CS 347 Course Logistics

Randal E. Bryant
Jan 13, 1998

Topics

• instructors
• textbook
• grading
• recitations
• schedule

URL: http://www.cs.cmu.edu/afs/cs/academic/class/15347-s98/www/home.html
Newsgroup: cmu.cs.class.cs347
Teaching staff

Instructors
– Prof. Randy Bryant (Mon 3-4, 7128 Wean)
– Prof. Todd Mowry (Fri 10-11, 8123 Wean)

TA’s
– Herb Derby (Tues 1:30-2:30, 7130 Wean)
– Jason Flinn (Wed 10:30-11:30, 8208 Wean)
– Miroslav Velev (Thurs 2-3, 2134 Hammerschlag)

Course secretary
– Joan Maddamma (7121 Wean)

These are the nominal office hours. Come talk to us anytime!
(Or send email)
Textbook

J. L. Hennessy and D. Patterson,

- *Computer Organization and Design: The Hardware / Software Interface*,
- *Second Edition*

Relation to Course Material

- Solid coverage of basics
- We will supplement heavily

Platform Issues

- Book based on MIPS instruction set architecture
- We will be using Alpha
- Conceptually very similar
 - Both based on RISC philosophy
Grading

Tests (50%)
• Two in class exams (12.5% each)
• Final (25%)

Assignments (50%)
• 4 homeworks (~1 week, 3-5% each)
• 3 labs (~2 weeks, 8-12% each)
• May collaborate in groups of up to three

Grading Characteristics
• Assignment scores tend to be high
 – Serious handicap if don’t hand one in
• Tests have big bearing on letter grade
 – Wider range of scores
 – Only chance for us to evaluate individual performance
Recitations

Recitation Coverage
• Supplement lecture material
• Useful information regarding labs and assignments
• Talk about important tools
 – performance analysis, scripting languages

Attendance
• Not recorded
• Highly recommended
Schedule: First Part

<table>
<thead>
<tr>
<th>Class</th>
<th>Date</th>
<th>Topic</th>
<th>Reading</th>
<th>Asst</th>
<th>Lect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01/13</td>
<td>Overview</td>
<td>1</td>
<td></td>
<td>Both</td>
</tr>
<tr>
<td>2</td>
<td>01/15</td>
<td>Measurement</td>
<td>2.1--3</td>
<td>H1 Out</td>
<td>TCM</td>
</tr>
<tr>
<td>3</td>
<td>01/20</td>
<td>Integer arithmetic</td>
<td>4.1--7</td>
<td></td>
<td>REB</td>
</tr>
<tr>
<td>4</td>
<td>01/22</td>
<td>Floating Point</td>
<td>4.8</td>
<td>H1 Due, H2 Out</td>
<td>REB</td>
</tr>
<tr>
<td>5</td>
<td>01/27</td>
<td>Fast arithmetic</td>
<td>4.9--12</td>
<td></td>
<td>REB</td>
</tr>
<tr>
<td>6</td>
<td>01/29</td>
<td>Memory Technology</td>
<td>7.1</td>
<td>H2 Due</td>
<td>TCM</td>
</tr>
<tr>
<td>7</td>
<td>02/03</td>
<td>Cache structure</td>
<td>7.2</td>
<td>L1 Out</td>
<td>REB</td>
</tr>
<tr>
<td>8</td>
<td>02/05</td>
<td>Cache performance</td>
<td>7.3</td>
<td></td>
<td>REB</td>
</tr>
<tr>
<td>9</td>
<td>02/10</td>
<td>Virtual memory</td>
<td>7.4, 7.6--9</td>
<td></td>
<td>TCM</td>
</tr>
<tr>
<td>10</td>
<td>02/12</td>
<td>I/O, Storage</td>
<td>8.1--10</td>
<td>L1 Due</td>
<td>TCM</td>
</tr>
<tr>
<td>11</td>
<td>02/17</td>
<td>Exam #1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
First Part Highlights

Primary Coverage

• Arithmetic
• Memory hierarchy

Assignments

• H1: Performance measurement
• H2: Arithmetic
• L1: Cache simulator
 – Evaluate how different cache designs would perform on actual programs
Schedule: Second Part

