Review

Uninformed Search

Complexity

- $N=$ Total number of states
- $B=$ Average number of successors (branching factor)
- $L=$ Length for start to goal with smallest number of steps
- $\mathrm{Q}=$ Average size of the priority queue
- Lmax = Length of longest path from START to any state

Algorithm		Complete	Optimal	Time	Space
BFS	Breadth First Search	Y	Y, If all trans. have same cost	$\mathrm{O}\left(\operatorname{Min}\left(N, B^{L}\right)\right)$	$\mathrm{O}\left(\operatorname{Min}\left(N, B^{L}\right)\right)$
BIBFS	Bi- Direction. BFS	Y	Y, If all trans. have same cost	$\mathrm{O}\left(\operatorname{Min}\left(N, 2 B^{L / 2}\right)\right)$	$\mathrm{O}\left(\operatorname{Min}\left(N, 2 B^{L / 2}\right)\right)$
UCS	Uniform Cost Search	Y, If cost $>$ 0	Y, If cost >0	$\mathrm{O}\left(\log (Q)^{*} \operatorname{Min}\left(N, B^{L}\right)\right)$	$\mathrm{O}\left(\operatorname{Min}\left(N, B^{L}\right)\right)$
PCDFS	Path Check DFS	Y	N	$\mathrm{O}\left(B^{L \max)}\right.$	$\mathrm{O}\left(B L_{\text {max }}\right)$
MEMD FS	Memorizing DFS	Y	N	$\mathrm{O}\left(\operatorname{Min}\left(N, B^{L \text { max }}\right)\right)$	$\mathrm{O}\left(\operatorname{Min}\left(N, B^{L \text { max })}\right)\right.$
IDS	Iterative Deepening	Y	Y, If all trans. have same cost	$\mathrm{O}\left(B^{L}\right)$	$O(B L)$

Informed Search

Informed Search

- Best-First Search: Expand node with minimum $h(s)$
- A^{*} : Expand node with minimum $f(s)=g(s)$ $+h(s)$
- Guaranteed to be optimal if h admissible $h(s)<=h^{*}(s)$
- No nodes revisited if monotonic:

$$
h(s)<h\left(s^{\prime}\right)+\operatorname{cost}\left(s, s^{\prime}\right)
$$

- $\mathrm{IDA}^{*}=$ Equivalent of Iterative Deepening for $\mathrm{A}^{*} \rightarrow$ guarantees low memory usage

(a) Find a goal location for which DFS does much less work than BFS and ID
(b) Find a goal location for which BFS and ID do much less work than DFS
(c) Find a goal location for which ID does much less work than BFS and DFS
(d) Find a goal location for which BFS does much less work than DFS and ID

$$
f(s)=(2-w) g(s)+w h(s)
$$

Most Basic Algorithm: Hill-Climbing (Greedy Local Search)

- $X \leftarrow$ Initial configuration
- Iterate:

1. $E \leftarrow E v a l(X)$
2. $\mathcal{N} \leftarrow \operatorname{Neighbors}(X)$
3. For each X_{i} in \mathscr{N}
$E_{i} \leftarrow E v a l\left(X_{i}\right)$
4. If all E_{i} 's are lower than E Return X
Else

$$
i^{*}=\operatorname{argmax}_{\mathrm{i}}\left(E_{\mathrm{i}}\right) \quad x \leftarrow X_{i^{*}} \quad E \leftarrow E_{i^{*}}
$$

Stochastic Search: Randomized Hill-Climbing

- $X \leqslant$ Initial configuration
- Iterate:

1. $E \leftarrow E v a l(X)$
2. $X^{\prime} \leftarrow$ one configuration
randomly selected in
Neighbors (X)
3. $E^{\prime} \leftarrow E \operatorname{Eval}(X)$
4. If $E^{\prime}>E$
$X \leftarrow X$,
$E \leftarrow E^{\prime}$

Critical change: We no longer select the best move in the entire neighborhood

Simulated Annealing

1. Do K times:
1.1 $E \leftarrow \operatorname{Eval}(X)$
$1.2 X^{\prime} \leftarrow$ one configuration randomly selected in Neighbors (X)
1.3 $E^{\prime} \leftarrow \operatorname{Eval}(X)$
1.4 If $E^{\prime}>=E$

$$
X \leftarrow X^{\prime} ; E \leftarrow E^{\prime} ;
$$

Else accept the move with probability $p=e^{-(E-E) T}$:

$$
X \leftarrow X^{\prime} ; E \leftarrow E^{\prime} ;
$$

2. $T \leftarrow \alpha T$

Basic GA Outline

- Create initial population $X=\left\{X_{1}, . ., X_{P}\right\}$
- Iterate:

