Constraint Satisfaction Problems

R\&N Chapter 5

Outline

- Definitions
- Standard search
- Improvements
- Backtracking
- Forward checking
- Constraint propagation
- Heuristics:
- Variable ordering
- Value ordering
- Examples
- Tree-structured CSP
- Local search for CSP problems

Canonical Example: Graph Coloring

- Consider N nodes in a graph
- Assign values $V_{1}, . ., V_{N}$ to each of the N nodes
- The values are taken in $\{R, G, B\}$
- Constraints: If there is an edge between i and j, then V_{i} must be different of V_{j}

Canonical Example: Graph Coloring

CSP Definition

- $\mathrm{CSP}=\{V, D, C\}$
- Variables: $V=\left\{V_{1}, . ., V_{N}\right\}$
- Example: The values of the nodes in the graph
- Domain: The set of d values that each variable can take
- Example: $D=\{R, G, B\}$
- Constraints: $C=\left\{C_{1}, . ., C_{K}\right\}$
- Each constraint consists of a tuple of variables and a list of values that the tuple is allowed to take for this problem
- Example: $\left[\left(V_{2}, V_{3}\right),\{(R, B),(R, G),(B, R),(B, G),(G, R),(G, B)\}\right]$
- Constraints are usually defined implicitly \rightarrow A function is defined to test if a tuple of variables satisfies the constraint
- Example: $V_{i} \neq V_{\mathrm{j}}$ for every edge ((i, j)

Binary CSP

- Variable \boldsymbol{V} and \boldsymbol{V}^{\prime} are connected if they appear in a constraint
- Neighbors of $\boldsymbol{V}=$ variables that are connected to \boldsymbol{V}
- The domain of $\boldsymbol{V}, D(\boldsymbol{V})$, is the set of candidate values for variable V
- $D_{i}=D\left(V_{i}\right)$
- Constraint graph for binary CSP problem:
- Nodes are variables
- Links represent the constraints
- Same as our canonical graph-coloring problem

Example: N-Queens

- Variables: Q_{i}
- Domains: $\mathrm{D}_{\mathrm{i}}=\{1,2,3,4\}$
- Constraints
$-Q_{i} \neq Q_{j}$ (cannot be in same row)

$-\left|\mathrm{Q}_{\mathrm{i}}-\mathrm{Q}_{\mathrm{j}}\right| \neq \mid \mathrm{i}$ - $\mathrm{j} \mid$ (or same $Q_{1}=1 \quad Q_{2}=3$ diagonal)
- Valid values for $\left(Q_{1}, Q_{2}\right)$ are
$(1,3)(1,4)(2,4)(3,1)(4,1)$
$(4,2)$

Example: Cryptarithmetic

- Variables

D, E, M, N, O, R, S, Y

- Domains
$\{0,1,2,3,4,5,6,7,8,9\}$
- Constraints

SEND
+ MORE
MONEY

$M \neq 0, S \neq 0$ (unary constraints)
$Y=D+E \quad O R \quad Y=D+E-10$.
$D \neq E, D \neq M, D \neq N$, etc.

More Useful Examples

- Scheduling
- Product design
- Asset allocation
- Circuit design
- Constrained robot planning
-

Outline

- Definitions
- Standard search
- Improvements
- Backtracking
- Forward checking
- Constraint propagation
- Heuristics:
- Variable ordering
- Value ordering
- Examples
- Tree-structured CSP
- Local search for CSP problems

- State: assignment to k variables with $k+1, . ., N$ unassigned
- Successor. The successor of a state is obtained by assigning a value to variable $k+1$, keeping the others unchanged
- Start state: $\left(\boldsymbol{V}_{1}=\right.$?, $\boldsymbol{V}_{2}=$?, $\boldsymbol{V}_{3}=$?, $\boldsymbol{V}_{4}=$?, $\boldsymbol{V}_{5}=$?, $\boldsymbol{V}_{6}=$?)
- Goal state: All variables assigned with constraints satisfied
- No concept of cost on transition \rightarrow We just want to find a solution, we don't worry how we get there

DFS

- Improvements:

-Evaluate only value assignments that do not violate any constraints with the current assignments
-Don't search branches that obviously cannot lead to a solution
-Predict valid assignments ahead
-Control order of variables and values

Outline

- Definitions
- Standard search
- Improvements
- Backtracking
- Forward checking
- Constraint propagation
- Heuristics:
- Variable ordering
- Value ordering
- Examples
- Tree-structured CSP
- Local search for CSP problems

Backtracking DFS

- For every possible value x in D :
- If assigning x to the next unassigned variable $V_{\mathrm{k}+1}$ does not violate any constraint with the k already assigned variables:
- Set the variable V_{k+1} to x
- Evaluate the successors of the current state with this variable assignment
- If no valid assignment is found: Backtrack to previous state
- Stop as soon as a solution is found

Backtracking DFS Comments

- Additional computation: At each step, we need to evaluate the constraints associated with the current candidate assignment (variable, value).
- Uninformed search, we can improve by predicting:
- What is the effect of assigning a variable on all of the other variables?
- Which variable should be assigned next and in which order should the values be evaluated?
- When a branch fails, how can we avoid repeating the same mistake?

