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Great Theoretical Ideas In Computer Science

Randomness and Computation: 
Some Prime Examples



Checking Our Work

Suppose we want to check p(x) q(x) = r(x), 
where p, q and r are three polynomials.

(x-1)(x3+x2+x+1) = x4-1

If the polynomials are long, this requires 
n2 mults by elementary school algorithms 
-- or can do faster with fancy techniques like the Fast 
Fourier transform.

Can we check if p(x) q(x) = r(x) more 
efficiently? 



Great Idea: 
Evaluating on Random Inputs

Let f(x) = p(x) q(x) – r(x).  Is f zero?

Idea: Evaluate f on a random input z.

If we get f(z) = 0, this is evidence that f 
is zero everywhere.

If f(x) is a degree 2n polynomial, it can 
only have 2n roots.  We’re unlikely to 
guess one of these by chance!



Equality checking by random 
evaluation

1. Fix a sample space S={z1, z2,…, zm}  
with arbitrary points zi, for m=2n/d .

2. Select random z from S with probability 1/m.

3. Evaluate f(z) = p(z) q(z) – r(z)

4. If f(z) = 0, output “equal”
otherwise output “not equal”



Equality checking by random 
evaluation

What is the probability the algorithm 
outputs “not equal” when in fact f = = 0?

Zero!

If p(x)q(x) = r(x) , always correct!



Equality checking by random 
evaluation

What is the probability the algorithm 
outputs “equal” when in fact f ≠≠ 0?

Let A = {z | z is a root of f}.  

Recall that |A| ≤ degree of f ≤ 2n.
Therefore:  P(A) ≤ 2n/m = d.  

We can choose d to be small.



Equality checking by random 
evaluation

By repeating this procedure k times, 
we are “fooled” by the event

f(z1) = f(z2) = … = f(zk) = 0
when actually f(x) ≠≠ 0

with probability no bigger than

P(A) ≤ (2n/m)k = d k



Wow!  That idea could be 
used for testing equality 
of lots of different types 

of “functions”!



Yes! E.g., a matrix is just a Yes! E.g., a matrix is just a 
special kind of function.  special kind of function.  

Suppose we do a matrix Suppose we do a matrix 
multiplication of two multiplication of two nxn

matrices:matrices:

AB  = C

The idea of random evaluation The idea of random evaluation 
can be used to efficiently check can be used to efficiently check 

the calculation.the calculation.



What does “evaluate” mean? 

Just evaluate the Just evaluate the ““functionfunction”” C on a C on a random bit vectorrandom bit vector rr
by taking the matrixby taking the matrix--vector product vector product C C ×× rr
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So to test if AB = C we compute 
x = Br, y = Ax (= Abr), and z = Cr

If y = z, we take this as evidence that 
the calculation was correct.  

The amount of work is only O(n2).

Claim:  If AB ≠ C and r is a random n-
bit vector, then Pr(ABr = Cr) ≤ ½.



Claim:  If AB ≠ C and r is a random n-bit vector, then Pr(ABr = Cr) ≤ ½.



So, if a complicated, fancy 
algorithm is used to 
compute AB in time 
O(n2.236), it can be 

efficiently checked with 
only O(n2) extra work, 

using randomness! 



“Random Fingerprinting”

Find a small random “fingerprint” of a large object.

- the value f(z) of a polynomial at a point z
- the value Cr at a random bit vector r

This fingerprint captures the essential information 
about the larger object: if two large objects are 
different, their fingerprints usually are different!



Earth has huge file X that she 
transferred to Moon. Moon gets Y.

Earth: XEarth: X Moon: Y

Did you get that file ok? Was the Did you get that file ok? Was the 
transmission accurate?transmission accurate?

Uh, yeah.



Gauss

Let π(n) be the 
number of primes 
between 1 and n. 

I wonder how fast 
π(n) grows? 

Conjecture [1790s]: 
( )lim 1
/lnn

n
n n
π
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=

Legendre



Their estimates

45401197145574300445505561445505251110000000000

507015425091751950849235508475341000000000

5740304576934157622095761455100000000

66145966513866491866457910000000

780307853478628784981000000

9512958896309592100000

121812311246122910000

1691721781681000

x/(log x - 1)LegendreGauss' Lipi(x)x



J-S Hadamard

Two independent
proofs of the 
Prime Density 

Theorem [1896]:

( )lim 1
/lnn

n
n n
π
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=

De la Vallée Poussin



The Prime Density Theorem

This theorem remains one of the 
celebrated achievements of number 

theory. 

In fact, an even sharper conjecture
remains one of the great open problems 

of mathematics!



