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Recap



Theorem: Let G be a graph with n
nodes and e edges.

The following are equivalent:
1. Gis atree (connected, acyclic)

2. Every two nodes of G are joined by
a unique path

3. Gis connectedandn=e+1

4. Gisacyclicandn=e +1

B. G is acyclic and if any two
nonadjacent points are joined by a

line, the resulting graph has exactly
one cycle.




Cayley's formula

The number of labeled trees
on n hodes is




/Agmph is planar if it can be\

drawn in the plane without
crossing edges. A plane
graph is any such drawing,
which breaks up the plane
into a number fof faces or

regions /
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Euler's Formula

If G is a connected plane graph
with n vertices, e edges and f

faces, then n - e + f=2




Euler's Formula: If G is a connected plane
graph with n vertices, e edges and f faces,

then n-e+f =2
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The beauty of Euler's

\

formula is that it yields a

numeric property from a
purely fopological
property.
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Graph Coloring

A coloring of a graph is an assignment
of a color to each vertex such that no
neighboring vertices have the same
color.
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Finding Optimal Trees

* Trees have many nice properties
(uniqueness of paths, no cycles, etc.)

*May want to compute the "best” tree
approximation to a graph

-Tf all we care about is communication,
then a tree may be enough. Want tree
with smallest communication link costs.




Finding Optimal Trees

Problem: Find a m/nimum spanning tree,
that is, a tree that has a node for
every node in the graph, such that the
sum of the edge weights is minimum.



Tree Approximations
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Finding an MST: Kruskal's Algorithm

Create a forest where each
node is a separate ftree

Make a sorted list of edges S

*While S is hon-empty:

- Remove an edge with minimal
weight

- If it connects two different
trees, add the edge.
Otherwise discard it.




Applying the Algorithm




Analyzing the Algorithm

* The algorithm outputs a spanning tree T.
Suppose that it's not minimal. (For simplicity,
assume all edge weights in graph are distinct).

‘Let M be a minimum spanning tree.

‘Let e be the first edge chosen by the
algorithm that is not in M. If we add e to M, it
creates a cycle. Since this cycle isn't fully
contained in T, it has an edge f not in T.

‘N = M+e-f is another spanning tree.




Analyzing the Algorithm




Analyzing the Algorithm

‘N = M+e-f is another spanning tree.

Claim: e < f, and therefore N < M

»Suppose not: e> f

*Then f would have been visited before e by

the algorithm, but not added, because adding it
would have formed a cycle.

*But all of these cycle edges are also edges of
M, since e was the first edge not in M. This
contradicts the assumption M is a tree.




Greed is Good (In this case...)

The greedy algorithm, by adding the
least costly edges in each stage,
succeeds in finding an MST.

But--in math and life--if pushed too
far, the greedy approach can lead to
bad results.



The Greedy Traveling Salesman




Tours from Trees

We can use an MST to derive a tour that is
no more expensive than fwice the optimal
Tour.

Idea: walk "around” the MST and take
shortcuts if a node has already been visited.

We assume that all pairs of nodes are
connected, and edge weights satisfy the
triangle inequality d(xy) <= d(x,z) + d(z,y)




Tours from Trees
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Shortcuts only decrease the cost, so

Cost(Greedy Tour) < 2 Cost(MST)
< 2 Cost(Optimal Tour)

This is a 2-competitive algorithm




Dancing Partners

A group of 100 boys and girls attend a dance.
Every boy knows 5 girls, and every girl knows
5 boys. Can they be matched into dance

partners so that each pair knows each other?
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Perfect Matchings

Theorem: If every node in a bipartite
graph has the same degree d >= 1, then
the graph has a perfect matching.

Note: if degrees are the same then |A| = |B],
where A is the set of nodes "on the left" and
B is the set of nodes "on the right”




A Matter of Degree

Claim: If degrees are the same then [A| = |B].
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The Marriage Theorem

(or, "What's Love Got to Do With it?")

Each woman would
happily marry some
subset of the men,
and any man would be
happy to marry any
woman who would be
happy with him.

Is it possible to
match the men and
women into pairs of
happy couples?




The Marriage Theorem

Theorem: A bipartite graph has a perfect
matching if and only if |A| = |B| and for any
subset of (say) k nodes of A there are at
least k nodes of B that are connected to at
least one of them.



The Marriage Theorem

The condition fails
for this graph.
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The Feeling is Mutual

The condition
of the theorem
still holds if
we swap the
roles of A and
B: If we pick
any k nodes in
B, they are
connected to
at least k
nodes in A.

least<
k
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Proof of Marriage Theorem

Call a bipartite graph "matchable” if it has the
same number of nodes on left and right, and any k
nodes on the left are connected to at least k on
the right.

Strategy: Break up the graph into two matchable
parts, and recursively partition each of these into
two matchable parts, etc., until each part has only
two nodes.



Proof of Marriage Theorem

*Select twonodesac Aand b € B
connected by an edge.

*Idea: Take G;=(a,b)and G, =
everything else

*Problem: G, need not be matchable.
There could %e a set of k nodes that
has only k-1 neighbors.




Proof of Marriage Theorem

The only way this
could fail is if one
of the missing
nodes is b. Add
this in to form G,,
and take G, to be
everything else.

This is a
matchable
partition!




Generalized Marriage: Hall's Theorem

Let S={S,, S,, ..} be a set of finite
subsets that satisfies: For any subset
T={T}of S, | UT; | >=|T|. Thus, any k
subsets contain at least k elements.

Then we can choose an element x. € S.
from each S. so that {x;, x,, ..} are all
distinct.




Example

Suppose that a
standard deck of
cards is dealt into
13 piles of 4 cards
each.

Then it is possible
to select a card
from each pile so
that the 13 chosen
cards contain
exactly one card of
each rank.




Graph Spectra

Finally, we'll discuss a different
representation of graphs that is extremely
powerful, and useful in many areas of
computer science: AI, information retrieval,
computer vision, machine learning, CS
theory,...



Adjacency matrix

Suppose we have a graph G with n
vertices and edge set E. The adjacency
matrix is the nxn matrix A=[q; ] with

a; = 1 if (i,j) is an edge
a; =0 if (i,j) is not an edge







Counting Paths

The number of paths of length k from node i
to node j is the entry in position (i,j) in the
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Eigenvalues

An nxh matrix A is a linear transformation
from n-vectors to n-vectors

An eigenvector is a vector fixed (up to length)

by the transformation. The associated
eigenvalue is the scaling of the vector.
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Eigenvalues

Vector x is an eigenvector of A with
eigenvalue ® if

AX = @ X

A symmetric nxn matrix has at most n
distinct real eigenvalues




Characteristic Polynomial

The determinant of A is the product of its
eigenvalues:

deT A = ’1 ’2 ’n

The characteristic polynomial of A is the
polynomial

) D,(®) = det(®I - A) = (0-0,)(®-®,) .. (®-
'n



Example: K,




If graph G has adjacency matrix A with
characteristic polynomial

p(@)=@O"n+c, @1+, @2+  +C
then

Cqi - 0
-c, = # of edges inG
-c3 = twice # of triangles in 6




Two different graphs with the same spectrum

p(@)=06-7 0%-403+70°+ 40 -1
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Let your spectrum do the counting...

A closed walk or Joop in a ?mph IS a path
¥Eose initial and final vertices are the same.
en

trace(A)=®, +@®,+ +@ =0

trace(A2) - @2+ @2+  + @2
= twice # of edges

trace(A3)= @3+ @3+  + @3
= six times # of triangles




Graph Muzak

Epectrmn for glap 9

http://math.ucsd.edu/~fan/hear/
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