CS:APP Chapter 4
Computer Architecture

Wrap-Up

Randal E. Bryant

Carnegie Mellon University

http://csapp.cs.cmu.edu

CS:APP

Performance Metrics

Clock rate
m Measured in Megahertz or Gigahertz

m Function of stage partitioning and circuit design
® Keep amount of work per sta ge small

Rate at which instructions executed
m CPI: cycles per instruction
m On average, how many clock cycles doe s each instruction
require?
m Function of pipeline design and benchmark programs
® E.g., how frequently are bra nches mispredicted ?

3 CS:APP

Overview

Wrap-Up of PIPE Design
m Performance analysis
m Fetch stage design
m Exceptional conditions

Modern High-Performance Processors
m Out-of-order execution

—2- CS:APP

CPI for PIPE

CPI=1.0
m Fetch instruction each clock cycle
m Effectively process new instruction almost every cycle

e Although each individ ual instruction has la tency of 5 cycles

CPI>1.0
® Sometimes must stall or cancel branches

Computing CPI
m C clock cycles
m | instructions executed to completion
m B bubbles injected (C = | + B)
CPlI = C/l = (+B)/I = 1.0+ B/
m Factor B/l represents average penalty due to bubbles

4 CS:APP

CPI for PIPE (Cont.)

B/l =LP + MP + RP

= LP: Penalty due to load/use hazard stalling Typical Values

® Fraction of instructions that are loads 0.25
® Fraction of load instruc tions requiring stall 0.20
® Number of bubbles inje cted each time 1

0 LP=0.25*0.20*1=0.05
m MP: Penalty due to mispredicted branches

® Fraction of instructions that are cond. jumps 0.20
® Fraction of cond. jumps mispredicted 0.40
® Number of bubbles inje cted each time 2

0 MP=0.20*0.40*2=0.16

m RP: Penalty dueto ret instructions
® Fraction of instructions that are returns 0.02
® Number of bubbles inje cted each time 3
O RP=0.02*3=0.06

m Net effect of penalties 0.05 + 0.16 + 0.06 =0 .27

0 CPI=127 (Notbad!) CsAPP

Standard Fetch Timing

Select PC need_regids , need_valC

|& | Mem.Read I I Increment |

[
— _

1 clock cycle

m Must Perform Everything in Sequenc e

m Can’t compute incremented PC until know how much to
increment it by

7 CS:APP

M_icode
M_Bch

Fetch Logic Revisited

During Fetch Cycle Wcode
m Select PC (> B f

= Read bytes from J
instruction memory J
. . P PC
m Examine icode to [.' increment

determine
Instruction
-memory

ifun | A [1B

instruction length
m Increment PC

Timing
m Steps 2 & 4 require
significant amount

of time F

—6— CS:APP

A Fast PC Increment Circuit

High-order 29 bits Low-order 3 bits

29-bit
Slow incre - - 3-bit adder Fast
menter

En'eed_regids
i0

need_ValC

I Low-order 3 bits

High-order 29 bits

PC

g CS:APP

Modified Fetch Timing More Realistic Fetch Logic

Other PC Controls

need_regids , need_valC —
Select PC \ 3-bit add l l l
& Mem. Read LY x MUX Il i Byte0 | Bytes 15
I I Fetch Instr. | .| Current
Control Length Instruction
Incrementer T f
N B, Standard | I . Current Block
anaara cycle nstruction
YT Cache f
1 clock cycle [Next Block

Fetch Box
m Integrated into instruction cache
m Fetches entire cache block (16 or 32 bytes)
m Selects current instruction from current block

m Works ahead to fetch next block
® As reaches end of ¢ urrent block

® At branch target
-9- CS:APP -10- CS:APP

29-Bit Incrementer
m Acts as soon as PC selec ted
m Output not needed until final MUX
m Works in parallel with memory read

Exceptions Exception Examples

m Conditions under which pipeline cannot continue normal Detect in Fetch Stage

operation
Causes jmp $-1 # Invalid jump target
m Halt instruction (Current)
= Bad address for instruction or data (Previous) -byte OxFF # Invalid instruction code
m Invalid instruction (Previous)
. . halt # Halt instruction
m Pipeline control error (Previous)

