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Playing and Solving Games

Zero-sum games with perfect 

information

R&N 6

• Definitions

• Game evaluation

• Optimal solutions

– Minimax

– Alpha-beta pruning

• Approximations

– Heuristic evaluation functions

– Cutoffs

– Endgames

• Non-deterministic games (first take)
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Types of Games (informal)

Bridge, Poker, 

Scrabble,

Nuclear war

Battleship

Backgammon,

Monopoly

Chess, 
Checkers

Go

Deterministic Chance

Perfect

Information

Imperfect

Information
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Note: This initial material uses the common definition of what a

“game” is. More interesting is the generalization of the theory to 

scenarios that are far more useful to a wide range of decision 

making problems. Stay tuned….
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Definitions

• Two-player game: Player A and B. Player A 
starts.

• Deterministic: None of the moves/states are 
subject to chance (no random draws).

• Perfect information: Both players see all the 
states and decisions. Each decision is made 
sequentially.

• Zero-sum: Player’s A gain is exactly equal to 
player B’s loss. One of the player’s must win or 
there is a draw (both gains are equal).

Example
• Initially a stack of pennies stands between 

two players

• Each player divides one of the current stacks 
into two unequal stacks.

• The game ends when every stack contains 
one or two pennies

• The first player who cannot play loses

A B
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A’s turn

B’s turn

B’s turn

A’s turn

B’s turn

A’s turn

7

6, 1 5, 2 4, 3

3, 2, 2 3, 3, 15, 1, 1 4, 2, 1

4, 1, 1, 1 3, 2, 1, 1

3, 1, 1, 1, 1

2, 1, 1, 1, 1, 1

B Loses

2, 2, 2, 1

B Loses
2, 2, 1, 1, 1

A Loses

Search Problem
• States: Board configuration + next player to 

move
• Successor: List of states that can be reached 

from the current state through of legal moves
• Terminal state: States at which the games ends
• Payoff/Utility: Numerical value assigned to each 

terminal state. Example:
– U(s) = +1 for A win, -1 for B win, 0 for draw

• Game value: The value of a terminal that will be 
reached assuming optimal strategies from both 
players (minimax value)

• Search: Find move that maximizes game value 
from current state
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U = +1

U = +1

U = -1

2, 1, 1, 1, 1, 1

2, 2, 2, 1

2, 2, 1, 1, 1

Optimal (minimax) Strategies

• Search the game tree such that:

– A’s turn to move � find the move that yields 
maximum payoff from the corresponding 
subtree � This is the move most favorable to 

A

– B’s turn to move � find the move that yields 
minimum payoff (best for B) from the 
corresponding subtree � This is the move 
most favorable to B
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Minimax
Minimax (s)

If s is terminal

Return U(s)

If next move is A

Return

Else

Return
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3 12 8 2 14 5 24 6

3 =
min(3,12,8)

2 2

3 = max(3,2,2)
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Minimax Properties

• Complete: If finite game

• Optimal: If opponent plays optimally

• Complexity: Essentially DFS, so:

– Time: O(Bm)

– Space: O(Bm)

– B = number of possible moves from any state 
(branching factor)

– m = depth of search (length of game)

Pruning

• The value at A move 
is 8 (so far)

• If A moves right, the 
value there is 1 (so 
far)

• B will never increase
the value at this 
node; it will always be 
less than 8

• B can ignore the 
remaining nodes

8 5 2 9 -3 1

8 9 1

8

8

1 cutoff

A

B

A
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Pruning

≥ 3A

B =3

3 12 8 2

X X

≤ 2

14

≤ 14

5

≤ 5

2

=2

=3

αβ Pruning

• Maintain: 

– α = Best value found so far at A nodes, 
including those at current node

– β = Best value found so far at B nodes, 
including those at current node

• If at a B node: No need to expand this 

node any further if α >= β because there is 
no way that a descendant of the current 

node can yield a better value
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Minimax (s,α,β)

If s is terminal

Return U(s)

If A node

For each s’ in Succs(s)

α = Max(α, Minimax(s’,α,β)

If (α >= β) Return β

Return α

If B node

For each s’ in Succs(s)

β = Min(β, Minimax(s’,α,β)

If (α >= β) Return α

Return β

Minimax (s,α,β)

If s is terminal

Return U(s)

If A node

For each s’ in Succs(s)

α = Max(α, Minimax(s’,α,β)

If (α >= β) Return β

Return α

If B node

For each s’ in Succs(s)

β = Min(β, Minimax(s’,α,β)

If (α >= β) Return α

Return β

Same as 
default 

minimax

Prune if no 
better 

solution can 

be found
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Properties
• Guaranteed to find same solution

• O(Bm/2) with proper ordering of the nodes � At 
“A” node, the successor are in order from high to 
low score

• Use heuristic evaluation functions to cut off 
search early

• Example: Weighted sum of number of pieces 
(material value of state)

• Stop search based on cutoff test (e.g., maximum 
depth)

• Iterative deepening search to limit DFS

• Solve by brute-force dynamic programming 
when the number of states is small

Choice of Value?

• Absolute game value is different in the two cases

• Minimax solution is the same

• Only the relative ordering of values matters, not the absolute values 
� ordinal utility values

• True only for deterministic games

• Evaluation functions can be any function that preserves the ordering 
of the utility values
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Non-Deterministic Games

Non-Deterministic Games

A   

B   

Chance   
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Non-Deterministic Games

A   

B   

Chance 

Use expected value of 
successors at chance nodes: 

∑
∈ )('

)'()'(
sSuccss

sMiniMaxsp

Includes states where 

neither player makes 

a choice. A random 

decision is made (e.g., 

rolling dice)

• Different utility values may yield radically different result even though the 
order is the same � Absolute utility values do matter

• Utility should be proportional to actual payoff, it is not sufficient to follow the 
same order

• Think of choosing between 2 lotteries with same odds but radically different 
payoff distributions

• Implication: Evaluation functions must be linear positive functions of utility

• Kind of obvious but important consideration for later developments

Choice of Utility Values
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Non-Deterministic Minimax
Minimax (s)

If s is terminal

Return U(s)

If next move is A: Return

If next move is B Return

If chance node Return
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Properties

• α-β pruning can be extended provided 
that the utility values are bounded � We 

don’t need to evaluate all the children of a 

chance node to bound the average

• Less effective

• Different outcomes depending on exact 

values of utility, not just ordering
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• Definitions

• Game evaluation

• Optimal solutions
– Minimax

– Alpha-beta pruning

• Approximations
– Heuristic evaluation functions

– Cutoffs

– Endgames

• Non-deterministic games


