Representing Uncertainty + Probabilistic Learning R&N Chapter 13 A bit of 20.2

Using the Joint Distribution: Doing Inference				
	Α	В	С	Prob
$P(A, B C) = \frac{P(A, B, C)}{P(C)}$ $= \frac{0.10}{0.05 + 0.05 + 0.10 + 0.10} = \frac{0.10}{0.30}$	0	0	0	0.30
	0	0	1	0.05
	0	1	0	0.10
	0	1	1	0.05
	1	0	0	0.05
	1	0	1	0.10
	1	1	0	0.25
	1	1	1	0.10

Inference

- General view: I have some evidence (Headache) how likely is a particular conclusion (Fever)
- Important in many industries: Medical, pharmaceutical, Help Desk, Fault Diagniosis....

Learning the Joint Distribution					
Suppose that we have recorded a lot of training data: (0,1,1) (1,0,1) (1,1,0) (0,0,0) (1,1,0)	A 0 0 0 0	B 0 0 1 1	C 0 1 0 1 0	Prob ? ? ? ? ?	
More generally, the entry for P(E) in the table is:	1	0	1	?	
# of data entries with E Total number of data entries	1	1	0 1	? ?	

Key Properties • Symmetry: $P(A | B) = P(A) \Leftrightarrow P(B | A) = P(B)$ • Joint distribution: P(A, B) = P(A) P(B)• Independence of complements: $P(\neg A | B) = P(\neg A) \qquad P(A | \neg B) = P(A)$

So Far... Basic probability concepts Bayes rule What are joint distributions Inference using joint distributions Learning joint distributions from data Independence assumption Naïve Bayes Problem: We now have the joint distribution. How can we use it to make decision → Bayes Classifier

Problem Example		
 Three variables: Hair = {blond, dark} Height = {tall,short} Country = {Gromland, Polvia} Training data: Values of (Eye,Height,Country) collected over population 		
Joint Distribution Table:	(B,T,G) (B,T,P) (D,T,G) (B,T,P) (D,T,G) (B,T,P) (D,T,G) (D,T,P) (B,T,G) (D,T,P) (B,S,G) (D,S,P)	
	(B,S,G) (B,S,P) (D,S,G) (D,S,P)	

Classifier Example					
 Three variables: Hair = {blond, dar Height = {tall,shore Country = {Grome Training data: Val collected over pop 	and, Polvie most likely country of				
(D,T,G) (B,T,P) (D,T,G) (D,T,P)	P(B,T G)P(G) = 2/8 x 1/2 = 2/16 P(B,T P)P(P) = 3/8 x 1/2 = 3/16 Conclusion: Country = P				