1. Select K random pairs of parents (X, X)
2. For each pair of parents (X, X) :
1.1 Generate offsprings (Y_{1}, Y_{2}) using crossover operation
1.2 For each offspring Y_{i} :

Replace randomly selected element of the population by Y_{i}
With probability μ :
Apply a random mutation to Y_{i}

- Return the best individual in the population

```
1. Let X :=initial object
2. Let E:=Eval(X)
3. Let X':=randomly chosen configuration chosen from the moveset of X
4. Let E':=Eval(X')
5. Let z:= a number drawn randomly uniformly between 0 and 1
6. If }\mp@subsup{E}{}{\prime}>E\mathrm{ or }\operatorname{exp}(-(E-\mp@subsup{E}{}{\prime})/T)>z\mathrm{ then
    - X :=X
    - E:=E'
7. T:=r }\times
8. If a convergence test is satisfied then halt. Else go to Step 3
```

(a) Normally r, the temperature decay rate, is chosen in the range $0<r<1$. How would the behavior of simulated annealing change if $r>1$?

The change will always be accepted and we'll do a random walk.
(b) Alternatively, how would it change if $r=0$?
(c) If we simplified the conditional test in Step 6 to

If $\exp \left(-\left(E-E^{\prime}\right) / T\right)>z$ then

CSP

- Definitions

- Standard search
- Improvements
- Backtracking
- Forward checking
- Constraint propagation
- Heuristics:
- Variable ordering
- Value ordering
- Examples
- Tree-structured CSP
- Local search for CSP problems

Constraint Propagation

- $A=$ queue of active $\operatorname{arcs}\left(\boldsymbol{V}_{\mathrm{i}}, \boldsymbol{V}_{\mathrm{j}}\right)$
- Repeat while A not empty:
$-\left(\boldsymbol{V}_{\mathrm{i}}, \boldsymbol{V}_{\mathrm{j}}\right) \leftarrow$ next element of A
- For each x in $D\left(\boldsymbol{V}_{\mathrm{i}}\right)$:
-Remove x from $D\left(\boldsymbol{V}_{\mathrm{j}}\right)$ if there is no y in $D\left(\boldsymbol{V}_{\mathrm{j}}\right)$ for which (x, y) satisfies the constraint between $\boldsymbol{V}_{\mathrm{i}}$ and $\boldsymbol{V}_{\mathrm{j}}$.
- If $D\left(\boldsymbol{V}_{\mathrm{i}}\right)$ has changed:
- Add all the pairs $\left(\boldsymbol{V}_{\mathrm{k}}, \boldsymbol{V}_{\mathrm{i}}\right)$, where $\boldsymbol{V}_{\mathrm{k}}$ is a neighbor of $V_{i}(k$ not equal to J) to A
- Most Constraining Variable
- Selecting a variable which contributes to the largest number of constraints will have the largest effect on the other variables \rightarrow Hopefully will prune a larger part of the search
- This amounts to finding the variable that is connected to the largest number of variables in the constraint graph.
- Minimum Remaining Values (MRV)
- Selecting the variable that has the least number of candidate values is most likely to cause a failure early ("fail-first" heuristic)
- Least Constraining Value
- Choose the value which causes the smallest reduction in the number of available values for the neighboring variables

I1: 9 am to 11am
I2: 10 am to 2 pm
I3: 1 pm to 5 pm
I4: 1 pm to 3 pm
We assume that a room can be use by only one instructor at a time and that room $R 3$ is too small for instructor $I 1$ and that rooms $R 2$ and $R 3$ are too small for instructor $I 3$.

