Representing Uncertainty + Probabilistic Learning

R\&N Chapter 13
A bit of 20.2

Uncertainty

- Most real-world problems deal with uncertain information
- Diagnosis: Likely disease given observed symptoms
- Equipment repair: Likely component failure given sensor reading
- Help desk: Likely operation based on past operations
- Cannot be represented by deterministic rules Headache => Fever

Uncertainty

- Correct framework for representing uncertainty: Probability
- Outline:
- Review of basic probability tools (much of it well-known, but still important to review)
- Bayes rule and its use in uncertain reasoning and probabilistic learning

Probability

- $\mathrm{P}(A)=$ Probability of event $A=$ percentage of all possible worlds in which A is true.

$$
0 \leq \mathrm{P}(\boldsymbol{A}) \leq 1
$$

$P(A)=\square \quad$ All the possible worlds
Worlds in which
A is true

$$
\begin{aligned}
& \quad \text { Probability } \\
& 0 \leq \mathrm{P}(\boldsymbol{A}) \leq 1 \\
& \mathrm{P}(\text { True })=1 \\
& \mathrm{P}(\text { False })=0 \\
& \mathrm{P}(\boldsymbol{A} \text { or } \boldsymbol{B})=\mathrm{P}(\boldsymbol{A})+\mathrm{P}(\boldsymbol{B})-\mathrm{P}(\boldsymbol{A} \text { and } \boldsymbol{B})
\end{aligned}
$$

- Other ideas:
- Fuzzy logic
- Non-monotonic logic
- Multi-valued logic
- Evidence theory (Dempster-Shafer)
- Probability is the only system that is "consistent"

Probability

- Immediately derived properties

$$
\boldsymbol{P}(\neg \boldsymbol{A})=1-\boldsymbol{P}(\boldsymbol{A})
$$

Denotes not- $A=$ All the worlds in which A does not occur

$\boldsymbol{P}(\boldsymbol{A})=\boldsymbol{P}(\boldsymbol{A}, \boldsymbol{B})+\boldsymbol{P}(\boldsymbol{A}, \neg \boldsymbol{B})$

Short hand for " A and B "

Probability

- A random variable is a variable X that can take values $x_{1}, . ., x_{\mathrm{n}}$ with a probability $\mathrm{P}\left(X=x_{\mathrm{i}}\right)$

Conditional Probability

- $\mathrm{P}(A \mid B)=$ Fraction of those worlds in which B is true for which A is also true.

A

Conditional Probability Example

- $H=$ Headache $\quad P(H)=1 / 2$
- $F=$ Flu
$P(F)=1 / 8$
$\mathrm{P}(H \mid F)=1 / 2$

Conditional Probability Example

- H = Headache
$P(H)=1 / 2$
- $F=$ Flu
$P(F)=1 / 8$
$P(H \mid F)=($ Area of " H and F ' region)
(Area of F region)
$\mathrm{P}(H \mid F)=\mathrm{P}(H, F) / \mathrm{P}(F)$
$P(H \mid F)=1 / 2$

Conditional Probability

- Definition:

$$
\mathrm{P}(\boldsymbol{A} \mid \boldsymbol{B})=\frac{\mathrm{P}(\boldsymbol{A}, \boldsymbol{B})}{\mathrm{P}(\boldsymbol{B})}
$$

- Chain rule:

$$
\mathrm{P}(\boldsymbol{A}, \boldsymbol{B})=\mathrm{P}(\boldsymbol{A} \mid \boldsymbol{B}) \mathrm{P}(\boldsymbol{B})
$$

Conditional Probability

- Other useful relations:
$\boldsymbol{P}(\boldsymbol{A} \mid \boldsymbol{B})+\boldsymbol{P}(\neg \boldsymbol{A} \mid \boldsymbol{B})=1$
$\sum_{i} \boldsymbol{P}\left(\boldsymbol{X}=\boldsymbol{x}_{\boldsymbol{i}} \mid \boldsymbol{B}\right)=1$

Probabilistic Inference

- Suppose H is true
- Suppose that you know $P(H \mid F)=1 / 2=0.5$
- What is the probability that F is true? 0.5 ?
- $P(H)=1 / 2$
- $P(F)=1 / 8$
- $\mathrm{P}(H \mid F)=0.5$

