

•	L = Length fo Q = Average	mber of sta number of or start to go size of the	successors (bra bal with smallest priority queue		
	Algorithm	Complete	Optimal	Time	Space
BFS	Breadth First Search	Y	Y, If all trans. have same cost	O(Min(<i>N</i> , <i>B</i> ^{<i>L</i>}))	O(Min(<i>N</i> , <i>B^L</i>))
BIBFS	Bi- Direction. BFS	Y	Y, If all trans. have same cost	O(Min(<i>N</i> ,2 <i>B</i> ^{L/2}))	O(Min(<i>N</i> ,2 <i>B</i> ^{L/2}))
UCS	Uniform Cost Search	Y, If cost > 0	Y, If cost > 0	$O(\log(Q)^*Min(N,B^L))$	O(Min(<i>N</i> , <i>B^L</i>))
PCDFS	Path Check DFS	Y	N	O(B ^{Lmax})	O(BL _{max})
MEMD FS	Memorizing DFS	Y	N	O(Min(<i>N</i> , <i>B^{Lmax}</i>))	O(Min(<i>N</i> , <i>B^{Lmax}</i>))
IDS	Iterative Deepening	Y	Y, If all trans. have same cost	O(<i>B</i> ^L)	O(BL)

$$f(s) = (2 - w)g(s) + wh(s)$$

Basic GA Outline

- Create initial population $X = \{X_1, ..., X_P\}$
- Iterate:
 - 1. Select K random pairs of parents (X, X)
 - 2. For each pair of parents (X, X'):
 - 1.1 Generate offsprings (Y_1, Y_2) using crossover operation
 - 1.2 For each offspring Y_i :
 - Replace randomly selected element of the population by Y_i
 - With probability μ :
 - Apply a random mutation to Y_i
- Return the best individual in the population

		_
	1. Let X :=initial object	
	2. Let $E := Eval(X)$	
	3. Let X' =randomly chosen configuration chosen from the moveset of X	
	4. Let E' :=Eval(X')	
	5. Let z:= a number drawn randomly uniformly between 0 and 1	
	6. If $E' > E$ or $\exp(-(E - E')/T) > z$ then	
	• X :=X'	
	• E :=E'	
	7. $T := r \times T$	
	8. If a convergence test is satisfied then halt. Else go to Step 3.	
(a)	Normally r , the temperature decay rate, is chosen in the range $0 < r < 1$. How would the behavior of simulated annealing change if $r > 1$?	
	The change will always be accepted and we'll do a random walk.	
(b)	Alternatively, how would it change if $r = 0$?	
(c)	If we simplified the conditional test in Step 6 to	
	If $\exp(-(E-E')/T) > z$ then	
	how would the behavior of simulated annealing change?	

CSP

- Definitions
- Standard search
- Improvements
 - Backtracking
 - Forward checking
 - Constraint propagation
- Heuristics:
 - Variable ordering
 - Value ordering
- Examples
- Tree-structured CSP
- Local search for CSP problems

Constraint Propagation

- A = queue of active arcs (V_i, V_j)
- Repeat while A not empty:
 - $-(V_i, V_j) \leftarrow$ next element of A
 - For each x in $D(V_i)$:
 - Remove x from D(V_i) if there is no y in D(V_j) for which (x,y) satisfies the constraint between V_i and V_i.
 - If $D(V_i)$ has changed:
 - Add all the pairs (V_k, V_i), where V_k is a neighbor of V_i (k not equal to j) to A

Consider the perennial problem of scheduling classrooms in Wean Hall. We have 4 instructors (I1, I2, I3, I4) and 3 rooms (R1, R2, R3). We need to assign rooms to instructors. We assume that the instructors need the rooms at the following times:

I1: 9am to 11am

- I2: 10am to 2pm
- I3: 1pm to 5pm
- I4: 1pm to 3pm

We assume that a room can be use by only one instructor at a time and that room R3 is too small for instructor I1 and that rooms R2 and R3 are too small for instructor I3.

