Learning Conclusion: CrossValidation

Bayes Nets Intro: Representing and Reasoning about Uncertainty

Final Considerations: Avoiding Overfitting

- We have a choice of different techniques:
- Decision trees, Neural Networks, Nearest Neighbors, Bayes Classifier,...
- For each we have different levels of complexity:
- Depth of trees
- Number of layers and hidden units
- Number of neighbors in K-NN
-
- How to choose the right one?
- Overfitting: A complex enough model (e.g., enough units in a neural network, large enough trees,..) will always be able to fit the training data well

Using a Test Set

1. Use a portion (e.g., 30\%) of the data as test data
2. Fit a model to the remaining training data
3. Evaluate the error on the test data

"Leave One Out" Cross-Validation

- For $k=1$ to R
- Train on all the data leaving out (x_{k}, y_{k})
- Evaluate error on (x_{k}, y_{k})
- Report the average error after trying all the data points

K-Fold Cross-Validation

- Randomly divide the data set into K subsets
- For each subset S:
- Train on the data not in S
- Test on the data in S
- Return the average error over the K subsets

Example: $K=3$, each color corresponds to a subset

CroSS-Validation Summary		
	-	+
Test Set	Wastes a lot of data Poor predictor of future performance	Simple/Efficient
Leave One Out	Inefficient	Does not waste data
K-Fold	Wastes $1 / K$ of the data Ktimes slower than Test Set	Wastes only $1 / K$ of the data! Only K times slower than Test Set!

- The exact same approaches apply for cross-validation except that the error is the number of data points that are misclassified.

Example: Training a Neural Net

Algorithm	TRAINERR	10-FOLD-CV-ERR
0 hidden units		
1 hidden units		
2 hidden units		
3 hidden units		
4 hidden units		
5 hidden units		

- Train neural nets with different numbers of hidden units (more and more complex NNs)
- For each NN, evaluate the error using K-fold CrossValidation
- Choose the one with the minimum cross-validation error

Summary (R\&N Chapter 20)

- Learning Algorithms:
- Naïve Bayes
- Decision Trees
- Nearest Neighbors
- Neural Networks
- Validation:
- Error on training set should never be used directly for evaluate learning algorithm on a data set
- Validation on test set
- Cross-validation to avoid wasting data
- Leave one out
- K-fold
- Used for:
- Finding best configuration of learned model (complexity of neural network, K-NN, etc.)
- Deciding between different learning algorithms (neural networks, nearest neighbors, decision trees, ...)

Bayes Nets Representing and Reasoning about Uncertainty

Bayes Nets

- Material covered in Russell \& Norvig, Chapter 14
- Not covered in lectures: Networks with continuous variables
- Not covered in chapter: d-separation

Reasoning with Uncertainty

- Most real-world problems deal with uncertain information
- Diagnosis: Likely disease given observed symptoms
- Equipment repair: Likely component failure given sensor reading
- Help desk: Likely operation based on past operations

Reasoning with Uncertainty

- We saw how to use probability to represent uncertainty and to perform queries such as inference
- Diagnosis: Prob (disease | observed symptoms)
- Equipment repair: Prob (component | sensor readings)
- Help desk: Prob (Likely operation | past operations)
- We saw that representing probability distributions can be inefficient (or intractable) for large problems.

Reasoning with Uncertainty

- We saw how to use probability to represent uncertainty and to perform queries such as inference
- Diagnosis: Prob (disease | observed symptoms)
- Equipment repair: Prob (component | sensor readings)
- Help desk: Prob (Likely operation | past operations)
- We saw that representing probability distribution can be inefficient (or intractable) for large problems.
- Today: Bayes Nets provide a powerful tool for making reasoning with uncertainty manageable by taking advantage of dependence relations between variables
- For example: Knowing that the hand brake is operational does not help diagnose why the engine does not start!
- We'll start by reviewing our key probability tools.

Probability Reminder

- Conditional probability for 2 events A and B :

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

- Chain rule:

$$
P(A, B)=P(A \mid B) P(B)
$$

Probability Reminder

- Conditional probability for 2 variables X and Y :

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}
$$

- Chain rule:

$$
P(X=x, Y=y)=P(X=x \mid Y=y) P(Y=y)
$$

- For any values x, y

The Joint Distribution

- Joint distribution = collection of all the probabilities $P(X=x, Y=y, Z=z \ldots)$ for all possible combinations of values.
- For m binary variables, size is 2^{m}
- Any query can be computed from the joint distribution