Desired Action Detect in Memory Stage

m Complete some instructions irmovl $100,%eax
® Either current or previous (de pends on exception type) rmmovl %eax,0x10000 (%eax) # invalid address
m Discard others

m Call exception handler
@ Like an unexpec ted procedure call

-11- CS:APP -12- CS:APP

Exceptions in Pipeline Processor #1

demo-excl.ys
irmovl $100, %eax
rmmovl %eax,0x10000 (%eax) # Invalid address

nop
.byte OxFF # Invalid instruction code
102 4 5
0%000: irmovl $100,%eax F]D[E[m[w] —FExceptiondetected
0x006: rmmovl %eax,0x1000(%eax) | F (D | E | M
0x00c: nop F|D]|E
0x00d: .byte OxFF F | D

Exception detected

Desired Behavior
m rmmovl should cause exception

—13 -

Maintaining Exception Ordering

CS:APP

" v [o Wl

dstE IdstM
IS exc icode| ifun - valC I valA I valB dstE | dstM | srcA | srcB
DI exc icode| ifun - rA l B I valC I valP _

F predPC

m Add exception status field to pipeline registers

m Fetch stage sets to either “AOK,” “ADR” (when bad fetch
address), or “INS” (illegal instruction)

m Decode & execute pass v alues through
m Memory either passes through or sets to “ADR "
m Exception triggered only when instruction hits write back

—15-—

CS:APP

Exceptions in Pipeline Processor #2
demo-exc2.ys

xorl %eax, %eax # Set condition codes
jne t # Not taken

0x000:
0x002:

0x007:
0x00d:
0x013:
0x014:

0x000:
0x002:

0x014: t:

irmovl $1,%eax
irmovl $2,%edx

0x???: (I'm lost!)

0x007:

halt
t: .byte OxFF # Target
1 2 3 4 5 6 7 8 9
xorl %eax, %eax | F D|E|M|W
jne t F|D|E|M
.byte OxFF FID|IE|M|W
F|D|E|M|W
F

irmovl $1,%eax

Exception detected

Desired Behavior
= No exception should occur

—14 -

CS:APP

Side Effects in Pipeline Processor

demo-exc3.ys
irmovl $100, %eax
rmmovl %eax,0x10000 (%eax) # invalid address

addl %eax, %$eax

0x000: irmovl $100,%eax | F | D
0x006: rmmovl %eax,0x1000 (%eax) | F
0x00c: addl %eax, %eax

1 2

w

Sets condition codes

/ Exception detected

m(o|m

omZ

m|Z|s

Condition code set

Desired Behavior
= rmmovl should cause exception

m No following instruction should have any effect

—16 —

CS:APP

Avoiding Side Effects

Presence of Exception Should Dis able State Update

m When detect exception in memory stage
@ Disable condition co de setting in execu te
® Must happen in same clock cycle

m When exception passes to write-back stage
® Disable memory write in memory stage
e Disable condition co de setting in execu te stage

Implementation
m Hardwired into the design of the PIPE simulator
m You have no control over this

—-17 -

Modern CPU Design

Instruction Control

Address
Register
File

Register i Prediction
Updates| OK?

4]operations

Operation Results

—19 -

CS:APP

CS:APP

Rest of Exception Handling

Calling Exception Handler

m Push PC onto stack
e Either PC of faulting instructio n or of next instruction
® Usually pass through pipeline along with exc eption status

m Jump to handler address
e Usually fixed addres s
e Defined as part of ISA

Implementation
m Haven't tried it yet!

-18- CS:APP

Instruction Control

Instruction Control

Register
File

Operations
Grabs Instruction Bytes From Memory

m Based on Current PC + Predicte d Targets for Predicted Branch es

m Hardware dynamically g uesses whether branche s taken/not taken
and (possibly) branc h target

Translates Instructions Into Operations

m Primitive steps require d to perform instruction
m Typical instruction re quires 1-3 operations

Converts Register Reference s Into Tags
m Abstract identifier linkin g destination of one op eration with sources

f later ration
of later operations CSAPP

E)’(ecution Register Prediction

Operations

N Updates 4 OK?
Unit i

Operation Results

Execution

m Multiple functional units
® Each can operate in independently
m Operations performed as soon as operands a vailable
® Not necessarily in p rogram order
® Within limits of functio nal units
m Control logic
® Ensures behavior equ ivalent to sequentia | program execution

