Great Theoretical Ideas In Computer Science
Anupam Gupta CS 15-251 Fall 2006
Lecture 17 Oct 24, 2006 Carnegie Mellon University

Randomness and Computation:
Some Prime Examples

\

- ¥ 9%}&

Checking Our Work

Suppose we want to check p(x) q(x) = r(x),
where p, g and r are three polynomials.

(x-1)(x3+x2+x+1) = x*-1

If the polynomials are long, this requires
n®> mults by elementary school algorithms

-- or can do faster with fancy techniques like the Fast
Fourier transform.

Can we check if p(x) q(x) = r(x) more
efficiently?

Great Idea:
Evaluating on Random Inputs

Let f(x) = p(x) q(x) - r(x). Isf zero?
Idea: Evaluate f on a random input z.

If we get f(z) = O, this is evidence that f
is zero everywhere.

If f(x) is a degree 2n polynomial, it can
only have 2n roots. We're unlikely to
guess one of these by chance!

Equality checking by random
evaluation

1. Fix a sample space S={z,, z,,..., .}
with arbitrary points z;, for m=2n/6 .

2. Select random z from S with probability 1/m.
3. Evaluate f(z) = p(z) q(z) - r(z)

4. If f(z) = O, output “equal”
otherwise output "not equal”

Equality checking by random
evaluation

What is the probability the algorithm
i outputs "not equal” when in fact f =0?

Zerol!

If p(x)q(x) = r(x) , always correct!

Equality checking by random

i

evaluation

What is the probability the algorithm
outputs “"equal” when in fact f = 0?

Let A={z | zis a root of f}.

Recall that |A| £ degree of f < 2n.

Therefore: P(A) < 2n/m = 0.
C gbe;f J,,,é/]@vw

We can choose § to be smiaff z v oo

.+ Equality checking by random

@w/g evaluation
By repeating this procedure k times,

we are "fooled" by the event

f(Zl) - f(zz) = .. = f(zk) =0
when actually f(x) =0

with probability no bigger than

P(A) < (2n/m)k = 6k

Wow! That idea could be

used for testing equality
of lots of different types

lll

of “functions

Yes! E.g., a matrix is just a
special kind of function.

Suppose we do a matrix
multiplication of two nxn
matrices:

lle) AR = ¢
___J

The idea of random evaluation
can be used to efficiently check
the calculation.

What does "“evaluate” mean?

Just evaluate the "function” C on a random bit vector r
by taking the matrix-vector product C x r

AB =C yomdinn bit vedc

ARy =Cr ? v
1 4

-

»
0
1
1

\O/

So to test if AB = C we compute
x=Br,y= Ax (= Abr),and z = Cr

If y = z, we take this as evidence that
the calculation was correct.

The amount of work is only O(n?).

Claim: If AB# C and r is a random n-
bit vector, then Pr(ABr = Cr) < 3.

Claim: If AB # C and r is a random n-bit vector, then Pr(ABr = Cr) <

So, if a complicated, fancy
algorithm is used to
compute AB in time

O(n*2%), it can be

efficiently checked with
only O(n?) extra work,
using randomnessl!

"Random Fingerprinting”

Find a small random "fingerprint” of a large object.

- the value f(z) of a polynomial at a point z
- the value Cr at a random bit vector r

This fingerprint captures the essential information
about the larger object: if two large objects are
different, their fingerprints usually are different!

Earth has huge file X that she
transferred to Moon. Moon gets Y.

Did you get that file ok? Was the
Tfransmission accurate?

Let n(n) be the
number of primes
between 1 and n.

I wonder how fast
n(n) grows?

