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Constraint Satisfaction 
Problems

R&N Chapter 5

Animations from http://www.cs.cmu.edu/~awm/animations/constraints

Outline
• Definitions
• Standard search
• Improvements

– Backtracking
– Forward checking
– Constraint propagation

• Heuristics:
– Variable ordering
– Value ordering

• Examples
• Tree-structured CSP
• Local search for CSP problems
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Canonical Example: Graph Coloring

• Consider N nodes in a graph
• Assign values V1,..,VN to each of the N

nodes
• The values are taken in {R,G,B}
• Constraints: If there is an edge between i

and j, then Vi must be different of Vj

V1

V5

V2

V3

V6
V4

Canonical Example: Graph Coloring
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CSP Definition
• CSP = {V, D, C}
• Variables: V = {V1,..,VN}

– Example: The values of the nodes in the graph

• Domain: The set of d values that each variable can take

– Example: D = {R, G, B}

• Constraints: C = {C1,..,CK}
• Each constraint consists of a tuple of variables and a list of values 

that the tuple is allowed to take for this problem

– Example: [(V2,V3),{(R,B),(R,G),(B,R),(B,G),(G,R),(G,B)}]

• Constraints are usually defined implicitly � A function is defined to 
test if a tuple of variables satisfies the constraint

– Example: Vi Vj for every edge (i,j)≠

Binary CSP
• Variable V and V’ are connected if they appear in 

a constraint
• Neighbors of V = variables that are connected to V
• The domain of V, D(V), is the set of candidate 

values for variable V
• Di = D(Vi)

• Constraint graph for binary CSP problem:
– Nodes are variables
– Links represent the constraints 
– Same as our canonical graph-coloring problem
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Example: N-Queens
• Variables: Qi

• Domains: Di = {1, 2, 3, 4}
• Constraints

– Qi≠Qj (cannot be in 
same row)

– |Qi - Qj| ≠ |i - j| (or same 
diagonal)

• Valid values for (Q1, Q2) are  
(1,3)  (1,4) (2,4)  (3,1)  (4,1)  
(4,2)

Example: Cryptarithmetic
• Variables

D, E, M, N, O, R, S, Y
• Domains

{0, 1, 2, 3 ,4, 5, 6, 7, 8, 9 }
• Constraints

M ≠ 0, S ≠ 0  (unary constraints)
Y = D + E   OR  Y = D + E – 10.

D ≠ E, D ≠ M, D ≠ N, etc.

S E N D

+ M O R E

M O N E Y
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More Useful Examples

• Scheduling
• Product design
• Asset allocation
• Circuit design
• Constrained robot planning
• ………

Outline
• Definitions
• Standard search
• Improvements

– Backtracking
– Forward checking
– Constraint propagation

• Heuristics:
– Variable ordering
– Value ordering

• Examples
• Tree-structured CSP
• Local search for CSP problems



6

Search Space

• State: assignment to k variables with k+1,..,N unassigned
• Successor: The successor of a state is obtained by 

assigning a value to variable k+1, keeping the others 
unchanged

• Start state: (V1=?,V2=?, V3=?, V4=?, V5=?, V6=?)
• Goal state: All variables assigned with constraints 

satisfied
• No concept of cost on transition � We just want to find a 

solution, we don’t worry how we get there

Example state:
(V1=G,V2=B, V3=?, V4=?, V5=?, V6=?)

V1

V5

V2

V3
V6 V4

Depth First Search
V1

V5

V2

V3
V6 V4

????BB

V6V5V4V3V2V1

??????

V6V5V4V3V2V1

?????R

V6V5V4V3V2V1

?????G

V6V5V4V3V2V1

?????B

V6V5V4V3V2V1

• Recursively:
• For every possible value in D:

• Set the next unassigned variable in the successor
to that value
• Evaluate the successor of the current state with 
this variable assignment
• Stop as soon as a solution is found

Really dumb 
assignment

9d



7

DFS
• Improvements:

– Evaluate only value assignments that do 
not violate any constraints with the 
current assignments

– Don’t search branches that obviously 
cannot lead to a solution

– Predict valid assignments ahead

– Control order of variables and values

Outline
• Definitions
• Standard search
• Improvements

– Backtracking
– Forward checking
– Constraint propagation

• Heuristics:
– Variable ordering
– Value ordering

• Examples
• Tree-structured CSP
• Local search for CSP problems
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Backtracking DFS

??????

