

Bayes Nets Intro: Representing and Reasoning about Uncertainty

Final Considerations: Avoiding Overfitting

- We have a choice of different techniques:
- Decision trees, Neural Networks, Nearest Neighbors, Bayes Classifier,...
- For each we have different levels of complexity:
 - Depth of trees
 - Number of layers and hidden units
 - Number of neighbors in K-NN
 -
- How to choose the right one?
- Overfitting: A complex enough model (e.g., enough units in a neural network, large enough trees,..) will *always* be able to fit the training data well

Cross-Validation Summary				
	-	+		
Test Set	Wastes a lot of data	Simple/Efficient		
	Poor predictor of future performance			
Leave One Out	Inefficient	Does not waste data		
K-Fold	Wastes 1/K of the data	Wastes only 1/K of the data!		
	<i>K</i> times slower than Test Set	Only <i>K</i> times slower than Test Set!		

Reasoning with Uncertainty

- We saw how to use probability to represent uncertainty and to perform queries such as inference
 - Diagnosis: Prob (disease | observed symptoms)
 - Equipment repair: Prob (component | sensor readings)
 - Help desk: Prob (Likely operation | past operations)
- We saw that representing probability distributions can be inefficient (or intractable) for large problems.

Reasoning with Uncertainty We saw how to use probability to represent uncertainty and to perform queries such as inference Diagnosis: Prob (disease | observed symptoms) Equipment repair: Prob (component | sensor readings) Help desk: Prob (Likely operation | past operations) We saw that representing probability distribution can be inefficient (or intractable) for large problems. Today: Bayes Nets provide a powerful tool for making reasoning with uncertainty manageable by taking advantage of dependence relations between variables For example: Knowing that the hand brake is operational does not help diagnose why the engine does not start! We'll start by reviewing our key probability tools.

The Joint Distribution

- Joint distribution = collection of all the probabilities P(X = x,Y = y,Z = z...) for all possible combinations of values.
- For m binary variables, size is 2^m
- Any query can be computed from the joint distribution

Х	Y	Ζ	Prob
Т	Т	Т	0.1
Т	Т	F	0.22
Т	F	Т	0.2
Т	F	F	0.08
F	Т	Т	0.1
F	Т	F	0.15
F	F	Т	0.07
F	F	F	0.08

Summary
Conditional probability to represent relation between variables: P(X = x Y = y) = P(X = x, Y = y)/P(Y = y) for all x,y "How probable is it for X to take value x, given that we know that the value of Y is y?"
Independence of variables: P(X = x Y = y) = P(X = x) for all x,y "knowledge of Y does not affect knowledge of X"
Conditional independence: P(X = x Y = y, Z = z) = P(X = x Z = z) for all x,y,z "Given knowledge of Z, knowledge of Y does add anything to our knowledge of X"
A set of variables is represented by the collection of values P(X = x, Y = y, Z = z, W = w), the joint distribution. For m binary variables the joint distribution requires 2 ^m entries. Any query can be answered from the joint distribution.
Graphical representation: Directed graph in which nodes are the variables, arcs represent conditional dependencies

Conditional probability to represent relation between variables: P(X = x | Y = y) = P(X = x, Y = y)/P(Y = y) for all x,y "How probable is it for X to take value x, given that we know that the

value of Y is y?"

Independence of variables: P(X = x | Y = y) = P(X = x) for all x,y "knowledge of Y does not affect knowledge of X"

Conditional independence: P(X = x | Y = y, Z = z) = P(X = x | Z = z) for all x,y,z "Given knowledge of Z, knowledge of Y does add anything to our knowledge of X"

A set of variables is represented by the collection of values P(X = x, Y = y, Z = z, W = w), the joint distribution. For m binary variables the joint distribution requires 2^m entries. Any query can be answered from the joint distribution.

Key insight: The need for enumerating and storing entries can be drastically reduced by exploiting (conditional) independence relations between variables