Topics

• Overview
• Encoding & Compression
 – Audio, still images, video
 – JPEG, MPEG
• Storage & Transmission
 – Rates & Capacities
• Processing
 – Architectural Extensions
 – Intel MMX
What is (Digital) Multimedia?

• *Integration of two or more media using computer technology*
 – E.g., audio, video

Reproductions
• Still or video images, recorded music or speech

Synthesized
• Animations, MIDI recordings, virtual reality

Major Driver of Computer Technology
• High market demand
• High computation, communication, and storage requirements
 – Real time processing required
 – Requirements scale rapidly with increased quality
 » E.g., quadratically with image resolution
Glossary

Storage Sizes

- KB = 1024 bytes
- MB = 1,048,576 bytes
- GB = 1,073,741,824 bytes

Acronym Interpretation

- NTSC: U.S. / Japan television standard
- JPEG: Still image compression & encoding format
- MPEG: Moving image compressing & encoding format
- CD / CDROM: Based on compact disk technology
- DVD: Digital Video Disk
Complexity Example

“NTSC” Quality Computer Display
- 640 X 480 pixel image
- 3 bytes per pixel (Red, Green, Blue)
- 30 Frames per Second

Bandwidth
- 26.4 MB/second
- Corresponds to 180X CDROM
- Exceeds bandwidth of almost all disk drives

Storage
- CDROM would hold 25 seconds worth
- 30 minutes would require 46.3 GB

Observation
- Some form of compression required
Lossless Data Compression

Principle
- Reconstructed = Original
- Exploit property that some bit sequences more common than others
- Time (compress/decompress) – Space (data size) tradeoff

Lempel-Ziv encoding
- Build up table of frequently occurring sequences
- E.g., Unix compress (.Z), DOS Gzip (.zip)
- Achieve compression ratio ~ 2:1 (text, code, executables)

Huffman Encoding
- Assign shorter codes to most frequent symbols
Lossy Compression

- Reconstructed data approximates original
- Want compression ratios $\geq 10:1$

Tradeoffs
- Time vs. space
- Space vs. quality
 - Greater compression possible if looser approximation allowed

Application Dependent
- Exploit characteristics of human perception
- Examples
 - Eye’s sensitivity to color variations less than to brightness
Digitizing Analog Waveforms

Sampling
- Measure signal value at regular time intervals
- $dt = 1/\text{Sampling frequency}$
- Nyquist Theorem
 - Must sample at $\geq 2 \times$ highest frequency signal component
 - Otherwise get “aliasing” between low and high frequency values

Analog to Digital Conversion
- Convert each sample into k-bit value
- Limits dynamic range
- Low resolution gives “quantization error”
Audio Encoding

Frequency Response
• Humans can hear sounds ranging from around 5 Hz to 15 KHz
• Piano notes range from 15 Hz to 15KHz
• Telephone limits frequency range to between 300Hz & 3 KHz

Dynamic Range
• Humans can perceive sounds over 10 order of magnitude dynamic range
• 100 Decibels
 – Every 3 dB corresponds to doubling sound intensity
Compact Disk Recording

Parameters

• 44,100 samples per second
 – Sufficient for frequency response of 22KHz

• Each sample 16 bits
 – 48 dB range

• Two independent channels
 – Stereo sound
 – Dolby surround-sound uses tricks to pack 5 sound channels + subwoofer effects

Bit Rate

• 44,100 samples/second X 2 channels X 2 bytes = 172 KB / second

Capacity

• 74 Minutes maximum playing time
• 747 MB total
CD ROM Technology

Basis
- Use technology developed for audio CDs
- Add extra 288 bytes of error correction for every 2048 bytes of data
 - Cannot tolerate any errors in digital data, whereas OK for audio

Bit Rate
- \(\frac{172 \times 2048}{288 + 2048} = 150 \text{ KB} / \text{second} \)
 - For 1X CDROM
 - \(N \times \text{CDROM} \) gives bit rate of \(N \times 150 \)
 - E.g., 12X CDROM gives 1.76 MB / second