Forward Checking

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}
R	$?$	$?$	$?$	$?$	$?$	$?$
B	$?$	$?$	$?$	$?$	$?$	$?$
G	$?$	$?$	$?$	$?$	$?$	$?$

Warning: Different example with order (R,B,G)

Forward Checking

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}
R	O	X	$?$	X	X	$?$
B		$?$	$?$	$?$	$?$	$?$
G		$?$	$?$	$?$	$?$	$?$

Forward Checking

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}
R	O		$?$	X	X	$?$
B		O	X	$?$	X	$?$
G			$?$	$?$	$?$	$?$

Forward Checking

- Keep track of remaining legal values for unassigned variables
- Backtrack when no variable has a legal value

	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}
\boldsymbol{R}	\mathbf{O}		O	X	X	X
B		O		$?$	X	$?$
G				$?$	$?$	$?$

Forward Checking

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}
\boldsymbol{V}	V_{6}				
\boldsymbol{R}	\boldsymbol{O}		\boldsymbol{O}		\boldsymbol{X}
\boldsymbol{X}					
\boldsymbol{B}		\boldsymbol{O}		\boldsymbol{O}	\boldsymbol{X}
\boldsymbol{G}					\boldsymbol{P}

Forward Checking

- Keep track of remaining legal values for unassigned variables
- Backtrack when any variable has no legal values

	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}
\boldsymbol{R}	\boldsymbol{O}		\boldsymbol{O}			\boldsymbol{X}
\boldsymbol{B}			\mathbf{O}		O	
\boldsymbol{X}						
\boldsymbol{G}						\boldsymbol{O}

There are no valid assignments left for V_{6} we need to backtrack

Constraint Propagation

- Forward checking does not detect all the inconsistencies, only those that can be detected by looking at the constraints which contain the current variable.
- Can we look ahead further?

	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}
\boldsymbol{R}	\boldsymbol{O}		O		X	X
B		O		O	X	X
G					$?$	$?$

At this point, it is already obvious that this branch will not lead to a solution because there are no consistent values in the remaining domain for \boldsymbol{V}_{5} and \boldsymbol{V}_{6}.

Constraint Propagation

- $\boldsymbol{V}=$ variable being assigned at the current level of the search
- Set variable \boldsymbol{V} to a value in $D(\boldsymbol{V})$
- For every variable \boldsymbol{V} ' connected to \boldsymbol{V} :
- Remove the values in $D(\boldsymbol{V})$ that are inconsistent with the assigned variables
- For every variable $V^{\prime \prime}$ connected to V^{\prime} :
- Remove the values in $D\left(\boldsymbol{V}^{\prime}\right)$ that are no longer possible candidates
- And do this again with the variables connected to $V^{\prime \prime}$
-.........until no more values can be discarded

| Constraint Propagation |
| :--- | :--- |
| New: Constraint |
| Propagation assig Forward Checking |
| as before |

CP for the graph coloring problem

Propagate (node, color)

1. Remove color from the domain of all of the neighbors
2. For every neighbor N :

If $D(N)$ was reduced to only one color after step $1(D(N)=\{c\})$:
Propagate (N, C)

After Propagate $\left(\boldsymbol{V}_{1}, \boldsymbol{R}\right)$:

	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}
R	O	X	$?$	X	X	$?$
B		$?$	$?$	$?$	$?$	$?$
G		$?$	$?$	$?$	$?$	$?$

$$
\text { After Propagate }\left(\boldsymbol{V}_{2}, \mathbf{B}\right) \text { : }
$$

	V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}
R	O		X	X	X	$?$
B		O	X	$?$	X	X
G			$?$	X	$?$	X

Note: We get directly to a solution in one step of CP after setting \boldsymbol{V}_{2} without any additional search

Some problems can even be solved by applying CP directly without search (if we're lucky)

