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Learning Conclusion: Cross-
Validation

Bayes Nets Intro:
Representing and Reasoning 

about Uncertainty

Final Considerations: Avoiding 
Overfitting

• We have a choice of different techniques:

• Decision trees, Neural Networks, Nearest 
Neighbors, Bayes Classifier,…

• For each we have different levels of complexity:
– Depth of trees

– Number of layers and hidden units

– Number of neighbors in K-NN

– …..

• How to choose the right one?

• Overfitting: A complex enough model (e.g., 
enough units in a neural network, large enough 
trees,..) will always be able to fit the training data 
well
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Example

• Construct a predictor of y from x given this 
training data

x

y

x

y

x

y

x

y

Linear Quadratic

Piecewise LinearWhich 
model is 
best for 
predicting y
from x ????
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Linear Quadratic

Piecewise LinearWhich 
model is 
best for 
predicting y
from x ????

We want the model that generate 
the best predictions on future data. 
Not necessarily the one with the 
lowest error on training data

Using a Test Set

1. Use a portion 
(e.g., 30%) of 
the data as test 
data

2. Fit a model to 
the remaining 
training data

3. Evaluate the 
error on the 
test data

x

y
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Linear QuadraticError = 2.4

Error = 2.2

Error = 0.9

Piecewise Linear

x

y

x

y

x

y

Linear QuadraticError = 2.4

Error = 2.2

Error = 0.9

Piecewise LinearUsing a Test Set:
+ Simple
- Wastes a large % of the data
- May get lucky with one 
particular subset of the data
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“Leave One Out” Cross-Validation

• For k=1 to R

– Train on all the 
data leaving out 
(xk,yk)

– Evaluate error 

on (xk,yk)

• Report the 

average error 

after trying all

the data points
x

y

(xk,yk)

Error = 2.12

Note: Numerical examples in this and subsequent slides from A. Moore
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Error = 0.962

Error = 3.33
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Leave One Out Cross-Validation

• For k=1 to R

– Train on all the 
data leaving out 
(xk,yk)

– Evaluate error 

on (xk,yk)

• Report the 

average error 

after trying all

the data points
x

y

(xk,yk)

“Leave One Out” Cross-Validation:
+ Does not waste data
+ Average over large number of trials

- Expensive

K-Fold Cross-Validation

• Randomly divide 
the data set into K
subsets 

• For each subset 
S:
– Train on the data 

not in S
– Test on the data in 

S

• Return the 
average error over 
the K subsets

x

y

Example: K = 3, each color corresponds to a subset
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Error = 2.05 Error = 1.11

Error = 2.93

Cross-Validation Summary

Wastes only 1/K of 

the data!

Only K times slower 
than Test Set!

Wastes 1/K of 

the data

K times slower 
than Test Set

K-Fold

Does not waste 
data

InefficientLeave One Out

Simple/EfficientWastes a lot of 
data

Poor predictor 
of future 
performance

Test Set

+-
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Classification Problems

• The exact same approaches apply for 
cross-validation except that the error is the 
number of data points that are 
misclassified.

y = 1

y = 0

Example: Training a Neural Net

• Train neural nets with different numbers of hidden units 
(more and more complex NNs)

• For each NN, evaluate the error using K-fold Cross-
Validation

• Choose the one with the minimum cross-validation error

Minimum cross-
validation error
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Summary (R&N Chapter 20)
• Learning Algorithms:

– Naïve Bayes

– Decision Trees

– Nearest Neighbors

– Neural Networks

• Validation:
– Error on training set should never be used directly for 

evaluate learning algorithm on a data set

– Validation on test set

– Cross-validation to avoid wasting data
• Leave one out

• K-fold

– Used for:
• Finding best configuration of learned model (complexity of 

neural network, K-NN, etc.)

• Deciding between different learning algorithms (neural 
networks, nearest neighbors, decision trees,…) 

Bayes Nets
Representing and Reasoning 

about Uncertainty
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Bayes Nets

• Material covered in Russell & Norvig, 

Chapter 14

• Not covered in lectures: Networks with 
continuous variables

• Not covered in chapter: d-separation

Reasoning with Uncertainty

• Most real-world problems deal with 

uncertain information

– Diagnosis: Likely disease given observed 
symptoms

– Equipment repair: Likely component failure 

given sensor reading

– Help desk: Likely operation based on past 
operations 
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Reasoning with Uncertainty

• We saw how to use probability to represent 
uncertainty and to perform queries such as inference

– Diagnosis: Prob (disease | observed symptoms)

– Equipment repair: Prob (component | sensor readings)

– Help desk: Prob (Likely operation | past operations) 

• We saw that representing probability distributions can 
be inefficient (or intractable) for large problems.

Reasoning with Uncertainty
• We saw how to use probability to represent 

uncertainty and to perform queries such as inference
– Diagnosis: Prob (disease | observed symptoms)

– Equipment repair: Prob (component | sensor readings)

– Help desk: Prob (Likely operation | past operations) 

• We saw that representing probability distribution can 
be inefficient (or intractable) for large problems.

