
1

Planning

R&N Chap. 11
(and a tiny snippet of Chap. 8-9)

Limitations of Prop. Logic

• Not very expressive: To represent the fact 
that a flight can originate from any of n
airports, we need n symbols: 
FlyFromPITT, FlyFromSFO, 
FlyFromORC,…

• Instead we would like to use more 
expressive sentences like:

For any airport x, FlyFrom(x)

� First order logic (FOL)



2

FOL (The extremely short version!!)

• Same as before, plus:

– Quantifiers: 

– Variables: x, y, z

– Predicates: P(x,y) = logical expression with 
value True/False

– Functions: F(x)

),Sibling(),Parent(),Parent(,, yxyzxzzyx ⇒∧∀

∃∀,

FOL

• Substitution: Replace a part of the 
sentence by another one.

SUBST({x/John}, Rich(x)) � Rich(John)

• Unification: Find parts of two sentences 
that are identical after some substitution 

UNIFY(SameCountry(F(x), y), 
SameCountry(John,Mary)) = 

{F(x)/John, y/Mary}



3

FOL Inference: Resolution

• Resolution: Resolution can be extended to 

FOL, but more complicated

),UNIFY(

),SUBST(

22

11

2121

ml

ml

mmll

¬=

∨

∨∨

θ

θ

}/{

)UnHappy(

)Rich()Rich()UnHappy(

Johnx

John

Johnxx

=

¬∨

θ

After some substitution, 
l2 and ¬m2 are the same

FOL Inference: Chaining

• Chaining: Forward/backward chaining idea 

can be extended to KBs with sentences of 

the form:

• A1 ^ A2 ^ A3…. => B

)(RoomSecure)(DoorLocked)ked(WindowsLoc xxx ⇒∧



4

Summary

• FOL provides more compact way of 

representing KBs

• CNF, resolution and forward/backward 
chaining concepts exists in FOL

• Properties of soundness, completeness

A Simple Task

• Task: Find a sequence of moves that will go from the configuration 
with 3 blocks on the table to a configuration with the 3 blocks 
stacked on top of each other in the A,B,C order.

A B

C

A
B
C



5

A Simple Task

• Task: Find a sequence of moves that will go from the configuration 
with 3 blocks on the table to a configuration with the 3 blocks 
stacked on top of each other in the A,B,C order.

A B

C

A
B
C

1.Move B from the 
table and stack it 
on top of A

2.Move C from the 
table and stack it 
on top of B

A B

C

A

B

C

Describe the starting

configuration by a 

KB:
On(A,Table) ^ 

On(B,Table) ^ 
On(C,Table) ^ 

Clear(A) ^ Clear(B) 

^ Clear(C)

Describe the goal

configuration by a 

KB:
On(A,Table) ^ 

On(B,A) ^ 
On(C,B)



6

A B

C

A

B

C

Describe the starting

configuration by a 

KB:
On(A,Table) ^ 

On(B,Table) ^ 
On(C,Table) ^ 

Clear(A) ^ Clear(B) 

^ Clear(C)

Describe the goal

configuration by a 

KB:
On(A,Table) ^ 

On(B,A) ^ 
On(C,B)

Predicates 

representing the 

constraints on the 

components of the 

environments

Symbols

representing the 

constraints on the 

components of the 

environments

A B

C

A

B

C

Describe each possible action by a pair 

Precondition/Effect:
Action: PutOn(r, x, y)

PRECONDITION:

On(r,x) ^ Clear(r) ^ Clear(y)

EFFECT:

On(r,y) ^ Clear(x) ^ ¬ On(r,x) ^ ¬ Clear(y) 

In words: Move block r
from top of x to top of y



7

A

B

C

A

B

C

Describe each possible action by a pair 

Precondition/Effect:
Action: PutOnTable(r, x)

PRECONDITION: On(r,x) ^ Clear(r)
EFFECT: On(r,Table) ^ Clear(x) ^ ¬ On(r,x)

In words: Move block 
r from top of x to table 

Planning Problem as Search
On(A,Table) ^ 
On(B,Table) ^ 
On(C,Table) ^ 
Clear(A) ^ 
Clear(B) ^ 
Clear(C)

PutOn(B, Table, A)

On(B,A) ^ 
On(C,Table) ^ 
¬ Clear(A) ^ 
Clear(B) ^ 
Clear(C)

On(B,A) ^ 
On(C,B) ^ 
¬ Clear(A) 
^ ¬ Clear(B) 
^ Clear(C)

PutOn(C, Table, B)

On(C,A) ^ 
On(B,Table) ^ 
¬ Clear(A) ^ 
Clear(B) ^ 
Clear(C)

PutOn(C, Table, A)



8

Planning Problem as Search
On(A,Table) ^ 
On(B,Table) ^ 
On(C,Table) ^ 
Clear(A) ^ 
Clear(B) ^ 
Clear(C)

PutOn(B, Table, A)

On(B,A) ^ 
On(C,Table) ^ 
¬ Clear(A) ^ 
Clear(B) ^ 
Clear(C)

On(B,A) ^ 
On(C,B) ^ 
¬ Clear(A) 
^ ¬ Clear(B) 
^ Clear(C)

PutOn(C, Table, B)

On(C,A) ^ 
On(B,Table) ^ 
¬ Clear(A) ^ 
Clear(B) ^ 
Clear(C)

PutOn(C, Table, A)

Each state is a 
knowledge base 
describing the 

configuration of 
the world

States are linked by actions. An 
action links two states if the 
precondition of the action is satisfied 
in the starting state and the effect is 
consistent with the end state.

