
1

Review

Uninformed Search

b

a

d

p
q

h

e

c

f

r

START

GOAL

2

1

3

1

9

15

8

2

2

4

9

5

5

5

4

1

3



2

Complexity
• N = Total number of states

• B = Average number of successors (branching factor)

• L = Length for start to goal with smallest number of steps

• Q = Average size of the priority queue

• Lmax = Length of longest path from START to any state

O(Min(N,2BL/2))O(Min(N,2BL/2))Y, If all trans. 

have same cost

YBi- Direction. 

BFS

BIBFS

O(BL)O(BL)Y, If all trans. 
have same cost

YIterative 
Deepening

IDS

O(Min(N,BLmax))O(Min(N,BLmax))NYMemorizing 
DFS

MEMD
FS

O(BLmax)O(BLmax)NYPath Check 
DFS

PCDFS

O(Min(N,BL))O(log(Q)*Min(N,BL))Y, If cost > 0Y, If cost > 
0

Uniform Cost 
Search

UCS

O(Min(N,BL))O(Min(N,BL))Y, If all trans. 

have same cost

YBreadth First 

Search

BFS

SpaceTimeOptimalCompleteAlgorithm

START

A

B

C

GOAL

h(A) = 3

h(B) = 6

Our best guess is that A is closer 

to GOAL than B so maybe it is a 

more promising state to expand

h(B) = 10

Informed Search



3

Informed Search

• Best-First Search: Expand node with 
minimum h(s)

• A*: Expand node with minimum f(s) = g(s) 
+ h(s)

• Guaranteed to be optimal if h admissible 
h(s) <= h*(s)

• No nodes revisited if monotonic: 

h(s) < h(s’) + cost(s,s’)

• IDA* = Equivalent of Iterative Deepening 
for A* � guarantees low memory usage



4

)()()2()( swhsgwsf +−=

Most Basic Algorithm: Hill-Climbing 
(Greedy Local Search)

• X  Initial configuration

• Iterate:

1. E  Eval(X)

2. N Neighbors(X)

3. For each Xi in N

Ei  Eval(Xi)

4. If all Ei’s are lower than E

Return X

Else

i* = argmaxi (Ei)     X  Xi*       E  Ei*



5

Stochastic Search: Randomized 
Hill-Climbing

• X  Initial configuration

• Iterate:

1. E  Eval(X)

2. X’  one configuration 

randomly selected in 

Neighbors (X)

3. E’  Eval(X’)

4. If E’ > E

X  X’

E  E’

Critical change: We no 

longer select the best 
move in the entire 

neighborhood

Until when?

Simulated Annealing
1. Do K times:

1.1 E  Eval(X)

1.2 X’  one configuration randomly 

selected in Neighbors (X) 

1.3 E’  Eval(X’)

1.4 If E’ >= E

X  X’; E  E’; 

Else accept the move with probability 

p = e -(E – E’)/T :

X  X’; E  E’; 

2. T  α T



6

Basic GA Outline
• Create initial population X = {X1,..,XP}

• Iterate:

1. Select K random pairs of parents (X,X’)

2. For each pair of parents (X,X’):

1.1 Generate offsprings (Y1,Y2) using crossover 
operation

1.2 For each offspring Yi:

Replace randomly selected element of the 
population  by Yi

With probability µ:

Apply a random mutation to Yi

• Return the best individual in the population



7

CSP
• Definitions

• Standard search

• Improvements
– Backtracking

– Forward checking

– Constraint propagation

• Heuristics:
– Variable ordering

– Value ordering

• Examples

• Tree-structured CSP

• Local search for CSP problems

Constraint Propagation
• A = queue of active arcs (Vi,Vj)

• Repeat while A not empty: 

– (Vi,Vj)  next element of A

– For each x in D(Vi):

• Remove x from D(Vi) if there is no y in D(Vj) 
for which (x,y) satisfies the constraint 
between Vi and Vj.

