
1

Playing and Solving Games

Zero-sum games with perfect

information

R&N 6

• Definitions

• Game evaluation

• Optimal solutions

– Minimax

– Alpha-beta pruning

• Approximations

– Heuristic evaluation functions

– Cutoffs

– Endgames

• Non-deterministic games (first take)

2

Types of Games (informal)

Bridge, Poker,

Scrabble,

Nuclear war

Battleship

Backgammon,

Monopoly

Chess,
Checkers

Go

Deterministic Chance

Perfect

Information

Imperfect

Information

Types of Games (informal)

Bridge, Poker,

Scrabble,

Nuclear war

Battleship

Backgammon,

Monopoly

Chess,
Checkers

Go

Deterministic Chance

Perfect

Information

Imperfect

Information

Note: This initial material uses the common definition of what a

“game” is. More interesting is the generalization of the theory to

scenarios that are far more useful to a wide range of decision

making problems. Stay tuned….

3

Definitions

• Two-player game: Player A and B. Player A
starts.

• Deterministic: None of the moves/states are
subject to chance (no random draws).

• Perfect information: Both players see all the
states and decisions. Each decision is made
sequentially.

• Zero-sum: Player’s A gain is exactly equal to
player B’s loss. One of the player’s must win or
there is a draw (both gains are equal).

Example
• Initially a stack of pennies stands between

two players

• Each player divides one of the current stacks
into two unequal stacks.

• The game ends when every stack contains
one or two pennies

• The first player who cannot play loses

A B

4

A’s turn

B’s turn

B’s turn

A’s turn

B’s turn

A’s turn

7

6, 1 5, 2 4, 3

3, 2, 2 3, 3, 15, 1, 1 4, 2, 1

4, 1, 1, 1 3, 2, 1, 1

3, 1, 1, 1, 1

2, 1, 1, 1, 1, 1

B Loses

2, 2, 2, 1

B Loses
2, 2, 1, 1, 1

A Loses

Search Problem
• States: Board configuration + next player to

move
• Successor: List of states that can be reached

from the current state through of legal moves
• Terminal state: States at which the games ends
• Payoff/Utility: Numerical value assigned to each

terminal state. Example:
– U(s) = +1 for A win, -1 for B win, 0 for draw

• Game value: The value of a terminal that will be
reached assuming optimal strategies from both
players (minimax value)

• Search: Find move that maximizes game value
from current state

5

U = +1

U = +1

U = -1

2, 1, 1, 1, 1, 1

2, 2, 2, 1

2, 2, 1, 1, 1

Optimal (minimax) Strategies

• Search the game tree such that:

– A’s turn to move � find the move that yields
maximum payoff from the corresponding
subtree � This is the move most favorable to

A

– B’s turn to move � find the move that yields
minimum payoff (best for B) from the
corresponding subtree � This is the move
most favorable to B

6

Minimax
Minimax (s)

If s is terminal

Return U(s)

If next move is A

Return

Else

Return

()
)('

'Minimaxmax
sSuccss

s
∈

()
)('

'Minimaxmin
sSuccss

s
∈

A

B

3 12 8 2 14 5 24 6

3 =
min(3,12,8)

2 2

3 = max(3,2,2)

7

Minimax Properties

• Complete: If finite game

• Optimal: If opponent plays optimally

• Complexity: Essentially DFS, so:

– Time: O(Bm)

– Space: O(Bm)

– B = number of possible moves from any state
(branching factor)

– m = depth of search (length of game)

Pruning

• The value at A move
is 8 (so far)

• If A moves right, the
value there is 1 (so
far)

• B will never increase
the value at this
node; it will always be
less than 8

• B can ignore the
remaining nodes

8 5 2 9 -3 1

8 9 1

8

8

1 cutoff

A

B

A

8

Pruning

≥ 3A

B =3

3 12 8 2

X X

≤ 2

14

≤ 14

5

≤ 5

2

=2

=3

αβ Pruning

• Maintain:

– α = Best value found so far at A nodes,
including those at current node

– β = Best value found so far at B nodes,
including those at current node

• If at a B node: No need to expand this

node any further if α >= β because there is
no way that a descendant of the current

node can yield a better value

9

Minimax (s,α,β)

If s is terminal

Return U(s)

If A node

For each s’ in Succs(s)

α = Max(α, Minimax(s’,α,β)

If (α >= β) Return β

Return α

If B node

For each s’ in Succs(s)

β = Min(β, Minimax(s’,α,β)

If (α >= β) Return α

Return β

Minimax (s,α,β)

If s is terminal

Return U(s)

If A node

For each s’ in Succs(s)

α = Max(α, Minimax(s’,α,β)

If (α >= β) Return β

Return α

If B node

For each s’ in Succs(s)

β = Min(β, Minimax(s’,α,β)

If (α >= β) Return α

Return β

Same as
default

minimax

Prune if no
better

solution can

be found

10

Properties
• Guaranteed to find same solution

• O(Bm/2) with proper ordering of the nodes � At
“A” node, the successor are in order from high to
low score

• Use heuristic evaluation functions to cut off
search early

• Example: Weighted sum of number of pieces
(material value of state)

• Stop search based on cutoff test (e.g., maximum
depth)

• Iterative deepening search to limit DFS

• Solve by brute-force dynamic programming
when the number of states is small

Choice of Value?

• Absolute game value is different in the two cases

• Minimax solution is the same

• Only the relative ordering of values matters, not the absolute values
� ordinal utility values

• True only for deterministic games

• Evaluation functions can be any function that preserves the ordering
of the utility values

11

Non-Deterministic Games

Non-Deterministic Games

A

B

Chance

12

Non-Deterministic Games

A

B

Chance

Use expected value of
successors at chance nodes:

∑
∈)('

)'()'(
sSuccss

sMiniMaxsp

Includes states where

neither player makes

a choice. A random

decision is made (e.g.,

rolling dice)

• Different utility values may yield radically different result even though the
order is the same � Absolute utility values do matter

• Utility should be proportional to actual payoff, it is not sufficient to follow the
same order

• Think of choosing between 2 lotteries with same odds but radically different
payoff distributions

• Implication: Evaluation functions must be linear positive functions of utility

• Kind of obvious but important consideration for later developments

Choice of Utility Values

13

Non-Deterministic Minimax
Minimax (s)

If s is terminal

Return U(s)

If next move is A: Return

If next move is B Return

If chance node Return

()
)('

'Minimaxmax
sSuccss

s
∈

()
)('

'Minimaxmin
sSuccss

s
∈

() ()∑
∈)('

'Minimax'
sSuccss

ssp

Properties

• α-β pruning can be extended provided
that the utility values are bounded � We

don’t need to evaluate all the children of a

chance node to bound the average

• Less effective

• Different outcomes depending on exact

values of utility, not just ordering

14

• Definitions

• Game evaluation

• Optimal solutions
– Minimax

– Alpha-beta pruning

• Approximations
– Heuristic evaluation functions

– Cutoffs

– Endgames

• Non-deterministic games