• Today: Bayes Nets provide a powerful tool for 
making reasoning with uncertainty manageable by 
taking advantage of dependence relations between 
variables

• For example: Knowing that the hand brake is 
operational does not help diagnose why the engine 
does not start! 

• We’ll start by reviewing our key probability tools.
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Probability Reminder

• Conditional probability for 2 events A and B:

P(A|B) = P(A,B)

P(B)

• Chain rule:

P(A,B) = P(A|B) P(B)

Probability Reminder

• Conditional probability for 2 variables X and Y:

P(X=x | Y=y) = P(X=x,Y=y)

P(Y=y)

• Chain rule:

P(X=x,Y=y) = P(X=x|Y=y) P(Y=y)

• For any values x,y
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The Joint Distribution

• Joint distribution = collection 
of all the probabilities          
P(X = x,Y = y,Z = z…) for all 
possible combinations of 
values.

• For m binary variables, size is 

2m

• Any query can be computed 
from the joint distribution

0.08FFF

0.07TFF

0.15FTF

0.1TTF

0.08FFT

0.2TFT

0.22FTT

0.1TTT

ProbZYX

The Joint Distribution
• Any query can be computed from 

the joint distribution
• Marginal distribution

P(X = True), P(X = False)

• Conditional distribution:
P(X = True | Y = True) =

P (X = True,Y = True)/P(Y = True)

• In general:
P(E1 | E2) = P(E1,E2)/P(E2)  

P(E2) = Σ P(Joint Entries)
Entries that match E2

0.08FFF

0.07TFF

0.15FTF

0.1TTF

0.08FFT

0.2TFT

0.22FTT

0.1TTT

ProbZYX
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The Joint Distribution
• Any query can be computed from 

the joint distribution
• Marginal distribution

P(Y = True), P(Y = False)

• Conditional distribution:
P(X = True | Y = True) =

P (X = True,Y = True)/P(Y = True)

• In general:
P(E1 | E2) = P(E1,E2)/P(E2)  

P(E2) = Σ P(Joint Entries)
Entries that match E2

0.08FFF

0.07TFF

0.15FTF

0.1TTF

0.08FFT

0.2TFT

0.22FTT

0.1TTT

ProbZYX

E1 and E2 are 

assignments of values 

to subsets of variables.

E2 = evidence, 

observed variables,…

The Joint Distribution

• Joint distribution = collection 
of all the probabilities          
P(X = x ^ Y = y ^ Z = z…) for 
all possible combinations of 
values.

• For m binary variables, size is 

2m

• Any query can be computed 
from the joint distribution

0.08FFF

0.07TFF

0.15FTF

0.1TTF

0.08FFT

0.2TFT

0.22FTT

0.1TTT

ProbZYX

Minor point about our notations and examples:

• We’ll use “^” or “,” to mean “and” in the joint probabilities. 

It’s the same thing.

• Sometimes P(X = True) is abbreviated to P(X) and  

P(X=False) to P(¬X). 

• Most of the examples use binary (True/False) variables. 

This is for convenience only, everything works with 

variables with arbitrary domains.

We’ll consider only discrete variables. Everything can be 
extended to continuous variables.
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Avoiding Using the Full Joint

• Consider two events:
– My house is being burglarized � Binary 

variable B = {True, False}

– There is an earthquake � Binary variable E = 
{True, False}

• We can model the joint distribution with 
four numbers

• Can we model it with fewer numbers?

• Can we use only P(B) and P(E)?

Independence

• The fact that an earthquake occurs does 

not depend on whether or not a burglary is 

in progress.

P(E=e|B=b) = P(E=e)

• The knowledge of B does not add anything 

to our estimate of how likely E is.
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Independence

• In general, if two sets of random variables 

S1 and S2 are independent:

• P(any assignment to S1| any assignment 
to S2) = P(any assignment to S1)

• P(any assignment to S1 ^ any assignment 

to S2) = P(any assignment to S1) x P(any

assignment to S2) 

Independence
• P(E = True) = 0.002
• P(B = True) = 0.001
• E and B independent 
• From these assumptions, we can derive the joint 

distribution
• From the joint distribution, we can answer any 

query

FF

TF

FT

TT

ProbBE



18

A More Complicated Case
• The house is equipped with an alarm system 

that can be triggered by a burglar or by an 
earthquake

• Model this with a new binary variable A = {True, 
False}

• To answer queries, we now need a joint table 
with variables E,B,A

A More Complicated Case
• The house is equipped with an alarm system 

that can be triggered by a burglar or by an 
earthquake

• Model this with a new binary variable A = {True, 
False}

• To answer queries, we now need a joint table 
with variables E,B,A

This is what we know so far:

We know the distributions P(E) and P(B)
We know that E and B are independent P(E|B) = P(E)

