
Carnegie Mellon UniversityNovember 9, 2006Lecture 22

CS 15-251 Fall 2006John Lafferty

Great Theoretical Ideas In Computer Science

b

b
a

b

a

a

a

b
a

b

One Minute To Learn Programming:
Finite Automata

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

Today we’ll
talk about a
programming
language so
simple that
you can learn
it in less
than a
minute.

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

Meet “ABA” The Automaton!

b

b
a

b

a

a

a

b
a

b

Acceptε

Acceptaabba

Rejectaabb

Acceptaba

ResultInput String

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

The Simplest Interesting Machine:

Finite State Machine
OR

Finite Automaton

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

State
transition
instructions

a b #

x 1

A finite
alphabet

A set of
accepting
states

A start state

Finite set of
states 1 2{ , , , , }o kQ q q q q= K

Finite Automaton

oq

{ }
1 2
, , ,

ri i iF q q q= K

∑

:

(,)i j

Q Q

q a q

∂ × Σ →

∂ =iq jq

a

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

How Machine M operates.

M “reads” one letter at a time from
the input string (going from left to
right)

M starts in state q0.

If M is in state qi reads the letter a then

If δ(qi. a) is undefined then CRASH.

Otherwise M moves to state δ(qi,a)

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

M accepts the string x if when
M reads x it ends in an accepting
state.

M rejects the string x if when
M reads x it ends in a non-
accepting state.

M crashes on x if M crashes
while reading x.

Let M=(Q,Σ,F,δ) be a finite automaton.

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

The set (or language) accepted by M is:

{ }*
M

k

* 0 1 2 3

L x | M accepts x

 All length k strings over the alphabet

 ...

= ∈∑

∑ ≡ ∑

∑ ≡ ∑ ∪∑ ∪∑ ∪∑ ∪

Notice that this is {ε}

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

Back to “ABA” The Automaton

b

b
a

b

a

a

a

b
a

b

Acceptε

Acceptaabba

Rejectaabb

Acceptaba

ResultInput String

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

What is the language accepted by
this machine?

L = {a,b}* = all finite strings of a’s and b’s

a,b

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

What is the language accepted by
this machine?

a,b

a,b

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

What is the language accepted by
this machine?

L = all even length strings of a’s and b’s

a,b

a,b

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

What machine accepts this
language?

L = all strings in {a,b}* that

contain at least one a

a
a,b

b

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

What machine accepts this
language?

L = strings with an odd number of b’s
and any number of a’s

b aa

b

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

What is the language accepted by
this machine?

L = any string ending with a b

b ba

a

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

What is the language accepted by
this machine?

b b

a,ba a

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

What is the language accepted by
this machine?

L = any string with at least two a’s

b b

a,ba a

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

What machine accepts this
language?

L = any string with an a and a b

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

What machine accepts this
language?

L = any string with an a and a b

b

b
a,b

a

a

b a

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

What machine accepts this
language?

L = strings with an even number of ab pairs

a

b
b

a

a

b a

b

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

L = all strings containing ababb as a

consecutive substring

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

L = all strings containing ababb as a

consecutive substring

b

a,b

a a

b

b

bb

a
a

a

a ab aba abab�

Invariant: I am state s exactly when s is the
longest suffix of the input (so far) that forms a
prefix of ababb.

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

Problem:
Does the string
S appear inside
the text T ?

The “grep” Problem

Input:
• text T of length t
• string S of length n

Cost: O(nt) comparisons
1 2 3, , , , ta a a aKKKKKK

 symbols

n644474448Naïve method:

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

Automata Solution

•Build a machine M that accepts any string with
S as a consecutive substring.

•Feed the text to M.

•Cost: t comparisons + time to build M.

•As luck would have it, the Knuth, Morris, Pratt
algorithm builds M quickly.

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

Real-life uses of finite state machines

•grep

•coke machines

•thermostats (fridge)

•elevators

•train track switches

•lexical analyzers for parsers

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

Any L � �� is defined to be a
language.

L is just a set of strings. It is
called a language for historical
reasons.

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

Let L � �� be a language.

L is called a regular language
if there is some finite
automaton that accepts L.

In this lecture we have seen
many regular languages.

• ��

• even length strings

• strings containing ababb

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

Theorem: Any finite langage is regular.

Proof: Make a machine with a
“path” for each string in the
language, sharing prefixes

Example: L = {a, bcd, ac, bb}

b

d

a

c b c

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

Are all
languages
regular?

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

{ }, , , ,n n
a b ab aabb aaabbbε= K

Consider the language

i.e., a bunch of a’s
followed by an equal
number of b’s

No finite automaton accepts this language.

Can you prove this?

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

anbn is not regular.
No machine has
enough states to keep
track of the number
of a’s it might
encounter.

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

That is a fairly weak
argument. Consider the
following example…

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

L = strings where the # of
occurrences of the pattern ab is
equal to the number of occurrences
of the pattern ba

Can’t be regular. No machine has
enough states to keep track of
the number of occurrences of
ab.

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

Remember “ABA”?

b

b
a

b

a

a

a

b
a

b

ABA accepts only the strings
with an equal number of ab’s and
ba’s!

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

Let me show you a
professional strength proof
that anbn is not regular….

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

Pigeonhole principle:
Given n boxes and m > n
objects, at least one box
must contain more than
one object.

Letterbox principle: If
the average number of
letters per box is a, then
some box will have at
least a letters. (Similarly,
some box has at most a.)

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

Theorem: anbn is not regular.

Proof: Assume that it is. Then ∃ M with k
states that accepts it.

For each 0 ≤ i ≤ k, let Si be the state M is
in after reading ai.

∃i,j ≤ k s.t. Si = Sj, but i ≠ j

M will do the same thing on aibi and ajbi .

But a valid M must reject ajbi and accept
aibi.

⇒⇐

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

MORAL:

Finite automata can’t count.

Steven Rudich:
www.cs.cmu.edu/~rudich
rudich0123456789

Advertisement

You can learn much more about these
creatures in the FLAC course.

Formal Languages, Automata, and
Computation

• There is a unique smallest
automaton for any regular language

• It can be found by a fast
algorithm.

