Great Theoretical Ideas In Computer Science

John Lafferty CS 15-251 Fall 2006
Lecture 12 Oct 5, 2005 Carnegie Mellon University

Ancient Wisdom: Primes, Continued Fractions,
The Golden Ratio, and Euclid's GCD
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1. Recap, and finishing up
probability

2. Something completely
different...




What might
be is surely
ossible!

Goal: show exists object of value at least v.
Proof strategy:

» Define distribution D over objects.

» Define RV: X(object) = value of object.

» Show E[X] > v. Conclude it must be
possible to have X > v.




Pigeonhole principle:
Given nboxes and m> n
objects, at least one box
must contain more than
one object.

Letterbox principle: If
the average number of
letters per box is a, then
some box will have at
least aletters. (Similarly,
some box has at most a.)




Independent Sets

An /ndependent set in a graph is a set of vertices with no edges
between them.

All of the vertices in such a set can be given the same color, so
the size of the largest independent set i(X) gives a bound on
the number of colors required c(6):

¢(6) i(X) >= n

(A coloring divides up the graph into independence sets, and
each one is no bigger than i(X) in size.)




Theorem: If a graph G has n vertices and m
edges, then it has an independent set with at
least n2/4m vertices.

Let d = 2m/n be the average degree.,
Randomly take away vertices and edges:

Delete each vertex of G (together with
its incident edges) with probability 1-1/d

For each remaining edge remove it and
one of its vertices.

The remaining vertices form an independent
set. How big is it expected to be?




(Expectatus Linearitus)?




Theorem: If a graph G has n vertices and m
edges, then it has an independent set with at
least n2/2m vertices.

Let X be the number of vertices that survive the

first step:
E[X] = n/d.

Let Y be the number of edges that survive the
first step:

E[Y]=m(1/d)? = nd/2 (1/d)? = n/2d.

The second step removes all the remaining edges
and at most Y vertices. So size of final set of
vertices is at least X-Y and

E[X-Y]=n/d-n/2d = n/2d = n2/4m




An easy question

What is >, (1) 7 A2

Bu’r it never actually geTs

i/uo 2.Is that a problem7




" But it never actually gef?
to 2. Is that a problem?

& Z

/No, by Z,fo f(i), we really
mean lim, . >, f(i).
[if this is undefined, so is the sum]

In this case, the partial sum
is 2-(3)" which goes to 2.

A g




A related question

Suppose I flip a coin of bias p,
stopping when I first get heads.

What's the chance that I:
‘Flip exactly once?
Ans: p
‘Flip exactly two times?
Ans: (1-p)p
‘Flip exactly k times?
Ans: (1-p)<ip
*Eventually stop?
Ans: 1. (assuming p>0)




A related question

Pr(flip once) + Pr(flip 2 times) +
Pr(flip 3 times) + ... = 1:

p+ (1-p)p + (1-p)°p + (1-p)°p +...=1.
Or, using q = 1-p,

q p—
i=0 -

_q.




Pictorial view

Sample space S = leaves in this tree.

Pr(x) = product of edges on path to x.

If p>O, prob of not halting by tfime n goes to O
as N—oo.




Use to reason about expectations too

Pr(x|A)=product of edges on path from A to x.

=
=

X] =2, Pr(x)X(x).

X|A] =2, c A Pr(x|AX(x). I.e.,itisasif
we started the game at A.



Use to reason about expectations too

Flip bias-p coin until heads. What is
expected number of flips?




Use to reason about expectations too

Let X = # flips.

Let A = event that 1s' flip is heads.

E[X] = E[X|AJPr(A) + E[X|-AIPr(-A)
=1*p + (1 + E[X])*(1-p).

Solving: pE[X] = p + (1-p), so E[X] = 1/p.




Infinite Probability spaces

Notice we are using infinite probability
spaces here, but we really only defined things
for finite spaces so far.

Infinite probability spaces can sometimes be
weird. Luckily, in CS we will almost always be
looking at spaces that can be viewed as
choice trees where

Pr(haven't halted by time t) — 0 as t—oc.




General picture

Let S be a sample space we can view as leaves
of a choice tfree.

Let S, = {leaves at depth < n}.
For event A, let A, = ANS,.

If lim,__Pr(S,)=1, can define:

Pr(A)=lim,__ Pr(A,).




Setting that doesn't fit our model

Flip coin until #heads > 2*#+ails.

There's a reasonable chance this will
hever stop...




