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Recap



Theorem:  Let G be a graph with n
nodes and e edges.

The following are equivalent:

1. G is a tree (connected, acyclic)

2. Every two nodes of G are joined by 
a unique path

3. G is connected and n = e + 1

4. G is acyclic and n = e + 1

5. G is acyclic and if any two 
nonadjacent points are joined by a 
line, the resulting graph has exactly 
one cycle.



Cayley’s formula

The number of labeled trees 
on n nodes is

2n

n
−



A graph is planar if it can be 
drawn in the plane without 
crossing edges. A plane 
graph is any such drawing, 
which breaks up the plane 
into a number f of faces or 
regions



Euler’s Formula

If G is a connected plane graph 
with n vertices, e edges and f 
faces, then  n - e + f = 2



Euler’s Formula: If G is a connected plane 
graph with n vertices, e edges and f faces, 

then  n - e + f = 2

The beauty of Euler’s 
formula is that it yields a 
numeric property from a 
purely topological
property.



Graph Coloring

A coloring of a graph is an assignment 
of a color to each vertex such that no 
neighboring vertices have the same 
color.



Finding Optimal Trees

•Trees have many nice properties 
(uniqueness of paths, no cycles, etc.)

•May want to compute the “best” tree 
approximation to a graph

•If all we care about is communication, 
then a tree may be enough.  Want tree 
with smallest communication link costs.



Finding Optimal Trees

Problem:  Find a minimum spanning tree, 
that is, a tree that has a node for 
every node in the graph, such that the 
sum of the edge weights is minimum.



Tree Approximations
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Finding an MST: Kruskal’s Algorithm

•Create a forest where each 
node is a separate tree
•Make a sorted list of edges S
•While S is non-empty:

– Remove an edge with minimal 
weight

– If it connects two different 
trees, add the edge.  
Otherwise discard it.



Applying the Algorithm
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Analyzing the Algorithm

•The algorithm outputs a spanning tree T.  
Suppose that it’s not minimal. (For simplicity, 
assume all edge weights in graph are distinct). 

•Let M be a minimum spanning tree.  

•Let e be the first edge chosen by the 
algorithm that is not in M.  If we add e to M, it 
creates a cycle.  Since this cycle isn’t fully 
contained in T, it has an edge f not in T.

•N = M+e-f is another spanning tree.



Analyzing the Algorithm
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Analyzing the Algorithm

•N = M+e-f is another spanning tree.

•Claim: e < f, and therefore N < M

•Suppose not:  e > f

•Then f would have been visited before e by 
the algorithm, but not added, because adding it 
would have formed a cycle.

•But all of these cycle edges are also edges of 
M, since e was the first edge not in M.  This 
contradicts the assumption M is a tree.



Greed is Good  (In this case…)

The greedy algorithm, by adding the 
least costly edges in each stage, 
succeeds in finding an MST.

But--in math and life--if pushed too 
far, the greedy approach can lead to 
bad results. 



The Greedy Traveling Salesman



Tours from Trees

We can use an MST to derive a tour that is 
no more expensive than twice the optimal 
tour.

Idea: walk “around” the MST and take 
shortcuts if a node has already been visited.

We assume that all pairs of nodes are 
connected, and edge weights satisfy the 
triangle inequality d(x,y) <= d(x,z) + d(z,y)



Tours from Trees

Shortcuts only decrease the cost, so 

Cost(Greedy Tour)   � 2 Cost(MST) 

� 2 Cost(Optimal Tour)

This is a 2-competitive algorithm



Dancing Partners

A group of 100 boys and girls attend a dance.  
Every boy knows 5 girls, and every girl knows 
5 boys.  Can they be matched into dance 
partners so that each pair knows each other?



Dancing Partners



Perfect Matchings

Theorem:  If every node in a bipartite 
graph has the same degree d >= 1, then 
the graph has a perfect matching.

Note: if degrees are the same then |A| = |B|,  
where A is the set of nodes “on the left” and 
B is the set of nodes “on the right”



A Matter of Degree

Claim: If degrees are the same then |A| = |B|.  



The Marriage Theorem
(or, “What’s Love Got to Do With it?”)