Capacity
- 74 Minutes \(\times \) 150 KB / second \(\times \) 60 seconds / minute \(= \) 650 MB
- Typically around 527 MB to reduce manufacturing cost
Image Encoding & Compression

Computer-Generated Images
- Limited number of colors (e.g., \(\leq 256 \))
- Large monochrome regions
- Sharp boundaries between regions
- GIF encoding works well
 - Lossless compression of 8-bit color images

Natural Scenes
- Large number of colors (want 24-bit quality)
- Widely varying intensities and colors
- Boundaries not sharp
- Can eliminate details for which human perception is weak
- JPEG encoding works well
 - Lossy compression based on spectral transforms
 - Can achieve from 10:1 to 20:1 compression with little loss in quality
JPEG Encoding Steps

Encoding
- Convert to different color representation
- Typically get 2:1 compression

Discrete Cosine Transform (DCT)
- Transform 8 X 8 pixel blocks

Quantize
- Reduce precision of DCT coefficients
- Lossy step

Lossless Compression
- Express image in information in highly compressed form
YUV Encoding

Computation
- RGB numbers between 0 and 255
- *Luminance* Y encodes grayscale intensity between 0 and 255
- *Chrominance* U, V encode color information between -128 and $+127$

 – Similar to Color (Hue) and Tint (Saturation) controls on color TV

Conversion

\[
\begin{bmatrix}
 Y \\
 U \\
 V
\end{bmatrix} =
\begin{bmatrix}
 0.299 & 0.587 & 0.114 \\
 -0.169 & -0.331 & 0.500 \\
 0.500 & -0.419 & -0.081
\end{bmatrix}
\begin{bmatrix}
 R \\
 G \\
 B
\end{bmatrix}
\]

- Values saturate at ends of ranges

Color Subsampling
- Average U, V values over 2 X 2 blocks of pixels
- Human eye less sensitive to variations in color than in brightness
Image Examples

- Scanned from CMU catalog
- 248 X 324 X 3B
- Moiré interference pattern caused by scanning digitized image
Color Subsampling

- 2:1 Compression
- No visible effect
Discrete Cosine Transform

Image Partitioning

- Divide into 8 X 8 pixel blocks
- Express each block as weighted sum of cosines
 - Similar to Fourier Transform

Transform Computation

\[F(u,v) = K(u,v) \times \sum_{i=0}^{7} \sum_{j=0}^{7} f(i,j) \times \cos \left(\frac{2i+1}{8} \pi \right) \times \cos \left(\frac{2j+1}{8} \pi \right) \]

Inverse Transform

\[f(i,j) = \sum_{u=0}^{7} \sum_{v=0}^{7} k(u,v) \times F(u,v) \times \cos \left(\frac{2i+1}{8} \pi \right) \times \cos \left(\frac{2j+1}{8} \pi \right) \]

- Expresses image as sum of discretized cosine waveforms
 - Would be exact, except for roundoff and saturating values
- Each waveform weighted by coefficient \(F(u,v) \)
- Low values of \(u, v \) correspond to slowly varying waveforms
Inverse DCT of Selected Coefficients

- Coefficient (0, 0)
 - i.e., $F(0, 0) = 1$, all others = 0
- Characterizes overall average
Inverse DCT of Selected Coefficients

- Coefficients (1,0) and (0,1)
- Capture horizontal or vertical gradient
Inverse DCT of Selected Coefficients

- Coefficient (2,0)
 - Captures vertical banding

- Coefficient (1,1)
 - Captures diagonal variation
Inverse DCT of Selected Coefficients

- Coefficient (7,7)
- Captures high spatial variations
Quantization

Quantization Coefficient $Q(u,v)$ for each waveform (u,v)

- Approximate $F(u,v)$ as $Q(u,v) \times \text{Round}\left[\frac{F(u,v)}{Q(u,v)} \right]$
 - E.g., if Q is 2^k, just set low order k bits to 0
- High value of Q gives coarser approximation

Selecting Q’s

- Increase to get greater compression
 - Major source of loss in JPEG
- Generally use Q’s that increase with u and v
 - High spatial frequencies not as important
 - Hope that many coefficients will be set to 0
JPEG Compression Examples