V6V5V4V3V2V1

?????B

V6V5V4V3V2V1

????RB

V6V5V4V3V2V1

??BRRB

V6V5V4V3V2V1

?GBRRB

V6V5V4V3V2V1

Backtrack to the 
previous state 

because no valid 
assignment can 
be found for V6

V1

V5

V2

V3
V6 V4

Order of values: 
(B,R,G)

????BB

V6V5V4V3V2V1

Don’t even consider 
that branch because 
V2=B is inconsistent 
with the parent state

Backtracking DFS
• For every possible value x in D:

– If assigning x to the next unassigned variable 
Vk+1 does not violate any constraint with the k
already assigned variables:

• Set the variable Vk+1 to x
• Evaluate the successors of the current state with 

this variable assignment

• If no valid assignment is found: 
Backtrack to previous state

• Stop as soon as a solution is found
9b, 27b
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Backtracking DFS Comments

• Additional computation: At each step, we need 
to evaluate the constraints associated with the 
current candidate assignment (variable, value).

• Uninformed search, we can improve by 
predicting:
– What is the effect of assigning a variable on all of the 

other variables?
– Which variable should be assigned next and in which 

order should the values be evaluated?
– When a branch fails, how can we avoid repeating the 

same mistake?

Forward Checking
• Keep track of remaining legal values for 

unassigned variables
• Backtrack when any variable has no legal values

?
?
?
V6

G
B
R

?????
?????
?????
V5V4V3V2V1

V1

V5

V2

V4

V3
V6

Warning: Different example with order (R,B,G)
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Forward Checking
• Keep track of remaining legal values for 

unassigned variables
• Backtrack when any variable has no legal values

?
?
?
V6

G
B
R

????
????
XX?XO
V5V4V3V2V1 V1

V5

V2

V4

V3
V6

Forward Checking
• Keep track of remaining legal values for 

unassigned variables
• Backtrack when any variable has no legal values

?
?
?
V6

G
B
R

???
X?XO
XX?O
V5V4V3V2V1 V1

V5

V2

V4

V3
V6
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Forward Checking
• Keep track of remaining legal values for 

unassigned variables
• Backtrack when no variable has a legal value

?
?
X
V6

G
B
R

??
X?O
XXOO
V5V4V3V2V1 V1

V5

V2

V4

V3
V6

Forward Checking
• Keep track of remaining legal values for 

unassigned variables
• Backtrack when any variable has no legal values

?
X
X
V6

G
B
R

?
XOO
XOO
V5V4V3V2V1 V1

V5

V2

V4

V3
V6
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Forward Checking
• Keep track of remaining legal values for 

unassigned variables
• Backtrack when any variable has no legal values

X
X
X
V6

G
B
R

O
OO

OO
V5V4V3V2V1

There are no valid assignments left 
for V6 we need to backtrack

V1

V5

V2

V4

V3
V6

27f

Constraint Propagation
• Forward checking does not detect all the 

inconsistencies, only those that can be detected by 
looking at the constraints which contain the current 
variable.

• Can we look ahead further?

?

X

X

V6

G

B

R

?

XOO

XOO

V5V4V3V2V1
V1

V5

V2

V4

V3
V6

At this point, it is already obvious that this branch will not 
lead to a solution because there are no consistent values 

in the remaining domain for V5 and V6.
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Constraint Propagation
• V = variable being assigned at the current 

level of the search
• Set variable V to a value in D(V)
• For every variable V’ connected to V:

– Remove the values in D(V’) that are inconsistent 
with the assigned variables

– For every variable V” connected to V’:
• Remove the values in D(V”) that are no longer 

possible candidates
• And do this again with the variables connected to V”

–……..until no more values can be 
discarded

Constraint Propagation
• V = variable being assigned at the current 

level of the search
• Set variable V to a value in D(V)
• For every variable V’ connected to V:

– Remove the values in D(V’) that are inconsistent 
with the assigned variables

– For every variable V” connected to V’:
• Remove the values in D(V”) that are no longer 

possible candidates
• And do this again with the variables connected to V”

–……..until no more values can be 
discarded

Forward Checking 
as before

New: Constraint 
Propagation
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CP for the graph coloring problem

Propagate (node, color)
1. Remove color from the domain of all 

of the neighbors
2. For every neighbor N:

If D(N) was reduced to only one color 
after step 1 (D(N) = {c}):

Propagate (N,c)

?
?
?

V6

G
B
R

????
????
XX?XO

V5V4V3V2V1
V1

V5

V2

V4

V3
V6

After  Propagate (V1, R):
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X
X
?

V6

G
B
R

?X?
X?XO
XXXO

V5V4V3V2V1 V1

V5

V2

V4

V3
V6

After  Propagate (V2, B):

Propagation order: 2

3 5

4 6

3 5 6

3 4 5

X
X
?