Variable Instantiated	I 1	I 2	I 3	I 4
Initial Domains	$\mathrm{R} 1, \mathrm{R} 2$	$\mathrm{R} 1, \mathrm{R} 2$ R 3	R 1	$\mathrm{R} 1, \mathrm{R} 2$ R 3

Configuration Space (C-Space)

$q=(x, y, \theta)$
$\tau=\mathfrak{R}^{2}$ x set of 2-D rotations

$$
q=\left(q_{1}, q_{2}\right)
$$

$\tau=2-D$ rotations $\times 2-D$ rotations

- Configuration space $\mathcal{G}=$ set of values of \boldsymbol{q} corresponding to legal configurations of the robot
- Defines the set of possible parameters (the search space) and the set of allowed paths
- Grow the forbidden parts of C-Space \rightarrow Can assume that robot is a point in C-Space

Visibility Graphs

- $N=$ total number of vertices of the obstacle polygons
- Naïve: O($\left.N^{\beta}\right)$
- Sweep: $O\left(N^{2} \log N\right)$
- Optimal: O($\left.N^{2}\right)$

Voronoi Diagrams

- Key property: The points on the edges of the Voronoi diagram are the furthest from the obstacles
- Idea: Construct a path between $\mathbf{q}_{\text {start }}$ and $\mathbf{q}_{\text {goal }}$ by following edges on the Voronoi diagram
- (Use the Voronoi diagram as a roadmap graph instead of the visibility graph)

Cell Decomposition

- Define cells in C-Space
- Mark any cell of the grid that intersects $\mathcal{G}_{\text {obs }}$ as blocked
- Find path through remaining cells by using (for example) A* (e.g., use Euclidean distance as heuristic)
- Approximate \rightarrow Easy to compute but not complete
- Exact \rightarrow Hard to compute but complete

- Stay away from obstacles: Imagine that the obstacles are made of a material that generate a repulsive field
- Move closer to the goal: Imagine that the goal location is a particle that generates an attractive field
- Key issue: Local minima
- Deterministic exploration of local minima
- Stochastic exploration
- In very high dimension \rightarrow Randomize traversal of neighbors

Sampling Techniques

- Tends to explore the space rapidly in all directions
- Does not require extensive pre-processing
- Single query/multiple query problems
- Needs only collision detection test \rightarrow No need to represent/pre-compute the entire C-space
- For a large class of problems:
- Prob(finding a path) $\rightarrow 1$ exponentially with the number of samples
- But, cannot detect that a path does not exist

Games

Minimax

Minimax (s)
If s is terminal
Return $U(s)$
If next move is A
Return $\underset{s^{\prime} \in \operatorname{Succs}(s)}{\max } \operatorname{Minimax}\left(s^{\prime}\right)$
Else
Return
$\underset{s^{\prime} \in \operatorname{Succs}(s)}{\operatorname{minimax}}\left(s^{\prime}\right)$

Minimax Properties

- Complete: If finite game
- Optimal: If opponent plays optimally
- Complexity: Essentially DFS, so:
- Time: $O\left(B^{m}\right)$
- Space: O(Bm)
- $B=$ number of possible moves from any state (branching factor)
- $m=$ depth of search (length of game)
- Pruning ($\alpha \beta$):
- Guaranteed to find same solution
- $O\left(B^{m / 2}\right)$ with proper ordering of the nodes \rightarrow At " A " node, the successor are in order from high to low score

Non-Deterministic Minimax Minimax (s) If s is terminal Return $U(s)$ If next move is A : Return \qquad $\underset{s \in S u c s(s)}{\max } \operatorname{Minimax}^{\prime}\left(s^{\prime}\right.$ If next move is B Return $\min \operatorname{Minimax}\left(s^{\prime}\right)$ $s^{\prime} \in \operatorname{Succs}(s)$ If chance node Return \qquad $\sum p(s$

Minimax vs. Maximin

- Fundamental Theorem I (von Neumann):
-For a two-player, zero-sum game with perfect information:
- There always exists an optimal pure strategy for each player
- Minimax = Maximin
- Note: This is a game-theoretic formalization of the minimax search algorithm that we studied earlier.