Probabilistic Inference

- Correct reasoning:
- We know $P(H), P(F), P(H \mid F)$ and the two chain rules:

$$
\begin{aligned}
& \mathrm{P}(\boldsymbol{H}, \boldsymbol{F})=\mathrm{P}(\boldsymbol{H} \mid \boldsymbol{F}) \mathrm{P}(\boldsymbol{F}) \\
& \mathrm{P}(\boldsymbol{F} \mid \boldsymbol{H})=\frac{\mathrm{P}(\boldsymbol{H}, \boldsymbol{F})}{\mathrm{P}(\boldsymbol{H})}
\end{aligned}
$$

- Substituting the values:

$$
\begin{aligned}
& \mathrm{P}(\boldsymbol{H}, \boldsymbol{F})=0.5 \times 1 / 8=1 / 16 \\
& \mathrm{P}(\boldsymbol{F} \mid \boldsymbol{H})=\frac{1 / 16}{1 / 2}=1 / 8
\end{aligned}
$$

Probabilistic Inference

- Correct reasoning:
- We know $\mathrm{P}(H), \mathrm{P}(F), \mathrm{P}(H \mid F)$ and the two chain rules:

$$
\begin{aligned}
& \quad \mathrm{P}(\boldsymbol{H}, \boldsymbol{F})=\mathrm{P}(\boldsymbol{H} \mid \boldsymbol{F}) \mathrm{P}(\boldsymbol{F}) \\
& \mathrm{P}(\boldsymbol{F} \mid \boldsymbol{F})=\frac{\mathrm{P}(\boldsymbol{H}, \boldsymbol{F})}{\mathrm{P}(\boldsymbol{H})} \\
& \text { - }{ }^{\text {Substithe key ditierencei is }}
\end{aligned}
$$

- Substituting the values: account the fact that $\mathrm{P}(\boldsymbol{H}, \boldsymbol{F})=0.5 \times 1 /$ catching the flu is $\mathrm{P}(\boldsymbol{F} \mid \boldsymbol{H})=\frac{1 / 16}{1 / 2}=\begin{aligned} & \text { unlikely } \\ & \text { small) }\end{aligned}$

Bayes Rule

$$
\mathrm{P}(\boldsymbol{B} \mid \boldsymbol{A})=\frac{\mathrm{P}(\boldsymbol{A} \mid \boldsymbol{B}) \mathrm{P}(\boldsymbol{B})}{\mathrm{P}(\boldsymbol{A})}
$$

Introduced circa 1763

Bayes Rule

- What if we do not know $\mathrm{P}(A)$???
- Use the relation:

$$
\mathrm{P}(\boldsymbol{A})=\mathrm{P}(\boldsymbol{A} \mid \boldsymbol{B}) \mathrm{P}(\boldsymbol{B})+\mathrm{P}(\boldsymbol{A} \mid \neg \boldsymbol{B}) \mathrm{P}(\neg \boldsymbol{B})
$$

- More general Bayes rule:
$\mathrm{P}(\boldsymbol{B} \mid \boldsymbol{A})=\frac{\mathrm{P}(\boldsymbol{A} \mid \boldsymbol{B}) \mathrm{P}(\boldsymbol{B})}{\mathrm{P}(\boldsymbol{A} \mid \boldsymbol{B}) \mathrm{P}(\boldsymbol{B})+\mathrm{P}(\boldsymbol{A} \mid \neg \boldsymbol{B}) \mathrm{P}(\neg \boldsymbol{B})}$

Bayes Rule

- Same rule for a non-binary random variable, except we need to sum over all the possible events $X=X_{i}$

$$
\mathrm{P}\left(\boldsymbol{X}=\boldsymbol{x}_{\boldsymbol{i}} \mid \boldsymbol{A}\right)=\frac{\mathrm{P}\left(\boldsymbol{A} \mid \boldsymbol{X}=\boldsymbol{x}_{i}\right) \mathrm{P}\left(\boldsymbol{X}=\boldsymbol{x}_{i}\right)}{\mathrm{P}(\boldsymbol{A})}
$$