28:1 Compression

Original

Compressed

- Quality still reasonable
- Some loss of fine detail
JPEG Compression Examples

- Quality drops dramatically as increase compression ratio
- Throws out color information first

66:1
JPEG Compression Examples

86:1

101:1
DCT Quantization Effects

Blow Up Sections of Low Quality Images

- See 8 X 8 blocks
- Only low frequency coefficients for Y
- Extreme subsampling for U, V
 - Single value for 16 X 8 pixels
MPEG Video Encoding

MPEG-1

• Targeted to “VHS” quality video on CDROM
 – 352 X 240 pixels
 – Display on computer screens

• Two forms of lossy compression
 – Spatial compression similar to JPEG
 – Temporal compression exploiting similarity between successive frames
 » E.g., stationary background, panning

MPEG-2

• Broader range of applications
 – Including Digital Video Disk (DVD) players

• Support for fancier features

• Aim for baseline of 720 X 480 pixels
Baseline MPEG-1

Video Channel
- 352 X 240 pixels, with subsampling of chrominance to 176 X 120
- 30 frames per second
- 26:1 compression drops bit rate to 143 KB / second

Audio
- Compress CD sound by 6:1
- Bit rate = 32 KB / second

Performance
- 175 KB / second matches performance of early CD ROM drives
- Store > 1 hour on CD
- Software-only decoders running on PC-class machines cannot decode fast enough
 - Typically limited to 8–10 FPS
MPEG Encoding

Frame Types
- **I** Intra Encode complete image, similar to JPEG
- **P** Forward Predicted Motion relative to previous I and P’s
- **B** Backward Predicted Motion relative to previous & future I’s & P’s
Frame Reconstruction

- I frame complete image
- P frames provide series of updates to most recent I frame
Frame Reconstruction (cont).

- B frames interpolate between frames represented by I’s & P’s
Updates / Interpolations

Describe how to construct 16 X 16 block in new frame

- Block from earlier frame
- Block from future frame (B frame only)
- Additive correction

Encoding

- All blocks coded using format similar to JPEG

Typical Numbers

- 320 X 240 X 148 frames
- 10 I frames 18.9 KB average 6:1 compression
- 40 P frames 10.6 KB average 11:1 compression
- 98 B frames 0.8 KB average 141:1 compression
- 148 total 4.7 KB average 24:1 compression
Bandwidth Requirements

Consider MPEG-1 (352 X 240) vs. MPEG-2 (720 X 480)

- Uncompressed: 3.6 MB/s vs. 14.8 MB/s
- Compressed: 0.14 MB/s vs. 0.43 MB/s

Diagram:
- Pentium
- bridge/memory controller
- cache
- PCI local bus
- DRAM
- SCSI-2 card
- video capture
- graphics card
- Disk

Bandwidth:
- 800 MB/s
- 33 MB/s
- 20 MB/s
- 4 MB/s
Capture Raw Video to Disk

<table>
<thead>
<tr>
<th></th>
<th>MPEG-1</th>
<th>MPEG-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI</td>
<td>7.2 MB/s</td>
<td>29.6 MB/s</td>
</tr>
<tr>
<td>SCSI-2</td>
<td>3.6 MB/s</td>
<td>14.8 MB/s</td>
</tr>
<tr>
<td>Disk</td>
<td>3.6 MB/s</td>
<td>14.8 MB/s</td>
</tr>
</tbody>
</table>

PCI 7.2 MB/s, 29.6 MB/s (shaky)
SCSI-2 3.6 MB/s, 14.8 MB/s (OK)
Disk 3.6 MB/s, 14.8 MB/s (No Way!)
Decompress & Playback

<table>
<thead>
<tr>
<th></th>
<th>MPEG-1</th>
<th>MPEG-2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI</td>
<td>7.5 MB/s</td>
<td>30.5 MB/s</td>
<td>(shaky)</td>
</tr>
<tr>
<td>SCSI-2</td>
<td>0.14 MB/s</td>
<td>0.43 MB/s</td>
<td>(OK)</td>
</tr>
<tr>
<td>Disk</td>
<td>0.14 MB/s</td>
<td>0.43 MB/s</td>
<td>(OK)</td>
</tr>
</tbody>
</table>