-21- CS:APP

PentiumPro Block Diagram

P6 Microarchitecture 8K Insruction Gache }.-
m PentiumPro
m Pentium Il
m Pentium Il
(20 entrias)
Store M Load
Buffer (MOB)
1 stora’ .
BK Dual-Portad Data Cache }.—
B4
Microprocessor Report | System Bus Interface | L2 Cache Inmterface I-—
2/16/95

f T i
‘b:smr *tt.a data *tunm

CPU Capabilities of Pentium 111

Multiple Instructions Can Execute in Para llel
m 1 load
m 1 store
m 2 integer (one may be branch)
m 1 FP Addition
m 1 FP Multiplication or Divis ion

Some Instructions Take > 1 Cycle , but Can be Pipelined

m Instruction Latency Cycles/Issue
m Load / Store 3 1
m Integer Multiply 4 1
m Integer Divide 36 36
m Double/Single FP Multiply 5 2
m Double/Single FP Add 3 1
m Double/Single FP Divide 38 38
—22 -

PentiumPro Operation

Translates instructions dynamicall
m 118 bits wide
m Holds operation, two sources, and destination

y into “ Uops™

Executes Uops with “Out of Order” engine
m Uop executed when
® Operands available
® Functional unit ava ilable
m Execution controlled by “Reservation S tations”

® Keeps track of data d ependencies between uops
® Allocates resources

_24—

CS:APP

CS:APP

PentiumPro Branch Prediction

Critical to Performance
m 11-15 cycle penalty for misprediction

Branch Target Buffer
m 512 entries
m 4 bits of history

m Adaptive algorithm
® Can recognize repea ted patterns, e.g., alte rnating taken—not
taken

Handling BTB misses

m Detect in cycle 6

m Predict taken for negative offset, not taken for positive
® Loops vs. condition als

-25- CS:APP

Pentium 4 Block Diagram
4K-Errlries TLB/Prefetcher <W ﬁ“

m Next generation microarchitecture

-27 - CS:APP

Instruction Decoder Wi de
L nstruction Decoder | |- o <>
Trace Cache BTB Trace Cache
‘ (512 Entries) |* " (12K pops))” pop Quens _Quad
_ 3 " Intel Tech. Journal
[TReqster | 3.2GBis
I i Q1, 2001
[(Hemany [Tz gerFloating Poirk top OLELE] Bus
;éa—s‘_j Emi‘m?qm mf—ﬁ:l Interface
Unit
o st || TF
AGU AGU 2eaLu | []2xaLu slow 4LU Ep L2 Cache
o | | ot s ||| Soegte || [comet mz FF (2561 Byte
P ore irnple imple mpist 336 W
bddress| |Address | || str. nstr nstr, S5E2 e 8§-way)
I | F——\] 4scmss
I L1 Data Cache (3fbyte d-way) KMEN

Example Branch Prediction

Branch History

m Encode information about prior history of branch

instructions

m Predict whether or not branch will be taken

NT NT NT
OO mCOmCDE
T T T

State Machine

m Each time branch taken, transition to right
m When not taken, transition to left
m Predict branch taken when in state Yes! or Y

—26 —

Pentium 4 Features

Trace Cache

es?

CS:APP

L2 Cache

1A32
Instrs .

Instruct.
Decoder

uops

Trace
Cache

m Replaces traditional instruction cache
m Caches instructions in decoded form
m Reduces required rate for instruction decode

Double-Pumped ALUs
m Simple instructions (add) run at 2X clock rate

Very Deep Pipeline
m 20+ cycle branch penalty
m Enables very high clock ra tes
m Slower than Pentium Il for a given clock rate

- 28 —

l Operations

r

CS:APP

Processor Summary

Design Technique
m Create uniform framework for all instructions
e \Want to share hardware am ong instructions
m Connect standard logic blocks with bits of control logic

Operation
m State held in memories and clocked regis ters
m Computation done by combinational logic
m Clocking of registers/memories sufficient to control overall
behavior

Enhancing Performance
m Pipelining increases throughput and improves r esource
utilization

m Must make sure maintains ISA behav ior

-29 - CS:APP