$$
\begin{array}{r}
\mathrm{P}\left(\boldsymbol{X}=\boldsymbol{x}_{i} \mid \boldsymbol{A}\right)=\frac{\mathrm{P}\left(\boldsymbol{A} \mid \boldsymbol{X}=\boldsymbol{x}_{\boldsymbol{i}}\right) \mathrm{P}\left(\boldsymbol{X}=\boldsymbol{x}_{\boldsymbol{i}}\right)}{\sum_{k} \mathrm{P}\left(\boldsymbol{A} \mid \boldsymbol{X}=\boldsymbol{x}_{\boldsymbol{k}}\right) \mathrm{P}\left(\boldsymbol{X}=\boldsymbol{x}_{\boldsymbol{k}}\right)} \\
\begin{array}{c}
\text { This is actually } \\
\text { just } \mathrm{P}(A)
\end{array}
\end{array}
$$

Joint Distribution

- Joint Distribution Table:
- Given a set of
variables A, B, C, \ldots.
- Generate a table with
all the possible
combinations of
assignments to the
variables in the rows
- For each row, list the corresponding joint probability
- For M binary
variables \rightarrow size 2^{M}

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Using the Joint Distribution: Computing Other Probabilities

Compute the probability of event E :
$\boldsymbol{P}(\boldsymbol{E})=\sum_{\substack{\text { all rows } \\ \text { containing } E}} \boldsymbol{P}($ row $)$
$\boldsymbol{P}(\boldsymbol{A}, \boldsymbol{B})=0.25+0.10=0.35$

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Using the Joint Distribution: Doing Inference

Given that event E_{1} occurs, what is the probability that E_{2}

$$
\boldsymbol{P}\left(\boldsymbol{E}_{2} \mid \boldsymbol{E}_{1}\right)=\frac{\boldsymbol{P}\left(\boldsymbol{E}_{2}, \boldsymbol{E}_{1}\right)}{\boldsymbol{P}\left(\boldsymbol{E}_{1}\right)}
$$

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Using the Joint Distribution: Doing Inference

$$
\boldsymbol{P}(\boldsymbol{A}, \boldsymbol{B} \mid \boldsymbol{C})=\frac{\boldsymbol{P}(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C})}{\boldsymbol{P}(\boldsymbol{C})} \begin{array}{|c|c|c|c||}
\hline \mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{Prob} \\
\hline 0 & 0 & 0 & 0.30 \\
\hline 0 & 0 & 1 & 0.05 \\
\hline 0 & 1 & 0 & 0.10 \\
\hline 0.05+0.05+0.10+0.10
\end{array}=\frac{0.10}{0.30} \begin{array}{|c|c||}
\hline 0 & 1 \\
1 & 0.05 \\
\hline 1 & 0 \\
0 & 0.05 \\
\hline 1 & 0 \\
1 & 0.10 \\
\hline 1 & 1 \\
0 & 0.25 \\
\hline 1 & 1 \\
1 & 0.10 \\
\hline
\end{array}
$$

Inference

- General view: I have some evidence (Headache) how likely is a particular conclusion (Fever)
- Important in many industries: Medical, pharmaceutical, Help Desk, Fault Diagniosis....

Learning the Joint Distribution

- Three possible ways of generating the joint distribution:

1. Human experts (very difficult!)
2. Using known conditionally probabilities (e.g., if we know $P(C \mid A, B), P(B \mid A)$, and $P(A)$, we know $P(A, B, C)=P(C \mid A, B) P(B \mid A) P(A) \rightarrow$ This is the basis for Bayes Nets, to be covered later....)
3. Learning from data

Learning the Joint Distribution

Suppose that we have recorded a lot of training data:
$(0,1,1)$
$(1,0,1)$
$(1,1,0)$
$(0,0,0)$
$(1,1,0)$

A	B	C	Prob
0	0	0	$?$
0	0	1	$?$
0	1	0	$?$
0	1	1	$?$
1	0	0	$?$
1	0	1	$?$
1	1	0	$?$
1	1	1	$?$

Real-Life Joint Distribution

- UCI Census Database

Real-Life Joint Distribution

- UCI Census Database

$\mathrm{P}($ Male \mid Poor $)=0.4654 / 0.7604=0.612$

So Far....