The Alarm is NOT independent of B and is NOT

independent of E
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A More Complicated Case
• The house is equipped with an alarm system 

that can be triggered by a burglar or by an 
earthquake

• Model this with a new binary variable A = {True, 
False}

• To answer queries, we now need a joint table 
with variables E,B,A

This is what we know so far:

We know the distributions P(E) and P(B)
We know that E and B are independent P(E|B) = P(E)

The Alarm is NOT independent of B and is NOT

independent of E

We know the joint of E and B, so all we need is:         

P(A | E=e,B=b) for all 4 combinations of e and b in 
{True, False}

A More Complicated Case
• The house is equipped with an alarm system that can be 

triggered by a burglar or by an earthquake

• Model this with a new binary variable A = {True, False}

P(E = True) = 0.002

P(B = True) = 0.001

E and B independent

P(A = True | B = True, E = True) = 0.95

P(A = True | B = True, E = False) = 0.94

P(A = True | B = False, E = True) = 0.29
P(A = True | B = False, E = False) = 0.001

We can specify the entire distribution by 6 numbers.

How can you compute P(A = a , B = b , E = e) for any 

value of a,b,e??
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Graphical Representation

Burglary Earthquake

Alarm

P(B=True) = 0.001

P(E=True) = 0.002

0.001F  F

0.29F  T

0.94T  F

0.95T  T

P(A = True|B=b,E=e)B  E

Graphical Representation

Burglary Earthquake

Alarm

P(B=True) = 0.001 P(E=True) = 0.002

0.001F  F

0.29F  T

0.94T  F

0.95T  T

P(A = True|B=b,E=e)B  E

No arrow between B and E means that 

knowing E does not help me predict B

The two arrows coming into A mean that to know the value 

of A, if helps to know the values of B and E
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Graphical Representation

Burglary Earthquake

Alarm

P(B=True) = 0.001 P(E=True) = 0.002

0.001F  F

0.29F  T

0.94T  F

0.95T  T

P(A = True|B=b,E=e)B  E

“Soft” way of representing implication “IF 

Burglary THEN Alarm”. Can handle uncertainty 
and a richer set of relations.

Another Type of Independence
– A: Alarm goes off

– J: Neighbor John calls

– M: Neighbor Mary calls

• New kind of independence:

• Once we know that the alarm went off, we know if 
John will call, irrespective of what Mary does

• P (J | A=a, M=m) = P(J | A=a) for any values of a and 
m

• J and M are conditionally independent given A
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Graphical Representation

JohnCalls MaryCalls

Alarm
0.01F

0.70T

P(M = True|A= a)A

0.05F

0.90T

P(J = True|A=a)A

Given knowledge of A, knowing 

anything else in the diagram won’t 
help with J and M

Conditional Independence

• In general, if two sets of random variables 

S1 and S2 are conditionally independent 

given S3:

• P(any assignments to S1| any assignments 

to S2 ,any assignments to S3 ) = 

P(assignment to S1 | assignments to S3)
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Graphical Representation

JohnCalls MaryCalls

Alarm
0.01F

0.70T

P(M = True|A= a)A

0.05F

0.90T

P(J = True|A=a)A

If we know the distribution P(A), we 

can compute the joint (and therefore 
we can answer any query with 5 

numbers)

Summary
Conditional probability to represent relation between variables:

P(X = x | Y = y) = P(X = x , Y = y)/P(Y = y) for all x,y

“How probable is it for X to take value x, given that we know that the 
value of Y is y?”

Independence of variables:

P(X = x | Y = y) = P(X = x) for all x,y

“knowledge of Y does not affect knowledge of X”

Conditional independence:

P(X = x | Y = y , Z = z) = P(X = x | Z = z) for all x,y,z

“Given knowledge of Z, knowledge of Y does add anything to our 
knowledge of X”

A set of variables is represented by the collection of values 

P(X = x , Y = y , Z = z , W = w), the joint distribution.

For m binary variables the joint distribution requires 2m entries.

Any query can be answered from the joint distribution.

Graphical representation: Directed graph in which nodes are the 

variables, arcs represent conditional dependencies
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Conditional probability to represent relation between variables:

P(X = x | Y = y) = P(X = x , Y = y)/P(Y = y) for all x,y

“How probable is it for X to take value x, given that we know that the 
value of Y is y?”

Independence of variables:

P(X = x | Y = y) = P(X = x) for all x,y

“knowledge of Y does not affect knowledge of X”

Conditional independence:

P(X = x | Y = y , Z = z) = P(X = x | Z = z) for all x,y,z

“Given knowledge of Z, knowledge of Y does add anything to our 
knowledge of X”

A set of variables is represented by the collection of values 

P(X = x , Y = y , Z = z , W = w), the joint distribution.

For m binary variables the joint distribution requires 2m entries.

Any query can be answered from the joint distribution.

Key insight: The need for enumerating and storing   
entries can be drastically reduced by exploiting 
(conditional) independence relations between 

variables


