D,S,G)

Classifier Example
• Three variables: 

– Hair = {blond, dark}

– Height = {tall,short}
– Country = {Gromland, Polvia}

• Training data: Values of (Eye,Height,Country) 
collected over population

(B,T,G)

(D,T,G)

(D,T,G)

(D,T,G)

(B,T,G)
(B,S,G)

(B,S,G)

(D,S,G)

(B,T,P)

(B,T,P)

(B,T,P)

(D,T,P)

(D,T,P)
(D,S,P)

(B,S,P)

(D,S,P)

P(B,T|G)P(G) = 2/8 x 2/3 = 4/24
P(B,T|P)P(P) = 3/8 x 1/3 = 3/24

Conclusion: Country = G

(B,T,G)

(D,T,G)

(D,T,G)

(D,T,G)

(B,T,G)
(B,S,G)

(B,S,G)

(D,S,G)

Note the different conclusion! That’s where 
the “Bayes” part plays a role. We correctly 
took into account the fact that Gromland is 

now twice as likely, irrespective of the 
observation. P(G) = 2/3  P(P) = 1/3
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Naïve Bayes Classifier
• Learning: Collect all the observations (x1,..,xn) 

for each class y and estimate:

• Classification:

)P()|P()|P(maxarg 11 yYyYxXyYxX

y

nn
y

best

=====

=

K

nsobservatioofNumberTotal

classinnsobservatioofNumber
)P(

classinnsobservatioofNumberTotal

classinwithnsobservatioofNumber

)|P(

y
yY

y

yxX

yYxX

ii

ii

==

=

===

Naïve Bayes Classifier
• Learning: Collect all the observations (x1,..,xn) 

for each class y and estimate:

• Classification:

)P()|P()|P(maxarg 11 yYyYxXyYxX

y

nn
y

best

=====

=

K

nsobservatioofNumberTotal

classinnsobservatioofNumber
)P(

classinnsobservatioofNumberTotal

classinwithnsobservatioofNumber

)|P(

y
yY

y

yxX

yYxX

ii

ii

==

=

===

Note that we need only k x n numbers
(                             ) to implement this 

classifier, instead of kn if we were to use the 
full model, without independence assumption.

)|P( yYxX ii ==
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Naïve Bayes Implementation

• Small (but important) implementation 
detail: If n is large, we may be taking the 
product of a large number of small 
floating-point values � underflow �
avoided by taking the log.

• Take the max of:

• Instead of:

)P()|P()|P( 11 yYyYxXyYxX nn ===== K

)P(log)|P(log

)|P(log 11

yYyYxX

yYxX

nn =+==+

+== K

Same Example, the Naïve Bayes Way
• Three variables: 

– Hair = {blond, dark}

– Height = {tall,short}
– Country = {Gromland, Polvia}

• Training data: Values of (Eye,Height,Country) 
collected over population

(B,T,G)

(D,T,G)

(D,T,G)

(D,T,G)

(B,T,G)

(B,S,G)

(B,S,G)

(D,S,G)

(B,T,P)

(B,T,P)

(B,T,P)

(D,T,P)

(D,T,P)

(D,S,P)

(B,S,P)

(D,S,P)

P(B,T|G)P(G) ≈ P(B|G)P(T|G)P(G)
8/16 x 10/16 x 2/3 ≈ 160/768 = 40/192

P(B,T|P)P(P) ≈ 4/8 x 5/8 x 1/3 = 20/192

Conclusion: Country = G

(B,T,G)

(D,T,G)

(D,T,G)

(D,T,G)

(B,T,G)

(B,S,G)

(B,S,G)

(D,S,G)
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Same Example, the Naïve Bayes Way
• Three variables: 

– Hair = {blond, dark}

– Height = {tall,short}
– Country = {Gromland, Polvia}

• Training data: Values of (Eye,Height,Country) 
collected over population

(B,T,G)

(D,T,G)