<table>
<thead>
<tr>
<th>Class</th>
<th>Date</th>
<th>Topic</th>
<th>Reading</th>
<th>Asst</th>
<th>Lect</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>02/19</td>
<td>ISA basics</td>
<td>3.1--5, A.1, A.10</td>
<td>H3 Out</td>
<td>TCM</td>
</tr>
<tr>
<td>13</td>
<td>02/24</td>
<td>Procedures</td>
<td>3.6, 3.9--10, A.6</td>
<td></td>
<td>TCM</td>
</tr>
<tr>
<td>14</td>
<td>02/26</td>
<td>Data structures</td>
<td>3.7--8, 3.11</td>
<td>H3 Due, L2 Out</td>
<td>REB</td>
</tr>
<tr>
<td>15</td>
<td>03/03</td>
<td>Code Optimization</td>
<td>Handouts</td>
<td></td>
<td>TCM</td>
</tr>
<tr>
<td>16</td>
<td>03/05</td>
<td>Benchmarking</td>
<td>2.4--9</td>
<td></td>
<td>TCM</td>
</tr>
<tr>
<td>17</td>
<td>03/10</td>
<td>Other ISAs</td>
<td>3.12--15</td>
<td></td>
<td>REB</td>
</tr>
<tr>
<td>18</td>
<td>03/12</td>
<td>Pipelining basics</td>
<td>6.1--3</td>
<td>L2 Due</td>
<td>REB</td>
</tr>
<tr>
<td>19</td>
<td>03/17</td>
<td>Data hazards</td>
<td>6.4--5</td>
<td></td>
<td>REB</td>
</tr>
<tr>
<td>20</td>
<td>03/19</td>
<td>Exam #2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Second Part Highlights

Coverage

- Machine-level programming
- Optimizing code performance
 - Based on properties of compilers, CPUs, memory system
- CPU implementation

Assignments

- H3: Machine level programming
- L2: Program optimization
 - Hands-on experience with important programming skill
Schedule: Third Part

<table>
<thead>
<tr>
<th>Class</th>
<th>Date</th>
<th>Topic</th>
<th>Reading</th>
<th>Asst</th>
<th>Lect</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>03/31</td>
<td>Control hazards</td>
<td>6.6--7</td>
<td>L3 Out</td>
<td>TCM</td>
</tr>
<tr>
<td>22</td>
<td>04/02</td>
<td>Multicycle instructions</td>
<td></td>
<td></td>
<td>TCM</td>
</tr>
<tr>
<td>23</td>
<td>04/07</td>
<td>Superscalar</td>
<td>6.8--6.12</td>
<td></td>
<td>TCM</td>
</tr>
<tr>
<td>24</td>
<td>04/09</td>
<td>Instruction-level parallelism</td>
<td></td>
<td>L3 Milestone</td>
<td>TCM</td>
</tr>
<tr>
<td>25</td>
<td>04/14</td>
<td>Multimedia computing</td>
<td>Handouts</td>
<td></td>
<td>REB</td>
</tr>
<tr>
<td>26</td>
<td>04/16</td>
<td>Network Technology</td>
<td>Handouts</td>
<td>L3 Due, H4 Out</td>
<td>REB</td>
</tr>
<tr>
<td>27</td>
<td>04/21</td>
<td>Internetworking</td>
<td></td>
<td></td>
<td>REB</td>
</tr>
<tr>
<td>28</td>
<td>04/23</td>
<td>Multiprocessors</td>
<td>9.1--10</td>
<td></td>
<td>TCM</td>
</tr>
<tr>
<td>29</td>
<td>04/28</td>
<td>Multiprocessors (cont.)</td>
<td></td>
<td>H4 Due</td>
<td>TCM</td>
</tr>
<tr>
<td>30</td>
<td>04/30</td>
<td>Multiprocessors (cont.)</td>
<td></td>
<td></td>
<td>TCM</td>
</tr>
</tbody>
</table>
Third Part Highlights

Coverage

• Rest of CPU design
• Characteristics and architectural implications of multimedia computing
• Networking
• Parallel processing

Assignments

• L3 Pipeline simulator
 – Simulate pipelined Alpha implementation
 – Develop comprehensive test suite
 – Largest assignment of term
• H4 Multimedia Computing
Platform

Digital Alpha 21164
• One of the fastest processors available
 – 460 Mhz, lots of horsepower
• Nice instruction set
 – Easy to learn & implement simulator
• Excellent performance tuning tools

The Catch
• Not available yet
• Have arranged course so that we don’t need until mid-February