Conjecture [1790s]:

Their estimates

X pi(x) Gauss' Li Legendre x/(log x - 1)

1000 168 178 172 169

10000 1229 1246 1231 1218
100000 9592 9630 9588 9512
1000000 78498 78628 78534 78030
10000000 664579 664918 665138 661459
100000000 5761455 5762209 5769341 5740304
1000000000 50847534 50849235 50917519 50701542
10000000000 455052511 455055614 455743004 454011971

Two independent
proofs of the

y Prime Density

Theorem [1896]:

De la Vallée Poussin

-) g
“L M\ men/Inn

IIm

G o —

The Prime Density Theorem

This theorem remains one of the
celebrated achievements of humber
theory.

In fact, an even sharper conjecture
remains one of the great open problems
of mathematics!

The Riemann
Hypothesis [1859]

z(n)—n/Inn

lIm -0

Jn

Riemann

Slightly easier to show
n(n)/n = 1/(2 logn).

Random logn bit number is a
random number from 1..n

n(n) / n > 1/2logn

means that a random
logn-bit number has
at least a 1/2logn chance
of being prime.

Random k bit number is a
random number from 1..2K

w(2K) / 2K > 1/2k

means that a random
k-bit number has
at least a 1/2k chance
of being prime.

Really useful fact

A random k-bit number has at least
a 1/2k chance of being prime.

So if we pick 2k random k-bit humbers

the expected number of primes on the
list is at least 1

Picking A Random Prime

Many modern cryptosystems (e.g., RSA)
include the instructions:

"Pick a random n-bit prime.”

How can this be done efficiently?

Picking A Random Prime

"Pick a random n-bit prime.”

Strategy:
1) Generate random n-bit numbers

2) Test each one for primality
[more on this later in the lecture]

Picking A Random Prime

"Pick a random n-bit prime.”

1)Generate kn random n-bit numbers

Each trial has a > 1/2n chance of being prime.
n = (6O

K =10
Pr[all kn trials yield composites]

< (1—1/2n)kn = (1_1/2n)2n* k/2 < 1/ek/2

Picking A Random Prime

"Pick a random n-bit prime.”

Strategy:
1) Generate random n-bit numbers
2) Test each one for primality

For 1000-bit primes, if we try out 10000 random
1000-bit numbers, chance of failing < e

Moral of the story

Picking a random prime is
"almost as easy as”
picking a random number.

(Provided we can check for primality.
More on this later.)

Earth has huge file X that she
transferred to Moon. Moon gets Y.

Did you get that file ok? Was the
Tfransmission accurate?

Are X and Y the same n-bit numbers?

p = random 2logn-bit prime
Send (p, X mod p)
—

Answer to "X =Y mod p ?"

Why is this any good?

Easy case:
If X=VY, then X=Y (mod p)

Why is this any good?

Harder case: K wand p
What if X/Y? We messup if p | (X-Y). | = Ywedp

Define Z = (X-Y). To mess up, p must divide Z." \(X’j)

Z is an n-bit humber.
= Z is at most 2". ()

. P
But each prime = 2. Zoh t
Hence Z has at most n prime divisors. 72.2 . Z

—~

|

Almost there...

Z has at most n prime divisors.
How many 2logn-bit primes?

A random k-bit number has at least a
1/2k chance of being prime.

= at least 22l°9n/(2*2]logn) = n2/(4logn) >> 2n primes.

Only (at most) half of them divide Z.
5 wabe wtbrke wh pol & K

Theorem: Let X and Y be distinct
n-bit numbers. Let p be a random
2logn-bit prime.

Then

Prob [X =Y mod p] < 1/2

Earth-Moon protocol makes mistake
with probability at most 1/2!

Are X and Y the same n-bit numbers?

Pick k random
2logn-bit primes: P, P,, .., P,

Send (X mod P) for1<i=<k
—

k answers to "X = Y mod P, ?"

Exponentially smaller error probability

If X=Y, always accept.

If X =Y,
Prob [X =Y mod P. for all i] < (1/2)k

Picking A Random Prime

"Pick a random n-bit prime.”

Strategy:
1) Generate random n-bit numbers
2) Test each one for primality

How can we test primality efficiently?