Planning Problem as Search

• States: KBs representing the possible configurations of the 
world

• Arcs: actions allowed between states
• Any of the previous search techniques can be used for planning 

in this graph (defined implicitly)

• Forward planning: Search from the start configuration until the 
goal configuration is reached

• Backward planning: Search backward from the goal 
configuration until the start configuration is reached

START GOAL

S1

S2

Si Sj
aij

aij is a valid action if
Si satisfies PRECONDITION(aij)
Sj satisfies EFFECT(aij)



9

Notation

• Describing the actions is actually quite tricky. 

• Frame problem: Should we represent the effect of 
“PutOn” on the other variables? If we do, we need to 
enumerate explicitly all of the variables in the world!

• One solution: It is implicitly assumed that any symbol not 
mentioned in the EFFECT remains untouched.

• The particular notation used here (which uses this 
approach) is called the STRIPS notation (named after a 
famous Stanford system.)

PutOn(r, x, y)

PRECONDITION:

On(r,x) ^ Clear(r) ^ Clear(y)

EFFECT:

On(r,y) ^ Clear(x) ^ ¬ On(r,x) ^ ¬ Clear(y)

Forward planning can be stupid

START

G
o 

to
 C

he
m

. S
ec

tio
n

Go to NSH 1500

Go to AirportGo to Bookstore
Go to Movie Theater

G
o 

to
 W

eH
75

00

G
o to CS Section

ECE Section

Looking forward from 

the START state, there 

is no way to anticipate 

which actions are 

relevant to reaching the 

goal � Need to explore 

a large number of 

completely irrelevant 

actions

GOAL= Buy 
AI book



10

Heuristics

• Search is in general inefficient. Can we use heuristics 
to speed up the search?

• General heuristics: Try to guess a lower bound on the 
number of actions necessary to achieve the goal.

• Example (relaxed problems): First assume that the 
actions have no preconditions and find a set of the 
actions leading to the goal configurations (easier 
problem) � Provides a lower bound on the number of 
actions to reach the goal

• A* and related search techniques can be used to take 
advantage of heuristics. 

Another way to look at planning

• Instead of searching through the graph of possible world states 

linked by actions, we could do the opposite: Search through the 
set of possible plans = (informally) sequences of actions

• In fact, in many cases we can find partial plans that can be 

combined into a complete plan � (hopefully) more efficient 

search

• Formally: Partial-Order Planning (POP)

Move Block B On A
Move Block A On B

Move Block B On A

Move Block C On B

Move Block A On B

Move Block C On A

Empty
Plan



11

Example

• The nodes are now actions instead of world states

• START and FINISH are dummy nodes

• Two nodes A and A’ are linked if the effect of A is a 
precondition for A’

• The actions are partially ordered: Some actions must occur 
before others

• Important: We don’t need a single, totally ordered, sequence 
of actions

START

Remove(Spare,Trunk)

Remove(Flat,Axle)

PutOn(Spare,Axle)

FINISH

POP Algorithm

Partial plan is:

• Set of actions included in the plan

– Example: Remove(Flat,Axle))

• Set of ordering constraints: A < B means “action A 

must occur before action B”

• Set of links: A �c B
– C is an effect of A

– C is a precondition of B

– Example: 

Remove(Spare,Trunk) �At(Spare,Ground)PutOn(Spare,Axle)



12

POP Algorithm

Two dummy nodes:

• START: 

– Precondition = None

– Effect = Initial configuration of the world

• FINISH: 

– Precondition = Goal configuration of the world

– Effect = None

• Initial plan contains only START and FINISH 

with the ordering START < FINISH

POP Algorithm

• Open preconditions = Precondition of an 

action in the plan that is not an effect of 

another action in the plan

• The plan is incomplete as long as there 

are open preconditions

START

Remove(Spare,Trunk)

FINISH

At(Spare,Trunk)

At(Spare,Axle)At(Spare,Axle) is an 
precondition for FINISH 
and it is open



13

POP Algorithm

• Initialize with {START, FINISH} nodes

• Repeat:

–Find an open precondition C of an 
action B in the plan

–Find an action A such that the effect of 
A meets the precondition C and add:

• A �c B

• A < B (A must take place before B)

–Verify that the plan is still consistent

• Until there are no open preconditions

START

FINISH

At(Spare,Trunk)
At(Flat,Axle)

At(Spare,Axle)

Initialize with two actions:

START with two effects

FINISH with one precondition



14

START

FINISH

At(Spare,Trunk)
At(Flat,Axle)