Riemann

The Riemann 
Hypothesis [1859] 

( ) / lnlim 0
n

n n n
n

π
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−
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Slightly easier to show
π(n)/n ≥ 1/(2 logn).



Random logn bit number is a 
random number from 1..n

π(n) / n ≥ 1/2logn
means that a random 
logn-bit number has 

at least a 1/2logn chance 
of being prime.



Random k bit number is a 
random number from 1..2k

π(2k) / 2k ≥ 1/2k
means that a random 

k-bit number has 
at least a 1/2k chance 

of being prime.



Really useful fact

A random k-bit number has at least 
a 1/2k chance of being prime.

So if we pick So if we pick 2k random k2k random k--bit numbersbit numbers
the expected number of primes on the the expected number of primes on the 

list is list is at least 1at least 1



Picking A Random Prime

Many modern cryptosystems (e.g., RSA) 
include the instructions:

“Pick a random n-bit prime.”

How can this be done efficiently?



Picking A Random Prime

“Pick a random n-bit prime.”

Strategy:
1) Generate random n-bit numbers
2) Test each one for primality 

[more on this later in the lecture]



Picking A Random Prime

“Pick a random n-bit prime.”

1)Generate kn random n-bit numbers
Each trial has a ≥ 1/2n chance of being prime.

Pr[ all kn trials yield composites ]

≤ (1-1/2n)kn = (1-1/2n)2n * k/2 ≤ 1/ek/2



Picking A Random Prime

“Pick a random n-bit prime.”

Strategy:
1) Generate random n-bit numbers
2) Test each one for primality 

For 1000-bit primes, if we try out 10000 random
1000-bit numbers, chance of failing ≤ e-5



Moral of the story

Picking a random prime is 
“almost as easy as”

picking a random number.

(Provided we can check for primality.
More on this later.)



Earth has huge file X that she 
transferred to Moon. Moon gets Y.

Earth: XEarth: X Moon: Y

Did you get that file ok? Was the Did you get that file ok? Was the 
transmission accurate?transmission accurate?

Uh, yeah.



Are X and Y the same n-bit numbers?

p = random 2logn-bit prime
Send (p, X mod p)

Answer to Answer to ““X X ≡≡ Y mod p ?Y mod p ?””

Earth: XEarth: X Moon: Y



Why is this any good?

Easy case:
If X = Y, then X ≡ Y (mod p)



Why is this any good?

Harder case:
What if X ≠ Y? We mess up if p | (X-Y).

Define Z = (X-Y). To mess up, p must divide Z.

Z is an n-bit number.
⇒ Z is at most 2n.

But each prime ≥ 2.
Hence Z has at most n prime divisors.



Almost there…

Z has at most n prime divisors.

How many 2logn-bit primes?

⇒ at least 22logn/(2*2logn) = n2/(4logn) >> 2n primes.

Only (at most) half of them divide Z.

A random k-bit number has at least a 
1/2k chance of being prime.



Theorem: Let X and Y be distinct
n-bit numbers. Let p be a random 

2logn-bit prime.

Then
Prob [X = Y mod p] < 1/2

Earth-Moon protocol makes mistake
with probability at most 1/2!



Are X and Y the same n-bit numbers?

EARTH: XEARTH: X MOON: YMOON: Y

Pick k random 
2logn-bit primes: P1, P2, .., Pk
Send (X mod Pi) for 1 ≤ i ≤ k

k answers to “X = Y mod Pi ?”



Exponentially smaller error probability

If X=Y, always accept.

If X ≠ Y,
Prob [X = Y mod Pi for all i] ≤ (1/2)k



Picking A Random Prime

“Pick a random n-bit prime.”

Strategy:
1) Generate random n-bit numbers
2) Test each one for primality 

How can we test primality efficiently?



Primality Testing: 
Trial Division On Input n

Trial division up to √n

for k = 2 to √n do
if k |n then
return “n is not prime”
otherwise return “n is prime”

about √n divisions



Trial division performs Trial division performs √n divisions 
on input n.

Is that efficient?

For a 1000-bit number, this will take 
about 2500 operations.

That’s not very efficient at all!!!

More on efficiency and run-times
in a future lecture…



Do the primes 
have a fast 

decision 
algorithm?



Euclid gave us a fast 
GCD algorithm. 

Surely, he tried to give 
a faster primality test 

than trial division. 

But Euclid, Euler, and 
Gauss all failed! 



But so many cryptosystems, But so many cryptosystems, 
like RSA and PGP, use like RSA and PGP, use fast fast 
primality testingprimality testing as part of as part of 
their subroutine to generate their subroutine to generate 
a random na random n--bit prime! bit prime! 