V6

G
B
R

?X?
X?XO
XXXO

V5V4V3V2V1 V1

V5

V2

V4

V3
V6

After  Propagate (V2, B):

Note: We get directly to a solution in one step of 
CP after setting V2 without any additional search

Some problems can even be solved by applying 
CP directly without search (if we’re lucky)
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More General CP: Arc Consistency
• A = queue of active arcs (Vi,Vj)
• Repeat while A not empty: 

– (Vi,Vj)  next element of A
– For each x in D(Vi):

• Remove x from D(Vi) if there is no y in D(Vj) 
for which (x,y) satisfies the constraint 
between Vi and Vj.

– If D(Vi) has changed:

• Add all the pairs (Vk,Vi), where Vk is a 
neighbor of Vi (k not equal to j) to A

More General: k-Consistency

• Check consistency of sets of k
variables instead of pairs of variables 
(arc consistency)

• Trade-off: 
– CP time increases rapidly with k
– Search time may decrease with k (but 

maybe not as fast)

• Complete constraint propagation 
exponential in size of the problem
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Outline
• Definitions
• Standard search
• Improvements

– Backtracking
– Forward checking
– Constraint propagation

• Heuristics:
– Variable ordering
– Value ordering

• Examples
• Tree-structured CSP
• Local search for CSP problems

Variable and Value Heuristics
• So far we have selected the next 

variable and the next value by using a 
fixed order

1. Is there a better way to pick the next 
variable?

2. Is there a better way to select the next 
value to assign to the current 
variable?
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CSP Heuristics: Variable Ordering I
• Most Constraining Variable
• Selecting a variable which contributes to the largest number 

of constraints will have the largest effect on the other 
variables � Hopefully will prune a larger part of the search

• This amounts to finding the variable that is connected to the 
largest number of variables in the constraint graph.

V1

V5

V2

V4

V3
V6

V7

Setting variable V5 affects 4 
variables

Setting variable V2 (or V3, V4) 
affects fewer variables

?

V7

?????R

V6V5V4V3V2V1

196v

CSP Heuristics: Variable Ordering II
• Minimum Remaining Values (MRV)
• Selecting the variable that has the least number of 

candidate values is most likely to cause a failure early 
(“fail-first” heuristic)

V1

V5

V2

V4
V3

V6

V7 O

V7

?

?

?

V6

G

B

R

???

X??O

XXXO

V5V4V3V2V1

V5 is the most constrained variable and is 
the most likely to prune the search tree
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CSP Heuristics: Value Ordering
• Least Constraining Value
• Choose the value which causes the smallest 

reduction in the number of available values for 
the neighboring variables

V1

V2

V3

V4
V5

V6

Four colors: D = {R, G, B, Y}

Which value to try next for V3?

?

V7

????RG

V6V5V4V3V2V1

Warning: Different example!!!

Outline
• Definitions
• Standard search
• Improvements

– Backtracking
– Forward checking
– Constraint propagation

• Heuristics:
– Variable ordering
– Value ordering

• Examples
• Tree-structured CSP
• Local search for CSP problems
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?

CP Example:Line Drawing 
Interpretation

Concave Edge

Convex Edge

Assumptions

Special Viewpoint General Viewpoint

Not allowed
• No shadows
• No edge between        
common planes
• General viewpoint
• Trihedral corners only
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3 Possible Edge Labels

-

+
+ : Convex edge

- : Concave edge

: Boundary edge

By convention: the 
surface is to the right 
when looking in the 
direction of the arrow

4 Possible Types of Junctions

V Y

WTW

Y

T

V
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+

+ +

1

- -
-
2

-
3

-

4

-

5

There are 3 x 43 + 42 = 208 possible 
combination of edge labels and junctions types
For example, 43 possible combinations of 
labels at a Y junction, but…
Only 5 physically possible combinations

+

+ +

1

- -
-
2

-
3

-

4

-

5
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CSP Formulation
• Domain D = dictionary of 18 junction configurations
• Constraints: The line joining two junctions must have 

single label in {-,+, �}
• Problem: Assign values to all the junctions such that all 

of the edges are labeled
• Solved by constraint propagation: Waltz labeling 

algorithm

-
+

+

+

+ +
+

-

V

Y

W

T

Only 18 
possible 
junction 
configurations

Huffman-
Clowes
junction 
dictionary
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A

B

C

D

AB

C
D

(B,A)

A

B

C

D

AB

C
D

(C,B)
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AB

C
D

(D,C)

A

B

C

D

AB

C
D

(A,D)

A

B

C

D
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A

B

C

D

AB

C
D

+

+

+

+

-

Labeling Notes

• Extended to include shadows and tangent 
contact (10 junction types and a much 
larger number of valid configurations)

• Key observation: Computation grows 
(roughly) linearly with the number of 
edges!