Random walk on a line

You go into a casino with $k, and at each
time step you bet $1 on a fair game.
Leave when you are broke or have $n.

-

0 ol n

%

Question 1: what is your expected
amount of money at time t?

Let X, be aR.V. for the amount of money
at time t.




Random walk on a line

You go into a casino with $k, and at each time step you bet $1ona
fair game. Leave when you are broke or have $n.

Question 1: what is your expected amount of money at time 1?

X;=k+8 +5,+..+0; where g, is aRV for the
change in your money at time i.

E[5,] = O, since E[5,|A] = O for all situations A at
Time |.
So, E[X;] = k.




Random walk on a line

You go into a casino with $k, and at
each time step you bet $1 on a fair
game. Leave when you are broke or
have $n.

Question 2: what is the probability you
leave with $n?




Random walk on a line

You go into a casino with $k, and at each time step you bet $1 on a fair
game. Leave when you are broke or have $n.

Question 2: what is the probability you leave with $n?

One way to analyze:
- E[X;]=k.

« E[X,] = E[X,|X,=0]*Pr(X,=0) + E[X,|X,=n]*Pr(X,=n) +
E[X,|neither]*Pr(neither).

* So, E[X;] = O + n"*Pr(X;=n) + something*Pr(neither).
* As t— oo, Pr(neither)— 0. Also O < something < n.
So, lim_,._ Pr(X;=n) = k/n.
So, Pr(leave with $n) = k/n.







And now, for something completely
different....




Definition: A number > 1
s prime if it has no
Q/ other factors, besides 1
and itself.

Each number can be
factored into primes in

\a unique way. [Euclid]/




Theorem: Each natural has a unique
factorization into primes written in
non-decreasing order.

Definition: A number > 1 is prime if it has no
other factors, besides 1 and itself.

Primes: 2,3,5,7,11,13,17, ...

Factorizations:
42 =2*3*7
84=2*2*3*7
13 =13




Multiplication
might just be a "one-way" function

Multiplication is fast to compute
Reverse multiplication is apparently slow

We have a feasible method to multiply 1000
bit numbers [Egyptian multiplication]

Factoring the product of two random 1000
bit primes has no known feasible approach.




Grade School GCD algorithm

GCD(A,B) is the greatest common divisor,

i.e., The largest number that goes evenly
into both A and B.

What is the GCD of 12 and 18?
12=22*3 18 = 2*32

Common factors: 2! and 3!
Answer: 6




How to find GCD(A,B)?

A Naive method:

Factor A into prime powers.
Factor B into prime powers.

Create GCD by multiplying together each common
prime raised to the highest power that goes into
both A and B.




« /
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Hang on!

This requires
factoring A and B.

No one knows a

particularly fast way
to factor numbers in

general.




Q/ EUCLID

had a much better way
to compute GCD!

\




Ancient Recursion:
Euclid’'s GCD algorithm

Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)




A small example

Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)

Note: GCD(67, 29) = 1

Euclid(67,29) 67 mod 29 = 9

Euclid(29,9) 29 mod9 =2

Euclid(9,2) O9mod2 =1

Euclid(2,1) 2modl =0
Euclid(1,0) outputs 1




Important questions to ask

Is the algorithm correct?

Does the algorithm stop?

How many steps does the algorithm run for?




But is it correct?

Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)

Claim: GCD(A,B) = GCD(B, A mod B)




But is it correct?

Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)

value of GCD is
an invariant!

Claim: GCD(A,B) = GCD(B, A mod B) <+——




But is it correct?

Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)

Claim: GCD(A,B) = GCD(B, A mod B)

d|A and d|B < d| (A - kB)

The set of common divisors of A, B equals
the set of common divisors of B, A-kB.




Does the algorithm stop?

Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)

Claim: After first step, A>B>0




Does the algorithm stop?

Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)

Claim: Amod B< 3 A

Proof:
IfB=3AthenAmodB=0
If B<3 Athenany X ModB<B <3 A
IfB>3 AthenAmodB=A-B <3 A




Does the algorithm stop?

Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)

GCD(A,B) calls GCD(B, A mod B)
||

Less than 3 of A




Euclid's GCD Termination

Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)

GCD(A,B) calls GCD(B, <3A)




Euclid's GCD Termination

Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)

GCD(A,B) calls GCD(B, <3A)

which calls GCD(<3A, B mod <3A)

Less than 5 of A




Euclid's GCD Termination

Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)

Every two recursive calls,
the input numbers drop by
half.