Each woman would 
happily marry some 
subset of the men, 
and any man would be 
happy to marry any 
woman who would be 
happy with him.  

Is it possible to 
match the men and 
women into pairs of 
happy couples?



The Marriage Theorem

Theorem:  A bipartite graph has a perfect 
matching if and only if |A| = |B| and for any 
subset of (say) k nodes of A there are at 
least k nodes of B that are connected to at 
least one of them.



The Marriage Theorem

The condition fails 
for this graph.



The Feeling is Mutual

The condition 
of the theorem 
still holds if 
we swap the 
roles of A and 
B:  If we pick 
any k nodes in 
B, they are 
connected to 
at least k 
nodes in A.

k

At 
most 
n-k

n-k

At 
least 
k



Proof of Marriage Theorem

Call a bipartite graph “matchable” if it has the 
same number of nodes on left and right, and any k 
nodes on the left are connected to at least k on 
the right.

Strategy:  Break up the graph into two matchable
parts, and recursively partition each of these into 
two matchable parts, etc., until each part has only 
two nodes.  



Proof of Marriage Theorem

•Select two nodes a ∈ A and b ∈ B 
connected by an edge.

•Idea:  Take G1 = (a,b) and G2 = 
everything else

•Problem:  G2 need not be matchable.  
There could be a set of k nodes that 
has only k-1 neighbors.  



Proof of Marriage Theorem

k-1

k

The only way this 
could fail is if one 
of the missing 
nodes is b.  Add 
this in to form G1, 
and take G2 to be 
everything else.

This is a 
matchable
partition!

a b



Generalized Marriage:  Hall’s Theorem

Let S = {S1, S2, …} be a set of finite 
subsets that satisfies:  For any subset 
T = {Ti} of S, | UTi | >=|T|.  Thus, any k 
subsets contain at least k elements.  

Then we can choose an element xi ∈ Si
from each Si so that {x1, x2, …} are all 
distinct.



Example

Suppose that a 
standard deck of 
cards is dealt into 
13 piles of 4 cards 
each.

Then it is possible 
to select a card 
from each pile so 
that the 13 chosen 
cards contain 
exactly one card of 
each rank.



Graph Spectra

Finally, we’ll discuss a different 
representation of graphs that is extremely 
powerful, and useful in many areas of 
computer science:  AI, information retrieval, 
computer vision, machine learning, CS 
theory,…



Adjacency matrix

Suppose we have a graph G with n 
vertices and edge set E.  The adjacency 
matrix is the nxn matrix A=[aij ] with

aij = 1  if (i,j) is an edge

aij = 0  if (i,j) is not an edge



Example



Counting Paths

The number of paths of length k from node i 
to node j is the entry in position (i,j) in the 
matrix Ak



Eigenvalues

An nxn matrix A is a linear transformation 
from n-vectors to n-vectors

A

An eigenvector is a vector fixed (up to length) 
by the transformation.  The associated 
eigenvalue is the scaling of the vector.

A



Eigenvalues

Vector x is an eigenvector of A with 
eigenvalue � if 

Ax = � x

A symmetric nxn matrix has at most n 
distinct real eigenvalues



Characteristic Polynomial

The determinant of A is the product of its 
eigenvalues: 

det A = �1 �2 … �n

The characteristic polynomial of A is the 
polynomial 

pA(�) = det(�I – A) = (�-�1)(�- �2) … (�-
�n)



Example: K4



If graph G has adjacency matrix A with 
characteristic polynomial 

pA(�) = �n + c1 �
n-1 + c2 �n-2 + … + cn

then

c1 = 0
-c2 = # of edges in G
-c3 = twice # of triangles in G



Two different graphs with the same spectrum

pA(�) = �6 - 7 �4 - 4�3 + 7�2 + 4� - 1



Let your spectrum do the counting…

A closed walk or loop in a graph is a path 
whose initial and final vertices are the same.  
Then

trace(A) = �1 + �2 + … + �n = 0

trace(A2) = �1
2 + �2

2 + … + �n
2

= twice # of edges

trace(A3) = �1
3 + �2

3 + … + �n
3

= six times # of triangles



Graph Muzak

http://math.ucsd.edu/~fan/hear/
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