More General CP: Arc Consistency

- $A=$ queue of active $\operatorname{arcs}\left(\boldsymbol{V}_{\mathrm{i}}, \boldsymbol{V}_{\mathrm{j}}\right)$
- Repeat while A not empty:
$-\left(\boldsymbol{V}_{\mathrm{i}}, \boldsymbol{V}_{\mathrm{j}}\right) \leftarrow$ next element of A
- For each x in $D\left(\boldsymbol{V}_{\mathrm{i}}\right)$:
- Remove x from $D\left(\boldsymbol{V}_{\mathrm{i}}\right)$ if there is no y in $D\left(\boldsymbol{V}_{\mathrm{j}}\right)$ for which (x, y) satisfies the constraint between $\boldsymbol{V}_{\mathrm{i}}$ and $\boldsymbol{V}_{\mathrm{j}}$.
- If $D\left(\boldsymbol{V}_{\mathrm{i}}\right)$ has changed:
- Add all the pairs $\left(\boldsymbol{V}_{\mathrm{k}}, \boldsymbol{V}_{\mathrm{i}}\right)$, where $\boldsymbol{V}_{\mathrm{k}}$ is a neighbor of V_{i} (k not equal to J) to A

More General: k-Consistency

- Check consistency of sets of k variables instead of pairs of variables (arc consistency)
- Trade-off:
- CP time increases rapidly with k
- Search time may decrease with k (but maybe not as fast)
- Complete constraint propagation exponential in size of the problem

Outline

- Definitions
- Standard search
- Improvements
- Backtracking
- Forward checking
- Constraint propagation
- Heuristics:
- Variable ordering
- Value ordering
- Examples
- Tree-structured CSP
- Local search for CSP problems

Variable and Value Heuristics

- So far we have selected the next variable and the next value by using a fixed order

1. Is there a better way to pick the next variable?
2. Is there a better way to select the next value to assign to the current variable?

CSP Heuristics: Variable Ordering I

- Most Constraining Variable
- Selecting a variable which contributes to the largest number of constraints will have the largest effect on the other variables \rightarrow Hopefully will prune a larger part of the search
- This amounts to finding the variable that is connected to the largest number of variables in the constraint graph.

CSP Heuristics: Variable Ordering II

- Minimum Remaining Values (MRV)
- Selecting the variable that has the least number of candidate values is most likely to cause a failure early ("fail-first" heuristic)

CSP Heuristics: Value Ordering

- Least Constraining Value
- Choose the value which causes the smallest reduction in the number of available values for the neighboring variables

Warning: Different example!!!

Outline

- Definitions
- Standard search
- Improvements
- Backtracking
- Forward checking
- Constraint propagation
- Heuristics:
- Variable ordering
- Value ordering
- Examples
- Tree-structured CSP
- Local search for CSP problems

Assumptions

- No shadows
- No edge between common planes
- General viewpoint

- Trihedral corners only

Special Viewpoint General Viewpoint

4 Possible Types of Junctions

There are $3 \times 4^{3}+4^{2}=208$ possible combination of edge labels and junctions types For example, 4^{3} possible combinations of labels at a \boldsymbol{Y} junction, but...
Only 5 physically possible combinations

CSP Formulation

- Domain $D=$ dictionary of 18 junction configurations
- Constraints: The line joining two junctions must have single label in $\{-,+, \rightarrow\}$
- Problem: Assign values to all the junctions such that all of the edges are labeled
- Solved by constraint propagation: Waltz labeling algorithm

Labeling Notes

- Extended to include shadows and tangent contact (10 junction types and a much larger number of valid configurations)
- Key observation: Computation grows (roughly) linearly with the number of edges!

Example: Scheduling

- A set of N Jobs $\left\{J_{1}, . ., J_{N}\right\}$ needs to be completed
- Each job j is composed of a set of L_{i} operations $\left\{\boldsymbol{O}_{1}, \ldots, \boldsymbol{O}_{\mathrm{j}}^{\mathrm{j}}\right\}$ to be executed sequentially
- Each task O_{i} has a known duration \prod_{i}
- Tasks may need to use resources out of a pool of M resources $\left\{\boldsymbol{R}_{1}, . ., \boldsymbol{R}_{\mathrm{M}}\right\}$
- A resource cannot be used by two operations at the same time
- All jobs must be completed by time $t=$ Due
- Problem: Schedule the start time of each operation \mathcal{S}_{i} using discrete times $\{0, \ldots, T\}$
See recent survey in www.cs.cmu.edu/afs/cs/user/sfs/www/mista03/mista03.html Illustrations from N. Sadeh and M.S. Fox. "Variable and Value Ordering Heuristics for the Job Shop Constraint Satisfaction Problem"

Generic CSP Solution

- Repeat until all variables have been assigned:
- Apply a consistency enforcement procedure
- Forward checking
- Constraint propagation
- If no solutions left:
- Backtrack to a previous variable
- Else
- select the next variable to be assigned
- Using variable ordering heuristic
- Select a value to try for this variable
- Using value ordering heuristic

Outline

- Definitions
- Standard search
- Improvements
- Backtracking
- Forward checking
- Constraint propagation
- Heuristics:
- Variable ordering
- Value ordering
- Examples
- Tree-structured CSP
- Local search for CSP problems