X	Y	Z	Prob
T	T	T	0.1
T	T	F	0.22
T	F	T	0.2
T	F	F	0.08
F	T	T	0.1
F	T	F	0.15
F	F	T	0.07
F	F	F	0.08

The Joint Distribution

- Any query can be computed from the joint distribution
- Marginal distribution

$$
P(X=\text { True }), P(X=\text { False })
$$

- Conditional distribution:
$\mathrm{P}(\mathrm{X}=$ True $\mid \mathrm{Y}=$ True $)=$
$P(X=$ True,$Y=$ True $) / P(Y=$ True $)$
- In general:

X	Y	Z	Prob
T	T	T	0.1
T	T	F	0.22
T	F	T	0.2
T	F	F	0.08
F	T	T	0.1
F	T	F	0.15
F	F	T	0.07
F	F	F	0.08

$$
\begin{gathered}
P\left(E_{1} \mid E_{2}\right)=P\left(E_{1}, E_{2}\right) / P\left(E_{2}\right) \\
P\left(E_{2}\right)=\sum_{\text {Entries that match } E_{2}} P(\text { Joint Entries })
\end{gathered}
$$

The Joint Distribution

- Any query can be computed from the joint distribution
- Marginal distribution

$$
\mathrm{P}(\mathrm{Y}=\text { True }), \mathrm{P}(\mathrm{Y}=\text { False })
$$

- Conditional distribution:
E_{1} and E_{2} are
$P(X=$ True, $Y=$ True $) / P(Y=$ to subsets of variables.
$\mathrm{E}_{2}=$ evidence, observed variables,...
- In general:

X	Y	Z	Prob
T	T	T	0.1
T	T	F	0.22
T	F	T	0.2
	-	-	

$$
\begin{array}{r}
\mathrm{P}(\mathrm{X}=\text { True } \mid \mathrm{Y}=\text { True })=\begin{array}{c}
\text { assignments of values } \\
\text { to subsets of variables. } \\
\mathrm{E},
\end{array}=\text { evidence } .
\end{array}
$$

$$
P\left(E_{1} \mid E_{2}\right)=P\left(E_{1}, E_{2}\right) / P\left(E_{2}\right)
$$

$$
P\left(E_{2}\right)=\sum P(\text { Joint Entries })
$$

Entries that match E_{2}

The Joint Distribution

- Joint distribution = collection of all the probabilities

X	Y	Z	Prob
T	T	T	0.1

Minor point about our notations and examples:
-We'll use "^" or "," to mean "and" in the joint probabilities.
It's the same thing.

- Sometimes $\mathrm{P}(\mathrm{X}=$ True $)$ is abbreviated to $\mathrm{P}(\mathrm{X})$ and $P(X=$ False $)$ to $P(\neg X)$.
- Most of the examples use binary (True/False) variables.

This is for convenience only, everything works with variables with arbitrary domains.
We'll consider only discrete variables. Everything can be extended to continuous variables.

Avoiding Using the Full Joint

- Consider two events:
- My house is being burglarized \rightarrow Binary variable B = \{True, False\}
- There is an earthquake \rightarrow Binary variable $E=$ \{True, False\}
- We can model the joint distribution with four numbers
- Can we model it with fewer numbers?
- Can we use only $P(B)$ and $P(E)$?

Independence

- The fact that an earthquake occurs does not depend on whether or not a burglary is in progress.

$$
P(E=e \mid B=b)=P(E=e)
$$

- The knowledge of B does not add anything to our estimate of how likely E is.

Independence

- In general, if two sets of random variables S_{1} and S_{2} are independent:
- P (any assignment to $\mathrm{S}_{1} \mid$ any assignment to $\left.\mathrm{S}_{2}\right)=\mathrm{P}\left(\right.$ any assignment to $\left.\mathrm{S}_{1}\right)$
- P (any assignment to $\mathrm{S}_{1} \wedge$ any assignment to $\left.S_{2}\right)=P\left(\right.$ any assignment to $\left.S_{1}\right) \times P($ any assignment to S_{2})

Independence

- $\mathrm{P}(\mathrm{E}=$ True $)=0.002$
- $\mathrm{P}(\mathrm{B}=$ True $)=0.001$
- E and B independent
- From these assumptions, we can derive the joint distribution
- From the joint distribution, we can answer any query

E	B	Prob
T	T	
T	F	
F	T	
F	F	

A More Complicated Case

- The house is equipped with an alarm system that can be triggered by a burglar or by an earthquake
- Model this with a new binary variable $A=\{$ True, False\}
- To answer queries, we now need a joint table with variables E,B,A