- Basic probability concepts
- Bayes rule
- What are joint distributions
- Inference using joint distributions
- Learning joint distributions from data
- Problem: If we have M variables, we need 2^{M} entries in the joint distribution table \rightarrow An independence assumption leads to an efficient way to learn and to do inference

Independence

- A and B are independent iff:

$$
\mathrm{P}(\boldsymbol{A} \mid \boldsymbol{B})=\mathrm{P}(\boldsymbol{A})
$$

- In words: Knowing B does not affect how likely we think that A is true

Key Properties

- Symmetry:

$$
\mathrm{P}(\boldsymbol{A} \mid \boldsymbol{B})=\mathrm{P}(\boldsymbol{A}) \Leftrightarrow \mathrm{P}(\boldsymbol{B} \mid \boldsymbol{A})=\mathrm{P}(\boldsymbol{B})
$$

- Joint distribution:

$$
\mathrm{P}(\boldsymbol{A}, \boldsymbol{B})=\mathrm{P}(\boldsymbol{A}) \mathrm{P}(\boldsymbol{B})
$$

- Independence of complements:

$$
\mathrm{P}(\neg \boldsymbol{A} \mid \boldsymbol{B})=\mathrm{P}(\neg \boldsymbol{A}) \quad \mathrm{P}(\boldsymbol{A} \mid \neg \boldsymbol{B})=\mathrm{P}(\boldsymbol{A})
$$

Naïve Bayes

- Suppose that A, B, C are independent
- Then any value of the joint distribution can be computed easily:

$$
\begin{aligned}
\mathrm{P}(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}) & =\mathrm{P}(\boldsymbol{A}) \mathrm{P}(\boldsymbol{B}) \mathrm{P}(\boldsymbol{C}) \\
\mathrm{P}(\boldsymbol{A}, \neg \boldsymbol{B}, \boldsymbol{C}) & =\mathrm{P}(\boldsymbol{A}) \mathrm{P}(\neg \boldsymbol{B}) \mathrm{P}(\boldsymbol{C})
\end{aligned}
$$

- In fact, we need only M numbers instead of 2^{M} for binary variables!!

Naïve Bayes: General Case

- If $X_{1}, . ., X_{M}$ are independent variables:

$$
\begin{aligned}
& \mathrm{P}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{M}=x_{M}\right)= \\
& \mathrm{P}\left(X_{1}=x_{1}\right) \mathrm{P}\left(X_{2}=x_{2}\right) \ldots \mathrm{P}\left(X_{M}=x_{M}\right)
\end{aligned}
$$

- Under the "Naïve" assumption, we can compute any value of the joint distribution
- We can answer any inference query
- How do we learn the distributions?

Naïve Bayes: Learning

$$
\boldsymbol{P}\left(X_{i}=\boldsymbol{x}\right)=\frac{\text { Number of observations with } X_{i}=\boldsymbol{x}}{\text { Total Number of observations }}
$$

- Learning the distributions from data is simple and efficient
- In practice, the independence assumption may not be met but it is often a very useful approximation (see examples at the end)

So Far....

- Basic probability concepts
- Bayes rule
- What are joint distributions
- Inference using joint distributions
- Learning joint distributions from data
- Independence assumption
- Naïve Bayes
- Problem: We now have the joint distribution. How can we use it to make decision \rightarrow Bayes Classifier

Problem Example

- Three variables:
- Hair = \{blond, dark\}
- Height = \{tall,short\}
- Country = \{Gromland, Polvia\}
- Training data: Values of (Eye,Height,Country) collected over population
($\mathrm{B}, \mathrm{T}, \mathrm{G}$) ($\mathrm{B}, \mathrm{T}, \mathrm{P}$)
($\mathrm{D}, \mathrm{T}, \mathrm{G}$) ($\mathrm{B}, \mathrm{T}, \mathrm{P}$)
(D,T,G) (B,T,P)
(D,T,G) (D,T,P)
(B,T,G) (D,T,P)
(B,S,G) (D,S,P)
(B,S,G) (B,S,P)
(D,S,G) (D,S,P)