What is the fast primality What is the fast primality 
testing algorithm that they testing algorithm that they 
use?use?



There are fast randomized
algorithms to do primality 

testing. 

Strangely, by allowing our 
computational model an extra 
instruction for flipping a fair 
coin, we seem to be able to 

compute some things faster!



If n is composite, what would be 
a certificate of compositeness 
for n?

A nonA non--trivial factor of n.trivial factor of n.
ButBut…… even using randomness, no even using randomness, no 
one knows how to find a factor one knows how to find a factor 

quickly. quickly. 

We will use a We will use a differentdifferent
certificate of compositeness certificate of compositeness 

that does not require factoring.that does not require factoring.



Recall that:Recall that:
Fermat: ap-1 = 1 mod p.

When working modulo prime p, When working modulo prime p, 
for any a for any a ≠≠ 0, a0, a(p(p--1)/21)/2 = = ±±1.1.

XX22 = 1 mod p has at most 2 roots.= 1 mod p has at most 2 roots.
1 and 1 and --1 are roots, so it has no 1 are roots, so it has no 

others.others.



“Euler Certificate” Of Compositeness

When working modulo a prime p, 
for any a ≠ 0, a(p-1)/2 =  ±1. 

We say that a is a certificate of 
compositeness for n, 

if a ≠ 0 and a(n-1)/2 ≠ ±1. 

Clearly, if we find a certificate of 
compositeness for n, we know that n 

is composite.



“Euler Certificates” Of 
Compositeness

ECn = { a ∈ Z*
n | a(n-1)/2 ≠ ±1 }

NOT-ECn = { a ∈ Z*
n | a(n-1)/2 = ±1 }

If NOT-ECn ≠ Z*
n then 

ECn is at least half of Z*
n    

In other words,
if ECn is not empty, then

ECn contains at least half of Zn
*.



Proof
ECn = { a ∈ Z*

n | a(n-1)/2 ≠ ±1 }
NOT-ECn = { a ∈ Z*

n | a(n-1)/2 = ±1 }

Claim: NOT-ECn is a subgroup of Zn
*

Proof:
Closure: if a,b ∈ NOT-ECn, then ab ∈ NOT-ECn

Hence, by Lagrange’s theorem, |NOT-ECn| divides |Zn
*|

⇒ |NOT-ECn| ≤ ½ |Zn
*|

⇒ |ECn| contains at least half of |Zn
*|



“Euler Certificates” Of 
Compositeness

ECn = { a ∈ Z*
n | a(n-1)/2 ≠ ±1 }

NOT-ECn = { a ∈ Z*
n | a(n-1)/2 = ±1 }

If NOT-ECn ≠ Z*
n then 

ECn is at least half of Z*
n    

In other words,
if ECn is not empty, then

ECn contains at least half of Zn
*.



Randomized Primality Test
LetLet’’s suppose that s suppose that ECECnn contains at least half the elements of Z*contains at least half the elements of Z*nn..

Randomized Test:
For i = 1 to k:For i = 1 to k:

Pick random Pick random aaii ∈∈ [2 .. n[2 .. n--1];1];
If If GCD(aGCD(aii, n) , n) ≠≠ 1, Halt with 1, Halt with ““CompositeComposite””;;
If aIf aii

(n(n--1)/21)/2 ≠≠ ±±11 , Halt with , Halt with ““CompositeComposite””;;

Halt with Halt with ““I think n is prime. I am only wrong (I think n is prime. I am only wrong (½½))kk fraction fraction 
of times I think that n is prime.of times I think that n is prime.””



Is ECn non-empty for all primes n?

Certain numbers masquerade as primes.

A Carmichael number is a number n such that 
an-1 = 1 (mod n) for all numbers a with gcd(a,n)=1. 

Example:  n = 561 =3*11*17 (the smallest Carmichael number) 
1105 = 5*13*17  

1729 = 7*13*19

And there are many of them. For sufficiently large m, there 
are at least m2/7 Carmichael numbers between 1 and m.

Unfortunately, no.



The saving grace

The randomized test fails only for Carmichael 
numbers.

But, there is an efficient way to test for 
Carmichael numbers.

Which gives an efficient algorithm for 
primality.



Randomized Primality Test
LetLet’’s suppose that s suppose that ECECnn contains at least half the elements of Z*contains at least half the elements of Z*nn..