Primality Testing:
Trial Division On Input n

Trial division up to V#

for k= 2 to V\ndo
if k|n then
return “nis not prime”
otherwise return "7 is prime”

about vz divisions

Trial division performs \n divisions
onh input n.

Is that efficient?

For a 1000-bit number, this will take
about 2°% operations.

That's not very efficient at all!l

More on efficiency and run-times
in a future lecture...

Do the primes
have a fast

decision
algorithm?

Euclid gave us a fast
GCD algorithm.

Surely, he tried to give
a faster primality test

than trial division.

But Euclid, Euler, and
Gauss all failed!

But so many cryptosystems,
ike RSA and PGP, use fast
primality testing as part of
their subroutine to generate
a random n-bit primel

What is the fast primality
testing algorithm that they
use?

There are fast randomized
algorithms to do primality
testing.

Strangely, by allowing our
computational model an extra
instruction for flipping a fair

coin, we seem to be able to
compute some things faster!

If nis composite, what would be
a certificate of compositeness
for n?

A non-trivial factor of n.

But... even using randomness, no
one knows how to find a factor
quickly.

We will use a different
certificate of compositeness
that does not require factoring.

Recall that: i pum b .

Fermat: a1 = 1 mod p. méfw

When working modulo prime p,
for any a + O, alP-)/2 = 41,

X2 =1 mod p has at most 2 roots.

1 and -1 are roots, so it has no
others.

"Euler Certificate"” Of Compositeness

When working modulo a prime p,
for any a4 0, alP-1)/2 =

::1.

We say that a is a certificate of

compositeness for n
if a=0and an1)V2 » -

!

-1,

Clearly, if we find a certifi

cate of

compositeness for n, we know that n

IS composifte.

"Euler Certificates"” Of
Compositeness

EC,={acZ, | a2 +1}
.- ce»/(»g{uﬁa A wD mEpime

NOT-ECn-{ClEZn | a(n-1)/2 = ::1}

If NOT-EC, = Z", then
EC, is at least half of Z°,

In other words,
if EC, is not empty, then
EC, con’rams at least half of Z

Proof

EC,={aecZ, | a2+ 41}
NOT-EC,={aecZ, | arD/2= +1}

Claim: NOT-EC, is a subgroup of Z,~
Proof:
Closure: if a,b € NOT-EC,, thenab € NOT-EC,

Hence, by Lagrange's theorem, INOT-EC, | divides |Z, |
= |[NOT-EC.| < £ |1Z,7|
— |EC, | contains at least half of |Z,"|

"Euler Certificates"” Of
Compositeness

ECn = { ac Z*n | aln-1)/2 « 41 }

NOT-ECn = { ac Z*n | a-1)/2 = 41 }

If NOT-EC, = Z", then
EC, is at least half of Z°,

In other words,
if EC, is not empty, then
EC, con’rams at least half of Z

Randomized Primality Test

Let's suppose that EC, contains at least half the elements of Z*,.

Randomized Test:
Fori=1+tok:
Pick random a, € [2 .. n-1];
If 6CD(a;, n) # 1, Halt with "Composite”;
If a2 £ 41, Halt with "Composite”;

Halt with "I think n is prime. I am only wrong (3) fraction
of times I think that n is prime.”

Is EC, non-empty for all primes n?

» | *
Unfortunately, no. “ ?Qé 2. \ A # \z

Certain numbers masguerade as primes.

A Carmichael number is a number n such that
a"! =1 (mod n) for all numbers a with gcd(a,n)=1.

Example: n=561=3*11*17 (the smallest Carmichael number)
1105 = 5*13*17
1729 = 7*13*19

And there are many of them. For sufficiently large m, there
are at least m2/7 Carmichael numbers between 1 and m.

The saving grace

The randomized test fails only for Carmichael
numbers.

But, there is an efficient way to test for
Carmichael numbers.