Learn Joint Probabilities

- Three variables:
- Hair = \{blond, dark
- Height = \{tall,short $\}$
- Country = \{Gromland, Polvia\}
- Training data: Values of (Eye,Height,Country) collected over population
(B,T,G) (B,T,P)
(D,T,G) (B,T,P)
(D,T,G) (B,T,P)
(D,T,G) (D,T,P)
(B,T,G) (D,T,P)
(B,S,G) (D,S,P)
(B,S,G) (B,S,P)
(D,S,G) (D,S,P)
$P(B, S, G)=2 / 16$
$P(B, T, G)=2 / 16$
$P(D, S, G)=1 / 16$
$P(D, T, G)=3 / 16$
$P(B, S, P)=1 / 16$
$P(B, T, P)=3 / 16$
$P(D, S, P)=2 / 16$
$P(D, T, P)=2 / 16$

Compute other Joint Or Conditional Distributions

$P(B, S, G)=2 / 16$
$P(B, T, G)=2 / 16$
$P(D, S, G)=1 / 16$
$P(D, T, G)=3 / 16$
P(Hair = B,Height = S,Country=G)
$P(B, S, P)=1 / 16$
$P(B, T, P)=3 / 16$
$P(D, S, P)=2 / 16$
$P(D, T, P)=2 / 16$

$$
P(\text { Hair }=\mathrm{B}, \text { Height }=\mathrm{S} \mid \text { Country=G })=
$$

$P($ Country $=G)$
2/16
$-=4 / 16$
1/2

Classifier Example

- Three variables:
- Hair = \{blond, dark\}
- Height = \{tall,short\}
- Country = \{Gromland, Polvia\}
- Training data: Values of (Eye,Height,Country) collected over population
(B,T,G) (B,T,P)
(D,T,G) (B,T,P)
(D,T,G) (B,T,P)
(D,T,G) (D,T,P)
(B,T,G) (D,T,P)
(B,S,G) (D,S,P)
(B,S,G) (B,S,P)
(D,S,G) (D,S,P)
If I observe a new individual tall with blond hair, what is the most likely country of origin?

- How to recover from which class the input data comes?

- How to recover from which class the input data comes?

Classifiers

- We want to find the value of Y that is the most probable, given the observations $X_{1}, . ., X_{n}$
- Find y such that this is maximum:

$$
P\left(Y=y \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

Classifiers

- We want to find the value of Y that is the most probable, given the observations $X_{1}, . ., X_{n}$
- Find y such that this is maximum:

$$
P\left(Y=y \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

The maximum is called the Maximum
A Posteriori (MAP) estimator

Classifiers

- We want to find the value of Y that is the most probable, given the observations $X_{1}, . ., X_{n}$
- Find y such that this is maximum:

$$
\begin{aligned}
& \mathrm{P}\left(\boldsymbol{Y}=\boldsymbol{y} \mid \boldsymbol{X}_{1}=\boldsymbol{x}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}=\boldsymbol{x}_{\boldsymbol{n}}\right)= \\
& \frac{\mathrm{P}\left(\boldsymbol{X}_{1}=\boldsymbol{x}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}=\boldsymbol{x}_{\boldsymbol{n}} \mid \boldsymbol{Y}=\boldsymbol{y}\right) \mathrm{P}(\boldsymbol{Y}=\boldsymbol{y})}{\mathrm{P}\left(\boldsymbol{X}_{1}=\boldsymbol{x}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}=\boldsymbol{x}_{\boldsymbol{n}}\right)}
\end{aligned}
$$

Classifiers

- We want to find the value of most probable, given the obs $X_{1}, . ., X_{n}$

Apply Bayes rule

- Find y such that this is maximum.
$\mathrm{P}\left(\boldsymbol{Y}=\boldsymbol{y} \mid \boldsymbol{X}_{1}=\boldsymbol{x}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}=\boldsymbol{x}_{\boldsymbol{n}}\right)=$
$\mathrm{P}\left(X_{1}=\boldsymbol{x}_{1}, \ldots, X_{n}=\boldsymbol{x}_{\boldsymbol{n}} \mid \boldsymbol{Y}=\boldsymbol{y}\right) \mathrm{P}(\boldsymbol{Y}=\boldsymbol{y})$
$\mathrm{P}\left(\boldsymbol{X}_{1}=\boldsymbol{x}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}=\boldsymbol{x}_{\boldsymbol{n}}\right)$

This denominator does not depend on y. It is a constant (as far as y is concerned) and can be ignored.