Euclid's GCD Termination

Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)

Theorem: If two input numbers have an n
bit binary representation, Euclid's
Algorithm will not take more than 2n
calls to terminate.




Important questions to ask

Is the algorithm correct?

Does the algorithm stop?

How many steps does the algorithm run for?




Question:

If X and Y are less than n,

what is a reasonable upper bound

oh the number of recursive calls
that Euclid(X,Y) will make?.




Q/ Answer:.

If Xand Y are less than n,

Euclid(X,Y) will make no more
than 2log,n calls.




Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)

Euclid(67,29) 67 - 2*29 =67 mod29=9
Euclid(29,9) 29-3*9=29mod9 =2
Euclid(9,2) 9-4*%2=9mod?2 1
Euclid(2,1) 2-2*1=2mod1 0
Euclid(1,0) outputs 1




Let <r,s> denote the number r*67 + s*29.
Calculate all intermediate values in this
representation.

67=<10> 29=<0,1>

Euclid(67,29) 9=<1,0> - 2*<0,1>
Euclid(29,9) 2=<0,1> - 3*<1,-2>
Euclid(9,2) 1=<1,-2> - 4*<-3,7>
Euclid(2,1) 0=<-3,7> - 2*<13,-30>

Euclid(1,0) outputs 1=13*67 - 30*29




Euclid's Extended GCD algorithm

Input: XY
Output: r,s,d such that rX+sY = d = GCD(X,Y)

67=<10> 29=<0,1>
Euclid(67,29) 9=67 - 2*29 9 =<1,-2>
Euclid(29,9) 2=29 - 3*9 2=<-3,7>
Euclid(9,2) 1=9 - 4*2 1=<13,-30>
Euclid(2,1) 0=2 - 2*1 0=<-29,67>

Euclid(1,0) outputs = 13*67 - 30*29




The multiplicative inverse of y € Z, is
the unique z € Z,” such that
yx, z=,1

The unique inverse of a must exist because
the y row contains a permutation of the
elements and hence contains a unique 1.




The multiplicative inverse of y € Z," is
the unique z € Z,” such that
yx z= 1

To quickly compute the inverse of y:

Run ExtendedEuclid(x,n).
returns a, b, and d such that ay+bn = d
But d = 6CD(y,n)=1,soay + bn=1

Hence ay = 1 (mod n)
Thus, a is the multiplicative inverse of vy.




The RSA story

Pick 2 distinct, random 1000 bit
primes, p and q.

Multiply them to get n = (p*q)
Multiply (p-1) and (g-1) to compute o(n)
Randomly pick an e s.t. GCD(e,n) = 1.
Publish nand e

Compute multiplicative inverse of e mod ¢(n)
to get a secret number d.

(me)d = med=m! (mod n)




Leonardo Fibonacci

In 1202, Fibonacci proposed a problem
about the growth of rabbit populations.

¥




Inductive Definition or
Recurrence Relation for the
Fibonacci Numbers

Stage O, Initial Condition, or Base Case:
Fib(0)=0; Fib (1) =1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

q O(1 | 2

Fib(n) o1 |1




A (Simple) Continued Fraction Is Any
Expression Of The Form:

1
|
1

where a, b, ¢, ... are whole numbers.




A Continued Fraction can have a finite
or infinite number of terms.

|

a+ 1

b+

c+
d +

We also denote this fraction by [a,b,c,d.ef,..]




A Finite Continued Fraction

Denoted by [2,3,4,2,0,0,0,...]




An Infinite Continued Fraction

|
1
|
|
1
|
1
1

2+ 1
Denoted by [1,2,2,2,...] 2+....

1+

2+
2+

2+
2+

2+

2+

2+




Recursively Defined Form For CF

CF = whole number, or

|
CF

= whole number -




Ancient Greek Representation:
Continued Fraction Representation




Ancient Greek Representation:
Continued Fraction Representation

=[1111000,.]




Ancient Greek Representation:
Continued Fraction Representation




Ancient Greek Representation:
Continued Fraction Representation

-111111000,..]




Ancient Greek Representation:
Continued Fraction Representation

13_
3

-[111111000,..]




A Pattern?

1,000,.]=1
11,000,.]= 2/1
11,100,0..]= 3/2
111100,0..]=5/3

and so on.

Theorem:

r, = Fib(n+1)/Fib(n)




Proposition:
Any finite continued fraction
evaluates to a rational.