Randomized Test:
For i = 1 to k:For i = 1 to k:

Pick random Pick random aaii ∈∈ [2 .. n[2 .. n--1];1];
If If GCD(aGCD(aii, n) , n) ≠≠ 1, Halt with 1, Halt with ““CompositeComposite””;;
If aIf aii

(n(n--1)/21)/2 ≠≠ ±±11 , Halt with , Halt with ““CompositeComposite””;;

If n is Carmichael, Halt with If n is Carmichael, Halt with ““CompositeComposite””

Halt with Halt with ““I think n is prime. I am only wrong (I think n is prime. I am only wrong (½½))kk fraction fraction 
of times I think that n is prime.of times I think that n is prime.””



Randomized Algorithms
The test we outlined made oneThe test we outlined made one--sided error:sided error:

It never makes an error when it thinks n is composite.It never makes an error when it thinks n is composite.
It could just be unlucky when it thinks n is prime.It could just be unlucky when it thinks n is prime.

Another oneAnother one--sided algorithm that never makes a sided algorithm that never makes a 
mistake when it thinks n is prime.mistake when it thinks n is prime.

Yet another algorithm makes 2Yet another algorithm makes 2--sided error. sided error. 
Sometimes it is mistaken when it thinks n is prime, Sometimes it is mistaken when it thinks n is prime, 
sometimes it is mistaken when it thinks n is sometimes it is mistaken when it thinks n is 
composite. composite. 



n prime means half of a’s satisfy
a(n-1)/2 = -1 mod n

If n is prime, then Zn
* has a generator g. 

Then g(n-1)/2 = -1 mod n.

A random a∈ Zn
* is given by gr for 

uniformly distributed r. 

Half the time, r is odd: 
(gr)(n-1)/2 = -1 mod n



Another Randomized Primality Test

Suppose n is not even, nor is it the power of a number.

Randomized Test:
For i = 1 to k:

Pick random ai ∈ [2 .. n-1];
If GCD(ai, n) ≠ 1, Halt with “Composite”;
If ai

(n-1)/2 ≠ ±1 , Halt with “Composite”;

If all k values of ai
(n-1)/2 = +1, Halt with “I think n is composite. 

I am only wrong (½)k fraction of the times.”
Halt with “I think n is prime. I am only wrong (½)k fraction 

of times I think that n is prime.”



We can prove that if n is an odd 
composite, not a power, and there is 

some a such that a(n-1)/2 = -1, 
then ECn ≠ ∅. 

Hence, ECn is at least a 
half fraction of Z*

n.

This algorithm makes 2This algorithm makes 2--sided error. sided error. 
Sometimes it is mistaken when it thinks n is prime, Sometimes it is mistaken when it thinks n is prime, 

sometimes it is mistaken when it thinks n is composite.sometimes it is mistaken when it thinks n is composite.



Many Randomized Tests

Miller-Rabin test Solovay-Strassen test



In 2002, Agrawal, Saxena, and Kayal
(AKS) gave a deterministic primality

test that runs in time O((logn)12).

This was the first deterministic
polynomial-time algorithm that didn’t 
depend on some unproven conjecture, 

like the Riemann Hypothesis! 



Picking A Random Prime

“Pick a random n-bit prime.”

Strategy:
1) Generate random n-bit numbers
2) Do fast randomized test for primality 



Primality Testing Versus Factoring

Primality has a fast randomized algorithm. 

Factoring is not known to have a fast 
algorithm. 

In fact, after thousands of years of 
research, the fastest randomized 

algorithm takes exp(O(n log n log n) 1/3)
operations on numbers of length n. With 

great effort, we can currently factor 
200 digit numbers.



number digits prize factored
RSA-100 100 Apr. 1991
RSA-110 110 Apr. 1992
RSA-120 120 Jun. 1993
RSA-129 129 $100 Apr. 1994
RSA-130 130 Apr. 10, 1996
RSA-140 140 Feb. 2, 1999
RSA-150 150 Apr. 16, 2004
RSA-155 155 Aug. 22, 1999
RSA-160 160 Apr. 1, 2003
RSA-200 200 May 9, 2005
RSA-576 174 $10,000 Dec. 3, 2003
RSA-640 193 $20,000 Nov 2, 2005
RSA-704 212 $30,000 open
RSA-768 232 $50,000 open
RSA-896 270 $75,000 open
RSA-1024 309 $100,000 open
RSA-1536 463 $150,000 open
RSA-2048 617 $200,000 open

Google:  RSA Challenge Numbers



The techniques we’ve been 
discussing today are sometimes 

called “fingerprinting.”

The idea is that a large object 
such as a string (or document, or 
function, or data structure…) is 
represented by a much smaller  
“fingerprint” using randomness.

If two objects have identical 
sets of fingerprints, they’re 

likely the same object.