– If D(Vi) has changed:

• Add all the pairs (Vk,Vi), where Vk is a 
neighbor of Vi (k not equal to j) to A



8

Order the variables such that the parent of a node 

appears always before that node in the list

O(N d2)

• Most Constraining Variable
– Selecting a variable which contributes to the largest number of 

constraints will have the largest effect on the other variables �
Hopefully will prune a larger part of the search

– This amounts to finding the variable that is connected to the 
largest number of variables in the constraint graph.

• Minimum Remaining Values (MRV)

– Selecting the variable that has the least number of candidate 

values is most likely to cause a failure early (“fail-first” heuristic)

• Least Constraining Value
– Choose the value which causes the smallest reduction in the number of 

available values for the neighboring variables



9

• Configuration space C = set of values of q corresponding to 

legal configurations of the robot
• Defines the set of possible parameters (the search space) and 

the set of allowed paths

• Grow the forbidden parts of C-Space � Can assume that 

robot is a point in C-Space

Configuration Space (C-Space)



10

Visibility Graphs

• N = total number of vertices of the 

obstacle polygons

• Naïve: O(N3)

• Sweep: O(N2 log N)

• Optimal: O(N2)

Voronoi Diagrams

• Key property: The points on the edges of the Voronoi
diagram are the furthest from the obstacles
• Idea: Construct a path between qstart and qgoal by 
following edges on the Voronoi diagram
• (Use the Voronoi diagram as a roadmap graph instead 

of the visibility graph)



11

Cell Decomposition

• Define cells in C-Space
• Mark any cell of the grid that intersects Cobs as 

blocked
• Find path through remaining cells by using (for 

example) A* (e.g., use Euclidean distance as 
heuristic)

• Approximate � Easy to compute but not complete
• Exact � Hard to compute but complete

Potential Fields

• Stay away from obstacles: Imagine that the obstacles are 
made of a material that generate a repulsive field

• Move closer to the goal: Imagine that the goal location is a 
particle that generates an attractive field

• Key issue: Local minima
– Deterministic exploration of local minima

– Stochastic exploration

• In very high dimension � Randomize traversal of neighbors



12

Sampling Techniques

• Tends to explore the space rapidly in all directions

• Does not require extensive pre-processing

• Single query/multiple query problems
• Needs only collision detection test � No need to 

represent/pre-compute the entire C-space

• For a large class of problems:
– Prob(finding a path)  � 1 exponentially with the number of samples

• But, cannot detect that a path does not exist



13

Games



14

A

B

3 12 8 2 14 5 24 6

3 =
min(3,12,8)

2 2

3 = max(3,2,2)

Minimax
Minimax (s)

If s is terminal

Return U(s)

If next move is A

Return

Else

Return

( )
)('

'Minimaxmax
sSuccss

s
∈

( )
)('

'Minimaxmin
sSuccss

s
∈



15

Minimax Properties

• Complete: If finite game

• Optimal: If opponent plays optimally

• Complexity: Essentially DFS, so:
– Time: O(Bm)

– Space: O(Bm)

– B = number of possible moves from any state (branching factor)

– m = depth of search (length of game)

• Pruning (αβ):
– Guaranteed to find same solution

– O(Bm/2) with proper ordering of the nodes � At “A” node, the 
successor are in order from high to low score

Non-Deterministic Minimax
Minimax (s)

If s is terminal

Return U(s)

If next move is A: Return

If next move is B Return

If chance node Return

( )
)('

'Minimaxmax
sSuccss

s
∈

( )
)('

'Minimaxmin
sSuccss

s
∈

( ) ( )∑
∈ )('

'Minimax'
sSuccss

ssp



16

-1

+2

+1

+1

Min value across each row

Max value = 
game value = +2

),( jiMinMax
jColumnsiRows
M

+1+5+1+5IV

+1+5+1+5III

+2+2+4+4II

+2+2-1-1I

IVIIIIII

+5 +4 +5 +2

M
a

x
 v

a
lu

e
 a

c
ro

s
s
 e

a
c
h
 c

o
lu

m
n

Min value = 
game value = +2

),( jiMaxMin
iRowsjColumns

M

+1+5+1+5IV

+1+5+1+5III

+2+2+4+4II

+2+2-1-1I

IVIIIIII

Note that we find the same value and same 

strategies in both cases. Is that always the case?