Bayes Classifier

- We want to find the value of Y that is the most probable, given the observations $X_{1}, . ., X_{n}$
- Find y such that this is maximum:

$$
\mathrm{P}\left(X_{1}=x_{1}, \ldots, X_{n}=\boldsymbol{x}_{\boldsymbol{n}} \mid \boldsymbol{Y}=\boldsymbol{y}\right) \mathrm{P}(\boldsymbol{Y}=\boldsymbol{y})
$$

Bayes Classifier

- We want to find the value of Y that is the most probable, given the observations $X_{1}, . ., X_{n}$
- Find y such that this is maximum:

$$
\begin{array}{|l|l}
\mathrm{P}\left(\boldsymbol{X}_{1}=\boldsymbol{x}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}=\boldsymbol{x}_{\boldsymbol{n}}\right. & \boldsymbol{Y}=\boldsymbol{y}) \mathrm{P}(\boldsymbol{Y}=\boldsymbol{y}) \\
\begin{array}{ll}
\text { Likelihood of observing }\left(x_{1}, . ., x_{n}\right) & \begin{array}{l}
\text { Probability of } \\
\text { each class, also } \\
\text { from data of class } y . \text { This is } \\
\text { learned from training data }
\end{array} \\
\begin{array}{l}
\text { learned from } \\
\text { training data }
\end{array} \\
\hline
\end{array}
\end{array}
$$

- Learning:

Bayes Classifier

- Collect all the observations $\left(x_{1}, . ., x_{n}\right)$ for each class y and estimate:

$$
\mathrm{P}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid Y=y\right)=
$$

\# observations with $\left(\boldsymbol{X}_{1}=\boldsymbol{x}_{1}, \ldots, \boldsymbol{X}_{n}=\boldsymbol{x}_{\boldsymbol{n}}\right)$ in class \boldsymbol{y}
Total Number of observations in class \boldsymbol{y}
$\mathrm{P}(\boldsymbol{Y}=\boldsymbol{y})=\frac{\text { \# observations in class } \boldsymbol{y}}{\text { Total Number of observations }}$

- Classification:
- Given a new input $\left(x_{1}, . ., x_{n}\right)$, compute the best class:
$\boldsymbol{y}^{\text {best }}=\arg \max \mathrm{P}\left(\boldsymbol{X}_{1}=\boldsymbol{x}_{1}, \ldots, \boldsymbol{X}_{\boldsymbol{n}}=\boldsymbol{x}_{\boldsymbol{n}} \mid \boldsymbol{Y}=\boldsymbol{y}\right) \mathrm{P}(\boldsymbol{Y}=\boldsymbol{y})$

Classifier Example

- Three variables:
- Hair = \{blond, dark\}
- Height = \{tall,short \quad blond hair, what is the
- Country = \{Gromland, Polvie most likely country of
- Training data: Values of (E origin? collected over population

If I observe a new individual tall with blond hair, what is the
most likely country of
(B,T,G) (B,T,P)
$(\mathrm{D}, \mathrm{T}, \mathrm{G}) \quad(\mathrm{B}, \mathrm{T}, \mathrm{P}) \quad \mathrm{P}(\mathrm{B}, \mathrm{T} \mid \mathrm{G}) \mathrm{P}(\mathrm{G})=2 / 8 \times 1 / 2=2 / 16$
$(D, T, G) \quad(B, T, P) \quad P(B, T \mid P) P(P)=3 / 8 \times 1 / 2=3 / 16$
(D,T,G) (D,T,P)
(B,T,G) (D,T,P) Conclusion: Country = P
(B,S,G) (D,S,P)
(B,S,G) (B,S,P)
(D,S,G) (D,S,P)

Classifier Example

- Three variables:
- Hair = \{blond, dark\}
- Height = \{tall,short\}

If I observe a new individual tall with

- Country = \{Gromland, Polvia blond hair, what is the
- Training data: Values of (E most likely country of collected over population origin?