Find an action to resolve the open 

precondition At(Spare,Axle)

We now have two more open preconditions

PutOn(Spare,Axle)

At(Spare,Axle)

At(Spare,Ground)

¬At(Flat,Axle)

START

FINISH

At(Spare,Trunk)
At(Flat,Axle)

Find an action to resolve the open 

precondition At(Spare,Ground)

We now have two open preconditions

PutOn(Spare,Axle)

At(Spare,Axle)

Remove(Spare,Trunk)

At(Spare,Ground)

¬At(Flat,Axle)

At(Spare,Trunk)



15

START

FINISH

At(Spare,Trunk)
At(Flat,Axle)

Find an action to resolve the open 

precondition At(Spare,Trunk)

We now have one open precondition

PutOn(Spare,Axle)

At(Spare,Axle)

Remove(Spare,Trunk)

At(Spare,Ground)

¬At(Flat,Axle)

At(Spare,Trunk)

START

FINISH

At(Spare,Trunk)
At(Flat,Axle)

Find an action to resolve the open 

precondition ¬At(Flat,Axle)

We now have one open precondition

PutOn(Spare,Axle)

At(Spare,Axle)

Remove(Spare,Trunk)

At(Spare,Ground)

¬At(Flat,Axle)

At(Spare,Trunk)

Remove(Flat,Axle)
At(Flat,Axle)



16

START

FINISH

At(Spare,Trunk)
At(Flat,Axle)

Find an action to resolve the open 

precondition At(Flat,Axle)

We now have no open precondition left

PutOn(Spare,Axle)

At(Spare,Axle)

Remove(Spare,Trunk)

At(Spare,Ground)

¬At(Flat,Axle)

At(Spare,Trunk)

Remove(Flat,Axle)
At(Flat,Axle)

• Initialize with {START, FINISH} nodes

• Repeat:

–Find an open precondition C of an 

action B in the plan

–Find an action A such that the effect of 

A meets the precondition C and add:

• A �c B

• A < B (A must take place before B)

–Verify that the plan is still consistent

• Until there are no open preconditions



17

• Initialize with {START, FINISH} nodes

• Repeat:

–Find an open precondition C of an 

action B in the plan

–Find an action A such that the effect of 

A meets the precondition C and add:

• A �c B

• A < B (A must take place before B)

–Verify that the plan is still consistent

• Until there are no open preconditions

Consistency: 
If an existing action E in the plan conflicts 

with A �c B :

Try to add the ordering constraint E > B or 

A > E

If no consistent ordering can be found �

Give up on adding A

START

FINISH

At(Spare,Trunk)
At(Flat,Axle)

The new action LeaveCar could be inserted to 

fulfill the open precondition ¬At(Flat,Axle).

However, the order in which the actions are 
inserted is important.

PutOn(Spare,Axle)

At(Spare,Axle)

Remove(Spare,Trunk)

At(Spare,Ground)

¬At(Flat,Axle)

At(Spare,Trunk)

LeaveCar ¬At(Spare,Ground)

¬At(Flat,Axle)

…………



18

START

FINISH

At(Spare,Trunk)
At(Flat,Axle)

The effect ¬At(Spare,Ground) of LeaveCar

conflicts with the link:
Remove(Spare,Trunk)����At(Spare,Ground)PutOn(Spare,Axle)

It must be ordered before Remove(Spare,Trunk)

PutOn(Spare,Axle)

At(Spare,Axle)

Remove(Spare,Trunk)

At(Spare,Ground)

¬At(Flat,Axle)

At(Spare,Trunk)

LeaveCar ¬At(Spare,Ground)

¬At(Flat,Axle)

…………

The POP Algorithm

• POP is particularly effective when the 

problem can be decomposed into 

subproblems � More flexibility in the 

search because we do not require a 

strictly ordered sequence of actions.

• POP is sound

• POP is complete (e.g., with breadth first 

search or iterative deepening)



19

Summary

• Configuration of the world = KB

• Actions = Preconditions + Effect

• STRIPS notation

• Planning = Find set of actions from start to goal 
configurations of the world

• Planning as search through the valid world 
configurations linked by valid actions between 
configurations
– Backward search generally more effective

– All the arsenal of heuristic search can be used

• Partial-Order Planning (POP): Planning as search 
through the possible plans. 
– Construct partial plans, combined by taking into account ordering 

constraints.

– Takes advantages of decomposable sub-plans and sub-goals

Summary

• Configuration of the world = KB

• Actions = Preconditions + Effect

• STRIPS notation

• Planning = Find set of actions from start to goal 
configurations of the world

• Planning as search through the valid world 
configurations linked by valid actions between 
configurations
– Backward search generally more effective

– All the arsenal of heuristic search can be used

• Partial-Order Planning (POP): Planning as search 
through the possible plans. 
– Construct partial plans, combined by taking into account ordering 

constraints.

– Takes advantages of decomposable sub-plans and sub-goals

What is potentially a serious limitation in trying to 

use logic-based representations for reasoning and 

planning in real-world scenarios?