Variable	I1	I2	I3	I4
Instantiated				
Initial	R1,R2	R1,R2	R1	R1,R2
Domains		R3		R3

Exact → Hard to compute but complete

Minimax Properties

- Complete: If finite game
- Optimal: If opponent plays optimally
- Complexity: Essentially DFS, so:
 - Time: $O(B^m)$
 - Space: O(Bm)
 - -B = number of possible moves from any state (branching factor)
 - -m = depth of search (length of game)
- Pruning $(\alpha\beta)$:
 - Guaranteed to find same solution
 - O(B^{m/2}) with proper ordering of the nodes → At "A" node, the successor are in order from high to low score

Pure Strategy Nash Equilibrium

$$u_{i}(s_{1}^{*}, \dots, s_{i-1}^{*}, s_{i}, s_{i+1}^{*}, \dots, s_{n}^{*}) \leq u_{i}(s_{1}^{*}, \dots, s_{i-1}^{*}, s_{i}^{*}, s_{i+1}^{*}, \dots, s_{n}^{*})$$

$$s_{i}^{*} = \arg \max_{s_{i}} u_{i}\left(s_{1}^{*}, \dots, s_{i-1}^{*}, s_{i}, s_{i+1}^{*}, \dots, s_{n}^{*}\right)$$
• Does not always exist
• Is not always unique
• For continuous games:

$$\frac{\partial u_{i}}{\partial s_{i}}(s_{1}^{*}, \dots, s_{n}^{*}) = 0$$

Mixed Strategy Nash Equilibrium

$$\overline{u}_{A}(p,q^{*}) \leq \overline{u}_{A}(p^{*},q^{*})$$

$$p^{*} = \arg \max \overline{u}_{A}(p,q^{*})$$

$$p^{*} = \operatorname{Player} A \operatorname{plays} \operatorname{strategy} s_{i} \operatorname{with} \operatorname{probability} p_{i}$$

$$\operatorname{For non-zero \ games} \rightarrow \operatorname{Mixed} \operatorname{Nash} equilibrium \ always} \operatorname{exists}$$

$$\operatorname{Is not \ always \ unique}$$

		Hockey	Movie
t _B =meet	Hockey	+2, <mark>+1</mark>	0, <mark>0</mark>
	Movie	0, <mark>0</mark>	+1,+ <mark>2</mark>
		Hockey	Movie
t _B =avoid	Hockey	+2, <mark>0</mark>	0,+ <mark>2</mark>
	Movie	0, +1	+1, <mark>0</mark>
$P(t_A=meet t_B=meet t_B=meet t_B=avoid P(t_A=avoid t_B=avoid P(t_A=avoid t_B=meete P(t_A=avoid t_B=avoid P(t_A=avoid t_B=avoid P(t_A=avoid P(t_B=avoid P(t_B=a$	$\begin{aligned} d &= 1 P(t_B^{-1}) \\ et &= 0 P(t_B^{-1}) \end{aligned}$	=meet t _A =a =avoid t _A =n	void) = 1/2 neet) = 1/2

		D	E	F
	А	0, 1	3, 5	2, 1
Player 1	В	6, 3	1,3	5,2
	С	4, 2	3,4	7,7
	-			

Now consider a very different game. Two companies, A and B, both make elbow warmers. The more they spend on advertising, the more sales they get, but there are diminishing returns. A's advertising somewhat helps B, and B's advertising somewhat helps A. the exact fomulas are

$$P_a = \overbrace{\log(2a+b)}^{revenue} - \overbrace{a}^{expense}$$
$$P_b = \log(a+2b) - b$$

where

 $\begin{array}{rcl}
P_a &=& \text{profit to A} \\
P_b &=& \text{profit to B}
\end{array}$

$$P_b = \text{profit to B}$$