(B,T,G)	(B,T,G)	(B,T,P)	$P(B, T \mid G) P(G)=2 / 8 \times 2 / 3=4 / 24$
(D,T,G)	(D,T,G)	(B,T,P)	$P(B, T \mid P) P(P)=3 / 8 \times 1 / 3=3 / 24$
(D,T,G)	(D,T,G)	(B,T,P)	
(D,T,G)	(D,T,G)	(D,T,P)	Conclusion: Country = G
(B,T,G) $(\mathrm{B}, \mathrm{S}, \mathrm{G})$	$(\mathrm{B}, \mathrm{T}, \mathrm{G})$ $(\mathrm{B}, \mathrm{S}, \mathrm{G})$	$\begin{aligned} & (\mathrm{D}, \mathrm{~T}, \mathrm{P}) \\ & (\mathrm{D}, \mathrm{~S}, \mathrm{P}) \end{aligned}$	Conclusion. Country $=G$
(B,S,G)	(B,S,G)	(B, S, P)	
(D,S,G)	(D,S,G)	(D, S, P)	

Classifier Example

- Three Note the different conclusion! That's where - Heig the "Bayes" part plays a role. We correctly - Cou took into account the fact that Gromland is
- Trainir now twice as likely, irrespective of the collect observation. $P(G)=2 / 3 P(P)=1 / 3$

(B,T,G)	($\mathrm{B}, \mathrm{T}, \mathrm{G}$)	(B,T,P)	$P(B, T \mid G) P(G)=\quad / 3=4 / 24$
(D,T,G)	($\mathrm{D}, \mathrm{T}, \mathrm{G}$)	(B,T,P)	$P(B, T \mid P) P(P)=3 \quad 13=3 / 24$
(D,T,G)	($\mathrm{D}, \mathrm{T}, \mathrm{G}$)	(B,T,P)	
(D,T,G)	(D,T,G)	(D,T,P)	Conclusion: Country = G
(B,S,G)	(B,S,G)	(D,S,P)	
(B,S,G)	(B,S,G)	(B,S,P)	
(D,S,G)	(D,S,G)	(D,S,P)	

Naïve Bayes Classifier

- Learning: Collect all the observations ($x_{1}, .,, x_{n}$) for each class y and estimate:

$$
\mathrm{P}\left(X_{i}=x_{i} \mid Y=y\right)=
$$

Number of observations with $\boldsymbol{X}_{i}=\boldsymbol{x}_{\boldsymbol{i}}$ in class \boldsymbol{y}
Total Number of observations in class \boldsymbol{y}

$$
\mathrm{P}(\boldsymbol{Y}=\boldsymbol{y})=\frac{\text { Number of observations in class } \boldsymbol{y}}{\text { Total Number of observations }}
$$

- Classification:

```
\mp@subsup{y}{}{\mathrm{ best }}=
```

$\arg \max \mathrm{P}\left(\boldsymbol{X}_{1}=\boldsymbol{x}_{1} \mid \boldsymbol{Y}=\boldsymbol{y}\right) \ldots \mathrm{P}\left(\boldsymbol{X}_{\boldsymbol{n}}=\boldsymbol{x}_{\boldsymbol{n}} \mid \boldsymbol{Y}=\boldsymbol{y}\right) \mathrm{P}(\boldsymbol{Y}=\boldsymbol{y})$

Naïve Bayes Implementation

- Small (but important) implementation detail: If n is large, we may be taking the product of a large number of small floating-point values \rightarrow underflow \rightarrow avoided by taking the log.
- Take the max of:
$\log \mathrm{P}\left(\boldsymbol{X}_{1}=\boldsymbol{x}_{1} \mid \boldsymbol{Y}=\boldsymbol{y}\right)+\ldots$

$$
+\log \mathrm{P}\left(\boldsymbol{X}_{n}=\boldsymbol{x}_{\boldsymbol{n}} \mid \boldsymbol{Y}=\boldsymbol{y}\right)+\log \mathrm{P}(\boldsymbol{Y}=\boldsymbol{y})
$$

- Instead of:

$$
\mathrm{P}\left(\boldsymbol{X}_{1}=\boldsymbol{x}_{1} \mid \boldsymbol{Y}=\boldsymbol{y}\right) \ldots \mathrm{P}\left(\boldsymbol{X}_{n}=\boldsymbol{x}_{\boldsymbol{n}} \mid \boldsymbol{Y}=\boldsymbol{y}\right) \mathrm{P}(\boldsymbol{Y}=\boldsymbol{y})
$$