(D,T,G)

(D,T,G)

(B,T,G)

(B,S,G)

(B,S,G)

(D,S,G)

(B,T,P)

(B,T,P)

(B,T,P)

(D,T,P)

(D,T,P)

(D,S,P)

(B,S,P)

(D,S,P)

P(B,T|G)P(G) ≈ P(B|G)P(T|G)P(G)
8/16 x 10/16 x 2/3 ≈ 160/768 = 40/192

P(B,T|P)P(P) ≈ 4/8 x 5/8 x 1/3 = 20/192

Conclusion: Country = G

(B,T,G)

(D,T,G)

(D,T,G)

(D,T,G)

(B,T,G)

(B,S,G)

(B,S,G)

(D,S,G)

The values are of course different, but 
the conclusion remains the same

0.17 vs. 0.2 for Country = G
0.125 vs. 0.1 for Country = P

The variables are not independent 
so it is only an approximation.

Bayes at Work: Face Detection

Input Image Find the faces (quickly)

Approach: 
• Model the likelihood of an image 

window assuming face/non-face

• Use independence assumption along 

the way to make computations tractable

Source: Adapted from work by 

Henry Schneiderman (CMU & 

Pittsburgh Pattern Recognition)
http://vasc.ri.cmu.edu/cgi-
bin/demos/findface.cgi
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Naïve Bayes at Work
Move a window over an input image

At every position of the window:
1. Compute the values x1,..,xn of a bunch 
of features X1,..,Xn from the image content 
within the window

2. Retrieve the probabilities:

from tables learned off-line
3. Assuming independence, compute:

4.Classify the window as a face if (1) > (2)

nixXPxXP iiii ,,1Face)|(,Face)|( K=¬==

Face)|P(Face)|P()FaceP( 11 nn xXxX == K

Face)|P(Face)|P()FaceP( 11 ¬=¬=¬ nn xXxX K

(1)

(2)

Learning
• Collect the values of the features for training data in 

tables that approximate the probabilities

Face examples:
50-2,000 original images

Non-face examples:
~10,000,000 examples

Face)|( ii xXP =

Face)|( ¬= ii xXP

ix

ix
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• Yes it works. And in real-time. And with 

other objects than faces also….

Naïve Bayes at Work
Move a window over an input image

At every position of the window:
1. Compute the values x1,..,xn of a bunch 
of features X1,..,Xn from the image content 
within the window

2. Retrieve the probabilities:

from tables learned off-line
3. Assuming independence, compute:

4.Classify the window as a face if (1) > (2)

nixXPxXP iiii ,,1Face)|(,Face)|( K=¬==

Face)|P(Face)|P()FaceP( 11 nn xXxX == K

Face)|P(Face)|P()FaceP( 11 ¬=¬=¬ nn xXxX K

(1)

(2)

If we did not make the 

independence assumption, 

we would have to learn Kn

joint probabilities, where K

is the number of possible 
values for each feature! 

The independence assumption is 

clearly violated: All the features Xi are 

computed from the same data (the 

image data inside the window). 
Nonetheless, the approximation is 

good enough for the classifier to work. 
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Naïve Bayes at Work
Move a window over an input image

At every position of the window:
1. Compute the values x1,..,xn of a bunch 
of features X1,..,Xn from the image content 
within the window

2. Retrieve the probabilities:

from tables learned off-line
3. Assuming independence, compute:

4.Classify the window as a face if (1) > (2)

nixXPxXP iiii ,,1Face)|(,Face)|( K=¬==

Face)|P(Face)|P()FaceP( 11 nn xXxX == K

Face)|P(Face)|P()FaceP( 11 ¬=¬=¬ nn xXxX K

(1)

(2)

Summary

• Basic probability concepts

• Bayes rule

• What are joint distributions

• Inference using joint distributions

• Learning joint distributions from data

• Independence

• Bayes classifiers

• Naïve Bayes approach