CP for line labeling described in detail in P. Winston, 
“Artificial Intelligence”, MIT Press
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Example: Scheduling

See recent survey in www.cs.cmu.edu/afs/cs/user/sfs/www/mista03/mista03.html
Illustrations from N. Sadeh and M.S. Fox. "Variable and Value Ordering
Heuristics for the Job Shop Constraint Satisfaction Problem"

• 4 jobs
• 4 resources
• 10 operations
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Generic CSP Solution

Outline
• Definitions
• Standard search
• Improvements

– Backtracking
– Forward checking
– Constraint propagation

• Heuristics:
– Variable ordering
– Value ordering

• Examples
• Tree-structured CSP
• Local search for CSP problems
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Important Special Case: Constraint 
Trees

Order the variables such that the parent of a node 
appears always before that node in the list



31

Order the variables such that the parent of a node 
appears always before that node in the list

Intuition: If all the values in the 
parent’s domain are consistent with 
the values in all the children’s 
domains, it is easy to choose 
consistent values, starting from the 
root of the tree

Constraint Tree Algorithm
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Constraint Tree Algorithm
Visit each variable once: N

Worst case: Need to check all 
pais of values: d2

Total time: 
O(N d2)

Almost Tree

• The constraint graph becomes a tree once a value 
is chosen for V6

• We don’t know which value to choose � Try all 
possible values
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• Removing a connected group G of p
variables transforms the graph into a tree 
problem that can be solved efficiently.

• We don’t know how to set the variables in 
G:
– For every possible consistent assignment of 

values to variables in G:
• Apply the tree algorithm to the rest of the variables

• Removing a connected group G of p
variables transforms the graph into a tree 
problem that can be solved efficiently.

• We don’t know how to set the variables in 
G:
– For every possible consistent assignment of 

values to variables in G:
• Apply the tree algorithm to the rest of the variables

Worst case: Need to 
check all possible 
assignments in G � dp

Tree algorithm � (N-p) d2

Complexity: O((N-p) dp+2)
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• Removing a connected group G of p
variables transforms the graph into a tree 
problem that can be solved efficiently.

• We don’t know how to set the variables in 
G:
– For every possible consistent assignment of 

values to variables in G:
• Apply the tree algorithm to the rest of the variables

Worst case: Need to 
check all possible 
assignments in G � dp

Tree algorithm � (N-p) d2

Complexity: O((N-p) dp+2)

Note: Unfortunately, it is impossible to 
find the minimum p in polynomial time

Outline
• Definitions
• Standard search
• Improvements

– Backtracking
– Forward checking
– Constraint propagation

• Heuristics:
– Variable ordering
– Value ordering

• Examples
• Tree-structured CSP
• Local search for CSP problems
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Local Search Techniques for CSP

LLL

ECA

EDC

EDB

DCA

CBA

∨¬∨¬
¬∨¬∨¬

¬∨∨
∨∨¬
∨¬∨

SAT
N-Queens

Local Search for CSP
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Generic Local Search: Min-
Conflicts Algorithm

• Start with a complete assignment of 
variables

• Repeat until a solution is found or 
maximum number of iterations is reached:

– Select a variable Vi randomly among the 
variables in conflict

– Set Vi to the value that minimizes the 
number of constraints violated

Generic Local Search: Min-
Conflicts Algorithm

• Start with a complete assignment of 
variables

• Repeat until a solution is found or 
maximum number of iterations is reached:

– Select a variable Vi randomly among the 
variables in conflict

– Set Vi to the value that minimizes the 
number of constraints violated

• Far more effective than CSP 
search for many problems
• All previous variants of hill-
climbing are applicable
• Generic form similar to 
WALKSAT seen earlier
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2,0004,00064Min-Conflicts

500817,00060+ MRV

35,000> 40 1062,000Forward 
Checking

1,00013.5 106> 106+ MRV

3.9 106> 40 106> 106DFS 
Backtracking

ZebraN-Queens 
(1<N<=50)

USA

(Data from Russell & Norvig)

2,0004,00064Min-Conflicts

500817,00060+ MRV

35,000> 40 1062,000Forward 
Checking

1,00013.5 106> 106+ MRV

3.9 106> 40 106> 106DFS 
Backtracking

ZebraN-Queens 
(1<N<=50)

USA
MRV heuristic is 
always very effective

Local search is surprisingly effective.
Can solve N-queens efficiently for N = 107!!
Why are such problems “easy” to solve??
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