A More Complicated Case

- The house is equipped with an alarm system that can be triggered by a burglar or by an earthquake
- Model this with a new binary variable $A=\{$ True, False\}
- To answer queries, we now need a joint table with variables E,B,A
This is what we know so far:
We know the distributions $P(E)$ and $P(B)$
We know that E and B are independent $P(E \mid B)=P(E)$
The Alarm is NOT independent of B and is NOT
independent of E

A More Complicated Case

- The house is equipped with an alarm system that can be triggered by a burglar or by an earthquake
- Model this with a new binary variable $A=\{$ True, False\}
- To answer queries, we now need a joint table with variables $\mathrm{E}, \mathrm{B}, \mathrm{A}$
This is what we know so far:
We know the distributions $P(E)$ and $P(B)$
We know that E and B are independent $P(E \mid B)=P(E)$
The Alarm is NOT independent of B and is NOT independent of E

We know the joint of E and B, so all we need is:
$P(A \mid E=e, B=b)$ for all 4 combinations of e and b in \{True, False\}

A More Complicated Case

- The house is equipped with an alarm system that can be triggered by a burglar or by an earthquake
- Model this with a new binary variable $A=\{$ True, False $\}$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{E}=\text { True })=0.002 \\
& \mathrm{P}(\mathrm{~B}=\text { True })=0.001 \\
& \mathrm{E} \text { and } \mathrm{B} \text { independent }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A}=\text { True } \mid \mathrm{B}=\text { True }, \mathrm{E}=\text { True })=0.95 \\
& \mathrm{P}(\mathrm{~A}=\text { True } \mid \mathrm{B}=\text { True }, \mathrm{E}=\text { False })=0.94 \\
& \mathrm{P}(\mathrm{~A}=\text { True } \mid \mathrm{B}=\text { False }, \mathrm{E}=\text { True })=0.29 \\
& \mathrm{P}(\mathrm{~A}=\text { True } \mid \mathrm{B}=\text { False }, \mathrm{E}=\text { False })=0.001
\end{aligned}
$$

We can specify the entire distribution by 6 numbers. How can you compute $P(A=a, B=b, E=e)$ for any value of a, b, e ??

Graphical Representation

Graphical Representation

Another Type of Independence

- A: Alarm goes off
- J: Neighbor John calls
- M: Neighbor Mary calls
- New kind of independence:
- Once we know that the alarm went off, we know if John will call, irrespective of what Mary does
- $P(J \mid A=a, M=m)=P(J \mid A=a)$ for any values of a and m
- J and M are conditionally independent given A

Conditional Independence

- In general, if two sets of random variables S_{1} and S_{2} are conditionally independent given S_{3} :
- $\mathrm{P}\left(\right.$ any assignments to $\mathrm{S}_{1} \mid$ any assignments to S_{2}, any assignments to $\left.S_{3}\right)=$ P (assignment to $\mathrm{S}_{1} \mid$ assignments to S_{3})

Summary

Conditional probability to represent relation between variables:
$P(X=x \mid Y=y)=P(X=x, Y=y) / P(Y=y)$ for all x, y
"How probable is it for X to take value x, given that we know that the value of Y is y ?"

> Independence of variables:
> $P(X=x \mid Y=y)=P(X=x)$ for all x, y
> "knowledge of Y does not affect knowledge of X "

Conditional independence:
$P(X=x \mid Y=y, Z=z)=P(X=x \mid Z=z)$ for all x, y, z
"Given knowledge of Z, knowledge of Y does add anything to our knowledge of X "

A set of variables is represented by the collection of values $P(X=x, Y=y, Z=z, W=w)$, the joint distribution.
For m binary variables the joint distribution requires 2^{m} entries.
Any query can be answered from the joint distribution.
Graphical representation: Directed graph in which nodes are the variables, arcs represent conditional dependencies

Conditional probability to represent relation between variables:

$$
P(X=x \mid Y=y)=P(X=x, Y=y) / P(Y=y) \text { for all } x, y
$$

"How probable is it for X to take value X, given that we know that the value of Y is y ?"

Independence of variables:
$P(X=x \mid Y=y)=P(X=x)$ for all x, y
"knowledge of Y does not affect knowledge of X "
Conditional independence:
$P(X=x \mid Y=y, Z=z)=P(X=x \mid Z=z)$ for all x, y, z
"Given knowledge of Z, knowledge of Y does add anything to our knowledge of X "

A set of variables is represented by the collection of values
$P(X=x, Y=y, Z=z, W=w)$, the joint distribution.
For m binary variables the joint distribution requires 2^{m} entries.
Any query can be answered from the joint distribution.
Key insight: The need for enumerating and storing entries can be drastically reduced by exploiting (conditional) independence relations between variables