- PCI bridge/memory controller
- Pentium
- cache
- DMA raw to graphics
- video capture
- graphics card
- PCI local bus
- DRAM
- SCSI-2 card
- DMA comp. from disk
- Disk
- Reconstruct Frames

Read compressed
ISA Extensions to Support Multimedia

<table>
<thead>
<tr>
<th>Feature</th>
<th>MIPS V/MDMX</th>
<th>Intel MMX</th>
<th>Sun VIS</th>
<th>HP MAX2</th>
<th>Alpha MVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Registers</td>
<td>32 MM/FP†</td>
<td>8 MM/FP†</td>
<td>32 MM/FP†</td>
<td>31 Integer</td>
<td>31 Integer</td>
</tr>
<tr>
<td>Register Type</td>
<td>8 × 8 bits</td>
<td>8 × 8 bits</td>
<td>4 × 16 bits</td>
<td>Min/max only</td>
<td></td>
</tr>
<tr>
<td>Parallel Arithmetic</td>
<td>4 × 16 bits</td>
<td>4 × 16 bits</td>
<td>2 × 32 bits</td>
<td>Only</td>
<td></td>
</tr>
<tr>
<td>Unsaturating?</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>n/a</td>
</tr>
<tr>
<td>Saturating?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Three Operands?</td>
<td>Yes</td>
<td>No (2)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Parallel Multiplies</td>
<td>4 or 8</td>
<td>4</td>
<td>4</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Multiply/Add</td>
<td>8 × 8 → 24</td>
<td>16 × 16 → 32</td>
<td>8 × 16 → 16</td>
<td>Shift-and-add</td>
<td>None</td>
</tr>
<tr>
<td>Vector-to-Scalar?</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Parallel Shifts?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Parallel Average?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Parallel Compare?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Pack/Unpack?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Interleave?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Permute?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Pixel Error?*</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Block Load/Store?</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Parallel FP?</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

- CPU manufacturers extending architectures to support multimedia
- Low precision (1 & 2 byte), saturating arithmetic
- Vector operations

Microprocessor Report 11/18/96
MIPS MMDX

Overload Use of FP Registers
- 64 bits total
- View as vector of small integers
 - 8 single byte words
 - 4 two-byte words
- Operations
 - Addition, multiplication
 » Different vector modes
 » Saturating
 - Rearrange
 » Shuffle, pack, unpack

Figure 1. MDMX instructions operate in (a) vector-to-vector mode, (b) vector-to-scalar mode, and (c) vector-to-immediate mode.
Similar to MIPS

- Overload use of FP registers
 - Only 8 available
- View as vector of integers
 - 1, 2, or 4 bytes each

Intel MMX

(a) **PUNPCKHBW MM0,ZERO**

```
00 00 00 00 00 00 00 00
A1 A2 A3 A4 A5 A6 A7 A8
```

(b) **PUNPCKHBW MM0,MM1**

```
B1 B2 B3 B4 B5 B6 B7 B8
A1 A2 A3 A4 A5 A6 A7 A8
```

(c) **PADDW MM0,MM1**

```
S T U V
+ + + +
W X Y Z
```

```
S+W T+X U+Y V+Z
```

Figure 3. (a) Unpack operation converts packed bytes to words with zero extension. (b) **PUNPCK** can also interleave bytes from two MM registers. (c) Parallel add instruction calculates four 16-bit sums simultaneously.
Digital MVI

Standard Alpha

- Can do most multimedia tasks in software
 - Sledgehammers make good fly swatters
- Cannot do MPEG-2 encoding in real time
 - Motion estimation is very demanding
 - Must compare 16 X 16 blocks with blocks from other frames

Extensions

- Packing & unpacking smaller (1, 2, 4 byte) integers
- Special instruction used in motion estimation
 - Perr Ra, Rb, Rc
 - Ra, Rb vectors of single byte words
 - Rc = SUM(i = 0, 7) | Raᵢ - Rbᵢ |