Theorem (proof later)
Any rational has a finite
continued fraction
representation.

\_




Hmm.
Finite CFs = Rationals.

Then what do
infinite continued fractions
represent?




An infinite continued fraction

J2 =1+ :

1
2+ 0

|

2+

2+

2+




Quadratic Equations

X2-3x-1=0

X2= 3X+ 1
X =3 +1/X

X=3+1/X=3+1/[3+1/X]=..




A Periodic CF




Theorem:
Any solution to a quadratic
equation has a periodic
continued fraction.

Converse:
Any periodic continued
fraction is the solution of a

quadratic equation.
(try to prove thisl!)




So they express more
than just the rationals...

What about those
non-recurring infinite
continued fractions?




Non-periodic CFs




What is the pattern?

No one knows!




5

~

What a cool representation!

Finite CF: Rationals

Periodic CF: Quadratic roots

-

And some numbers reveal
hidden regularity.

Y




More good news: Convergents

Let a = [a, a,, a3, ...] be a CF.

Define: C;=1[a,;,0,0,0,0.]
Cz - [01,02,0,0,0,...]
C; = [a4,0,,05,0,0,...] and so on.

C is called the k-th convergent of o

a is the limit of the sequence C,, C,, C;,...




Best Approximator Theorem

A rational p/q is the best approximator to a
real a if no rational number of denominator
smaller than q comes closer to o.

BEST APPROXIMATOR THEOREM:

Given any CF representation of «,
each convergent of the CF is a
best approximator for o |




Best Approximators of

C, = 22/7

C, = 333/106

C, = 355/113

Cs = 103993/33102

C, =104348/33215




Is there
life after
T and e?

Golden Ratio: the divine proportion

¢ =1.6180339887498948482045...

"Phi” is named after the Greek sculptor Phidias




Golden ratio supposed to arise in...

300m (984ft)
i Eiffel Tower
5 Leaning Tower of Pisa
Big Ben
Statue of Liberty

137m (449ft)

96m (316ft)
92m (305ft) /gl
55m (179ft) § S/

P — L L7y o ,"._"
il - i e

Parthenon, Athens (400 B.C.) The great pyramid at Gizeh

Mostly
Ratio of a person’s height g'\:ﬁjuer:‘]g;an“al
to the height of his/her navel




Pentagon




Definition of ¢ (Euclid)

Ratio obtained when you divide a line segment into two unequal
parts such that the ratio of the whole to the larger part is the
same as the ratio of the larger to the smaller.

~ AC AB
~ AB BC
- AC
" BC
AC AB _ BC _

?~?=8c BC BC
¢ —p—1=0

¢
&’

1




Expanding Recursively

1

— 14—
0 +¢




Expanding Recursively

1
@

¢ =1-




Expanding Recursively

¢=1+l

¢




Continued Fraction Representation

|
1
1
|

¢=1+

1+

1+

1+

1+
1+

1+




Continued Fraction Representation

1+\/§:1+ 1

- 1+ 11

1

1+

1+

1+
1+




Remember?

We already saw the convergents of this CF

[1.1 ]
are of the form
Fib(n+1)/Fib(n)

Hence: |lim

N—>oo




11,2,3,5,8,13,21,34,55,...

2

1.5

1.666...

1.6

1.625
1.6153846...
1.61904...

1.6180339887498948482045




Continued fraction representation of a
standard fraction

67 _,

50"




e.g., 67/29 =2 with remainder 9/29
=2 +1/(29/9)




A Representational Correspondence

67

24

20"

4+ —

Euclid(67,29)
Euclid(29,9)
Euclid(9,2)
Euclid(2,1)
Euclid(1,0)

67 div29 =2
29div9 =3
Odive =4
2divl =2




Euclid's GCD = Continued Fractions

A 1
B _ b
AmodB

A_
B

Euclid(A,B) = Euclid(B, A mod B)
Stop when B=0

Theorem: All fractions have finite
continuous fraction expansions




Fibonacci Magic Trick
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GCD
Euclid's algorithm
Extended Euclid's algorithm
Given X,Y, outputs r,s and GCD(X,Y)
such that rX + sY = GCD(X.,Y)

Use it to find X1 (for X in Z,>)

Continued Fractions
Finite CFs = rationals
Periodic CFs = roots of quadratics
Convergents

e.g. convergents of [1,1,1,..]1=F /F,

Golden Ratio ¢
Solution to quadratic x4 - x-1=0.
0=1[1111,..]