Minimax with Mixed Strategies

- Theorem II (von Neumann):
- For a two-player, zero-sum game with hidden information:
- There always exists an optimal mixed strategy
- In addition, just like for games with perfect information, it does not matter in which order we look at the players, minimax is the same as maximin
$\max _{p} \min \left(\boldsymbol{p} \times \boldsymbol{m}_{11}+(1-\boldsymbol{p}) \times \boldsymbol{m}_{21}, \boldsymbol{p} \times \boldsymbol{m}_{12}+(1-\boldsymbol{p}) \times \boldsymbol{m}_{22}\right)=$
$\underset{\boldsymbol{q}}{\left.\min \max \left(\boldsymbol{q} \times \boldsymbol{m}_{11}+(1-\boldsymbol{q}) \times \boldsymbol{m}_{12}, \boldsymbol{q} \times \boldsymbol{m}_{21}+(1-\boldsymbol{q}) \times \boldsymbol{m}_{22}\right), ~()^{2}\right)}$
- Note: This is a direct generalization of the minimax result to mixed strategies.

- Generate the matrix form of the game (be careful: It's not a deterministic game)
- Find the optimal mixed strategy
- Find the expected payoff for Player A

> Pure Strategy Nash Equilibrium
> $u_{i}\left(s_{1}^{*}, \cdots, s_{i-1}^{*}, s_{i}, s_{i+1}^{*}, \cdots, s_{n}^{*}\right) \leq u_{i}\left(s_{1}^{*}, \cdots, s_{i-1}^{*}, s_{i}^{*}, s_{i+1}^{*}, \cdots, s_{n}^{*}\right)$
> $s_{i}^{*}=\underset{s_{i}}{\arg \max } u_{i}\left(s_{1}^{*}, \cdots, s_{i-1}^{*}, s_{i}, s_{i+1}^{*}, \cdots, s_{n}^{*}\right)$

- Does not always exist
- Is not always unique
- For continuous games:

$$
\frac{\partial u_{i}}{\partial s_{i}}\left(s_{1}^{*}, \cdots, s_{n}^{*}\right)=0
$$

Mixed Strategy Nash Equilibrium

$$
\begin{gathered}
\overline{\boldsymbol{u}}_{\boldsymbol{A}}\left(\boldsymbol{p}, \boldsymbol{q}^{*}\right) \leq \overline{\boldsymbol{u}}_{\boldsymbol{A}}\left(\boldsymbol{p}^{*}, \boldsymbol{q}^{*}\right) \\
\boldsymbol{p}^{*}=\underset{p}{\arg \max } \overline{\boldsymbol{u}}_{\boldsymbol{A}}\left(\boldsymbol{p}, \boldsymbol{q}^{*}\right)
\end{gathered}
$$

- Player A plays strategy s_{i} with probability p_{i}
- For non-zero games \rightarrow Mixed Nash equilibrium always exists
- Is not always unique

$t_{B}=m e e t$		Hockey	Movie
	Hockey	+2,+1	0,0
	Movie	0,0	+1,+2
		Hockey	Movie
$t_{B}=$ avoid	Hockey	+2,0	0,+2
	Movie	0,+1	+1,0
$\mathrm{P}\left(t_{A}=\right.$ meet $/ t_{B}=$ meet $)=1 \quad \mathrm{P}\left(t_{B}=\right.$ meet $/ t_{A}=$ meet $)=1 / 2$			
$\mathrm{P}\left(t_{A}=\right.$ meet $/ t_{B}=$ avoid $)=1 \quad \mathrm{P}\left(t_{B}=\right.$ meet $/ t_{A}=$ avoid $)=1 / 2$			
$\mathrm{P}\left(t_{A}=\right.$ avoid $/ t_{B}=$ meet $)=0 \quad \mathrm{P}\left(t_{B}=\right.$ avoid $/ t_{A}=$ meet $)=1 / 2$			
$\mathrm{P}\left(t_{A}=\right.$ avoid $/ t_{B}=$ avoid $)=0 \mathrm{P}\left(t_{B}=\right.$ avoid $/ t_{A}=$ avoid $)=1 / 2$			

Player 2

Now consider a very different game. Two companies, A and B, both make elbow warmers. The more they spend on advertising, the more sales they get, but there are diminishing returns. A's advertising somewhat helps B, and B's advertising somewhat helps A. the exact fomulas are

$$
\begin{aligned}
& P_{a}=\overbrace{\log (2 a+b)}^{\text {revenue }}-\overbrace{a}^{\text {expense }} \\
& P_{b}=\log (a+2 b)-b
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{a}=\text { \# dollars that A spends on advertising } \\
& \mathrm{b}=\text { \# dollars that B spends on advertising } \\
& P_{a}=\text { profit to A } \\
& P_{b}=\text { profit to B }
\end{aligned}
$$