Same Example, the Naïve Bayes Way

- Three variables:
- Hair = \{blond, dark\}
- Height = \{tall,short $\}$
- Country = \{Gromland, Polvia\}
- Training data: Values of (Eye,Height,Country) collected over population
$(\mathrm{B}, \mathrm{T}, \mathrm{G})(\mathrm{B}, \mathrm{T}, \mathrm{G})(\mathrm{B}, \mathrm{T}, \mathrm{P}) \mathrm{P}(\mathrm{B}, \mathrm{T} \mid \mathrm{G}) \mathrm{P}(\mathrm{G}) \approx \mathrm{P}(\mathrm{B} \mid \mathrm{G}) \mathrm{P}(\mathrm{T} \mid \mathrm{G}) \mathrm{P}(\mathrm{G})$ (D,T,G) (D,T,G)(B,T,P)
$8 / 16 \times 10 / 16 \times 2 / 3 \approx 160 / 768=40 / 192$
(D,T,G) (D,T,G)(B,T,P)
(D,T,G) (D,T,G)(D,T,P)
$(B, T, G)(B, T, G)(D, T, P) P(B, T \mid P) P(P) \approx 4 / 8 \times 5 / 8 \times 1 / 3=20 / 192$
(B,S,G) (B,S,G)(D,S,P)
(B,S,G) (B,S,G)(B,S,P)
$(\mathrm{D}, \mathrm{S}, \mathrm{G})(\mathrm{D}, \mathrm{S}, \mathrm{G})(\mathrm{D}, \mathrm{S}, \mathrm{P})$ Conclusion: Country $=\mathrm{G}$

Bayes at Work: Face Detection

Input Image
Approach:

- Model the likelihood of an image window assuming face/non-face
- Use independence assumption along the way to make computations tractable

Find the faces (quickly)

Source: Adapted from work by Henry Schneiderman (CMU \& Pittsburgh Pattern Recognition) http://vasc.ri.cmu.edu/cgibin/demos/findface.cgi

Move a window over an input image$\begin{aligned} & \text { At every position of the window: } \\ & \text { 1. Compute the values } x_{1}, \ldots, x_{n} \text { of a bunch } \\ & \text { of features } X_{1}, \ldots, X_{n} \text { from the image conten } \\ & \text { within the window } \\ & \text { 2. Retrieve the probabilities: }\end{aligned}$$\boldsymbol{P}\left(\boldsymbol{X}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{i}} \mid\right.$ Face $), \boldsymbol{P}\left(\boldsymbol{X}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{i}} \mid \neg\right.$ Face $) \boldsymbol{i}=1, \ldots, n$from tables learned off-line3. Assuming independence, compute:	

- Yes it works. And in real-time. And with other objects than faces also....

Naïve Bayes at Work
Move a window over an input image
At every position of the window:
1. Compute the values x_{1}, \ldots, X_{n} of a bunch
of features X_{1}, \ldots, X_{n} from the image content
within the window
2. Retrieve the probabilities:
$\boldsymbol{P}\left(\boldsymbol{X}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{i}} \left\lvert\, \begin{array}{l}\text { Face }), \boldsymbol{P}\left(\boldsymbol{X}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{i}} \mid \neg \text { Face }\right) \boldsymbol{i}=1, \ldots, \boldsymbol{n} \\ \text { from tables learned off-line } \\ \text { 3. Assuming independence, compute: } \\ \text { (1) } \mathrm{P} \text { (Face) } \mathrm{P}\left(\boldsymbol{X}_{1}=\boldsymbol{x}_{1} \mid \text { Face }\right) \ldots \mathrm{P}\left(\boldsymbol{X}_{n}=\boldsymbol{x}_{n} \mid \text { Face }\right) \\ \text { (2) } \mathrm{P}(\neg \text { Face }) \mathrm{P}\left(\boldsymbol{X}_{1}=\boldsymbol{x}_{1} \mid \neg \text { Face }\right) \ldots \mathrm{P}\left(\boldsymbol{X}_{n}=\boldsymbol{x}_{n} \mid \neg \text { Face }\right) \\ \text { 4.Classify the window as a face if }(1)>\text { (2) }\end{array}\right.\right.$

Summary

- Basic probability concepts
- Bayes rule
- What are joint distributions
- Inference using joint distributions
- Learning joint distributions from data
- Independence
- Bayes classifiers
- Naïve Bayes approach