Which gives an efficient algorithm for
primality.

Randomized Primality Test

Let's suppose that EC, contains at least half the elements of Z*,.

Randomized Test:
Fori=1to k:
Pick random a, € [2 .. n-1];
If 6CD(a;, n) = 1, Halt with "Composite”;
If a2 = £1, Halt with "Composite”;

Uy

If nis Carmichael, Halt with "Composite

Halt with "I think n is prime. I am only wrong (3) fraction
of times I think that n is prime.”

Randomized Algorithms

The test we outlined made one-sided error:
It never makes an error when it thinks n is composite.
It could just be unlucky when it thinks n is prime.

Another one-sided algorithm that never makes a
mistake when it thinks n is prime.

Yet another algorithm makes 2-sided error.
Sometimes it is mistaken when it thinks n is prime,
sometimes it is mistaken when it thinks n is
composite.

n prime means half of d's satisfy
a(n-1/2 = -1 mod n

If nis prime, then Z," has a generator g.
Then g"1/2 = -1 mod n.

A random ac Z,” is given by g" for
uniformly distributed r.

Half the time, r is odd:
(g")n-D/2 = -1 mod n

Another Randomized Primality Test

Suppose n is not even, nor is it the power of a number.

Randomized Test:
Fori=1to k:
Pick random a. € [2 .. n-1];
If GCD(q;, n) # 1, Halt with "Composite”;
If a2 = +1 , Halt with "Composite”;

If all k values of a2 = +1, Halt with "I think n is composite.
I am only wrong (3)k fraction of the times."

Halt with "I think n is prime. I am only wrong (3)* fraction
of times I think that n is prime.”

We can prove that if n is an odd
composite, not a power, and there is
some a such that a~-1/2 = -1
then EC,, = (.

Hence, EC, is at least a
half fraction of Z7,.

This algorithm makes 2-sided error.
Sometimes it is mistaken when it thinks n is prime,
sometimes it is mistaken when it thinks n is composite.

Many Randomized Tests

Miller-Rabin test

Solovay-Strassen test

In 2002, AgrawalMand/ KayaD
(AKS) gave a deterministic primality
test that runs in time O((logn)!?).

This was the first deterministic
polynomial-time algorithm that didn't
depend on some wnproven conjecture,

like the Riemann Hypothesis!

Picking A Random Prime

"Pick a random n-bit prime.”

Strategy:
1) Generate random n-bit numbers
2) Do fast randomized test for primality

i

Primality Testing Versus Factoring

Primality has a fast randomized algorithm.

Factoring is not known to have a fast
algorithm.

In fact, after thousands of years of
research, the fastest randomized
algorithm takes exp(O(n log n log n) 1/3)
operations on numbers of length n. With
great effort, we can currently factor
200 digit numbers.

number

factored

RSA-100

Apr.

1991

RSA-110

Apr.

1992

RSA-120

Jun.

1993

RSA-129

Apr.

1994

RSA-130

Apr.

10, 1996

RSA-140

Feb.

2, 1999

RSA-150

Apr.

16, 2004

RSA-155

Aug.

22, 1999

RSA-160

Apr.

1, 2003

RSA-200

May 9, 2005

RSA-576

$10,000

Dec.

3, 2003

RSA-640

$20,000

Nov 2, 2005

RSA-704

$30,000

open

RSA-768

$50,000

open

RSA-896

$75,000

open

RSA-1024

$100,000

open

RSA-1536

$150,000

open

RSA-2048

$200,000

open

Google: RSA Challenge Numbers

The techniques we've been

discussing today are sometimes
called “fingerprinting.”

A 1}
'\I;lll Ifll"j!. ;']'-

SAnEE PN
AR AR

The idea is that a large object
such as a string (or document, or

function, or data structure..) is
represented by a much smaller
“fingerprint"” using randomness.

If two objects have identical

sets of fingerprints, they're
likely the same object.