Minimax vs. Maximin

• Fundamental Theorem I (von Neumann):

– For a two-player, zero-sum game with 

perfect information:

• There always exists an optimal pure 
strategy for each player

• Minimax = Maximin

• Note: This is a game-theoretic 

formalization of the minimax search 

algorithm that we studied earlier.



17

Minimax with Mixed Strategies
• Theorem II (von Neumann):

– For a two-player, zero-sum game with hidden 
information:

• There always exists an optimal mixed 
strategy

• In addition, just like for games with perfect 
information, it does not matter in which order we 
look at the players, minimax is the same as 
maximin

• Note: This is a direct generalization of the minimax result to mixed 
strategies.

))1(,)1(max(min

))1(,)1(min(max

22211211

22122111

mqmqmqmq

mpmpmpmp

q

p

×−+××−+×

=×−+××−+×

p = 0.5 p = 0.5

h
o
ld

h
o
ld

see

re
si

gn

re
si
gn

s
e
e

re
si

gn

-10
+4 -20 +4 +16



18

p = 0.5 p = 0.5

h
o
ld

h
o
ld

see

re
si

gn

re
si
gn

s
e
e

re
si

gn

-10
+4 -20 +4 +16

Hidden 
information: 
Player B 
cannot know 
which of these 
2 states it’s in

The game is 

non-

deterministic 

because of 

the initial 
random 

choice of 

cards

• Generate the matrix form of the game (be 
careful: It’s not a deterministic game)

• Find the optimal mixed strategy

• Find the expected payoff for Player A

Hold

Resign

SeeResign

Player B

P
la

y
e

r 
A



19

4,52,33,13,8

6,36,28,42,3

9,09,75,85,3

5,65,94,13,0I

II

III

IV

Strategies

Pure Strategy Nash Equilibrium

• Does not always exist

• Is not always unique

• For continuous games:

( ) ( )**

1

**

1

*

1

**

1

*

1

*

1 ,,,,,,,,,,,,
niiiiniiii

sssssusssssu LLLL +−+− ≤

( )**

1

*

1

*

1

* ,,,,,,maxarg
niiii

s

i
sssssus

i

LL +−=

( ) 0,, **

1 =
∂

∂
n

i

i ss
s

u
L



20

Mixed Strategy Nash Equilibrium

• Player A plays strategy si with probability pi

• For non-zero games � Mixed Nash 

equilibrium always exists

• Is not always unique

( ) ( )*** ,, qpuqpu AA ≤

( )** ,maxarg qpup A
p

=

+1,+20,0Movie

0,0+2,+1Hockey

MovieHockey

+1,00,+1Movie

0,+2+2,0Hockey

MovieHockey

tB=meet

tB=avoid

P(tA=meet | tB=meet) = 1

P(tA=meet | tB=avoid) = 1

P(tA=avoid | tB=meet) = 0

P(tA=avoid | tB=avoid) = 0

P(tB=meet | tA=meet) = 1/2

P(tB=meet | tA=avoid) = 1/2

P(tB=avoid | tA=meet) = 1/2

P(tB=avoid | tA=avoid) = 1/2



21

( ) )|P()(),(

BPlayer  of
 typespossible all

AB

t

BBAAAA tttstsuu

B

∑=

Payoff if Player A knows 
that Player B is of type tB

Probability that Player 
B is indeed of type tB

Since Player A does not know Player B’s 
type, it has to sum over all possible 

types to get the expected value



22