Important Special Case: Constraint Trees

Constraint graph is a tree: Two variables are connected by one path
Can always be solved in linear time in the number of variables

Order the variables such that the parent of a node appears always before that node in the list

Order the variables such that the parent of a node appears always before that node in the list

Constraint Tree Algorithm

1. Up from leaves to root:

- For every variable $\boldsymbol{V}_{\boldsymbol{i}}$, starting at the leaves:
- $\boldsymbol{V}_{\mathrm{i}}=\operatorname{parent}\left(\boldsymbol{V}_{\mathrm{i}}\right)$
- Remove all the values x in $D\left(\boldsymbol{V}_{\mathrm{j}}\right)$ for which there is no consistent value in $D\left(\boldsymbol{V}_{\mathrm{i}}\right)$

2. Down from root to leaves:

- Assign a value to the root of the tree
- For every variable $\boldsymbol{V}_{\boldsymbol{i}}$:
- Choose a value x in $D\left(\boldsymbol{V}_{\mathrm{i}}\right)$ consistent with the value assigned to parent $\left(\boldsymbol{V}_{\boldsymbol{i}}\right)$

Constraint Tree Algorithm

1. Up from leaves vis

- For every variable $\boldsymbol{V}_{\mathrm{i}}$, starting at the leaves:
- $\boldsymbol{V}_{\mathrm{j}}=\operatorname{parent}\left(\boldsymbol{V}_{\mathrm{i}}\right)$
- Remove all the values x in $D\left(\boldsymbol{V}_{\mathrm{j}}\right)$ for which there is no consistent value in D^{\prime}

2. Down from root Worst case: Need to check all pais of values: d^{2}

- Assign a value to the root ot the tree
- For every variable $\boldsymbol{V}_{\boldsymbol{i}}$:
- Choose a value x in $D\left(\boldsymbol{V}_{\mathrm{i}}\right)$ Cumown vorn the value assigned to parent $\left(\boldsymbol{V}_{\mathrm{i}}\right)$

- The constraint graph becomes a tree once a value is chosen for V_{6}
- We don't know which value to choose \rightarrow Try all possible values

- Removing a connected group G of p variables transforms the graph into a tree problem that can be solved efficiently.
- We don't know how to set the variables in G:
- For every possible consistent assignment of values to variables in G :
- Apply the tree algorithm to the rest of the variables

Outline

- Definitions
- Standard search
- Improvements
- Backtracking
- Forward checking
- Constraint propagation
- Heuristics:
- Variable ordering
- Value ordering
- Examples
- Tree-structured CSP
- Local search for CSP problems

- These problems can be formulated äsi CSPs
- We have used local search methods to solve them in an earlier lecture (hill climbing, annealing, tabu search, genetic algorithms)
- When are local search methods applicable?
- Direct solution through local search effective for some problems
- Optimization of a cost function in addition to CSP
- Online update of CSP solution

Local Search for CSP

State = assignment of values to all the variables

V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}
a	b	c	d	e	f

Move $=$ Change one variable

V_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}
a	b	c^{\prime}	d	e	f

Evaluation = number of conflicts (non-satisfied constraints) between variables

Generic Local Search: MinConflicts Algorithm

- Start with a complete assignment of variables
- Repeat until a solution is found or maximum number of iterations is reached:
-Select a variable \boldsymbol{V}_{i} randomly among the variables in conflict
-Set V_{i} to the value that minimizes the number of constraints violated

-Select a variable Vi randomly among the variables in conflict
-Set $V i$ to the value that minimizes the number of constraints violated

	USA	N-Queens $(1<\mathrm{N}<=50)$	Zebra
DFS Backtracking	$>10^{6}$	$>4010^{6}$	3.910^{6}
+ MRV	$>10^{6}$	13.510^{6}	1,000
Forward Checking	2,000	$>4010^{6}$	35,000
+ MRV	60	817,000	500
Min-Conflicts	64	4,000	2,000

(Data from Russell \& Norvig)

MRV heuristic is always very effective		N -Queens Zebra	
Local search is surprisingly effective. Can solve N -queens efficiently for $N=107$!! ktr Why are such problems "easy" to solve??			
+ RV		13.510^{6}	1,000
$\begin{aligned} & \text { Fs ward } \\ & \text { Checking } \\ & \hline \end{aligned}$		> 4010^{6}	35,000
+ MRV		817,000	500
Min-Conflicts	64	4,000	2,000

Outline

- Definitions
- Standard search
- Improvements
- Backtracking
- Forward checking
- Constraint propagation
- Heuristics:
- Variable ordering
- Value ordering
- Examples
- Tree-structured CSP
- Local search for CSP problems

