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Great Theoretical Ideas In Computer Science
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1. Recap, and finishing up 
probability

2. Something completely 
different…



What might 
be is surely 
possible!

Goal: show exists object of value at least v.
Proof strategy:

• Define distribution D over objects.
• Define RV: X(object) = value of object.
• Show E[X] ≥ v.  Conclude it must be 

possible to have X ≥ v.



Pigeonhole principle:  
Given n boxes and m > n
objects, at least one box 
must contain more than 
one object.

Letterbox principle:  If 
the average number of 
letters per box is a, then 
some box will have at 
least a letters. (Similarly, 
some box has at most a.)   



Independent Sets

An independent set in a graph is a set of vertices with no edges 
between them.  

All of the vertices in such a set can be given the same color, so 
the size of the largest independent set i(X) gives a bound on 
the number of colors required c(G):

c(G) i(X) >= n

(A coloring divides up the graph into independence sets, and 
each one is no bigger than i(X) in size.)



Theorem: If a graph G has n vertices and m 
edges, then it has an independent set with at 

least n2/4m vertices.

Let d = 2m/n be the average degree.  
Randomly take away vertices and edges: 

1. Delete each vertex of G (together with 
its incident edges) with probability 1-1/d

2. For each remaining edge remove it and 
one of its vertices.

The remaining vertices form an independent 
set.  How big is it expected to be?



(Expectatus Linearitus)3
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Theorem: If a graph G has n vertices and m 
edges, then it has an independent set with at 

least n2/2m vertices.

Let X be the number of vertices that survive the 
first step: 

E[X] = n/d.  

Let Y be the number of edges that survive the 
first step: 

E[Y] = m(1/d)2 = nd/2 (1/d)2 = n/2d.

The second step removes all the remaining edges 
and at most Y vertices.   So size of final set of 
vertices is at least X-Y and 

E[X-Y] = n/d – n/2d = n/2d = n2/4m



An easy question

A: 2.

0                      1         1.5         2

But it never actually gets 
to 2. Is that a problem?



But it never actually gets 
to 2. Is that a problem?

No, by ∑i=0 f(i), we really 
mean limn→∞ ∑i=0 f(i).

[if this is undefined, so is the sum]

In this case, the partial sum 
is 2-(½)n which goes to 2.

∞

n



A related questionA related question

Suppose I flip a coin of bias p, 
stopping when I first get heads.

What’s the chance that I:
•Flip exactly once?

Ans: p
•Flip exactly two times?

Ans: (1-p)p
•Flip exactly k times?

Ans: (1-p)k-1p
•Eventually stop?

Ans: 1.  (assuming p>0)



Pr(flip once) + Pr(flip 2 times) + 
Pr(flip 3 times) + ... = 1:

p + (1-p)p + (1-p)2p + (1-p)3p +...=1.

Or, using q = 1-p,

A related questionA related question



Pictorial viewPictorial view

Sample space S = leaves in this tree.  
Pr(x) = product of edges on path to x. 
If p>0, prob of not halting by time n goes to 0 
as n→∞.

p 1-p

...
p

p

p

1-p

1-p



Pr(x|A)=product of edges on path from A to x.
E[X] = ∑x Pr(x)X(x).
E[X|A] = ∑x∈ A Pr(x|A)X(x).  I.e., it is as if 

we started the game at A.

p 1-p

...
p

p

p

1-p

1-p

Use to reason about expectations tooUse to reason about expectations too



Use to reason about expectations tooUse to reason about expectations too

Flip bias-p coin until heads.  What is 
expected number of flips?

p 1-p

...
p

p

p

1-p

1-p



Use to reason about expectations tooUse to reason about expectations too

Let X = # flips.
Let A = event that 1st flip is heads.
E[X] = E[X|A]Pr(A) + E[X|¬A]Pr(¬A)

= 1*p  +  (1 + E[X])*(1-p).
Solving:  pE[X] = p + (1-p), so E[X] = 1/p.

p 1-p

...
p

p

p

1-p

1-p

1

2

3

4



Infinite Probability spacesInfinite Probability spaces

Notice we are using infinite probability 
spaces here, but we really only defined things 
for finite spaces so far.

Infinite probability spaces can sometimes be 
weird.  Luckily, in CS we will almost always be 
looking at spaces that can be viewed as 
choice trees where 

Pr(haven’t halted by time t) → 0 as t→∞.



General pictureGeneral picture

Let S be a sample space we can view as leaves 
of a choice tree.

Let Sn = {leaves at depth � n}.

For event A, let An = A∩Sn.

If limn→∞Pr(Sn)=1, can define:

Pr(A)=limn→∞Pr(An).

p 1-p

...

p

p

p

1-p

1-p



Setting that doesnSetting that doesn’’t fit our modelt fit our model

Flip coin until #heads > 2*#tails.

There’s a reasonable chance this will 
never stop... 



Random walk on a lineRandom walk on a line

You go into a casino with $k, and at each 
time step you bet $1 on a fair game. 
Leave when you are broke or have $n.

Question 1: what is your expected 
amount of money at time t?

Let Xt be a R.V. for the amount of money 
at time t.

0 n



Random walk on a lineRandom walk on a line
You go into a casino with $k, and at each time step you bet $1 on a 
fair game. Leave when you are broke or have $n.

Question 1: what is your expected amount of money at time t?

Xt = k + δ1 + δ2 + ... + δt, where δi is a RV for the 
change in your money at time i.

E[δi] = 0, since E[δi|A] = 0 for all situations A at 
time i.

So, E[Xt] = k.



Random walk on a lineRandom walk on a line

You go into a casino with $k, and at 
each time step you bet $1 on a fair 
game.  Leave when you are broke or 
have $n.

Question 2: what is the probability you 
leave with $n?



Random walk on a lineRandom walk on a line
You go into a casino with $k, and at each time step you bet $1 on a fair 
game.  Leave when you are broke or have $n.

Question 2: what is the probability you leave with $n?

One way to analyze:

• E[Xt] = k.

• E[Xt] = E[Xt|Xt=0]*Pr(Xt=0) + E[Xt|Xt=n]*Pr(Xt=n) + 
E[Xt|neither]*Pr(neither).

• So, E[Xt] = 0 + n*Pr(Xt=n) + something*Pr(neither).

• As t→∞, Pr(neither)→ 0.  Also 0 < something < n.

So, limt→∞ Pr(Xt=n) = k/n.

So, Pr(leave with $n) = k/n.





And now, for something completely 
different….



Definition: A number > 1 
is prime if it has no 

other factors, besides 1 
and itself.

Each number can be 
factored into primes in 
a unique way. [Euclid]



Theorem: Each natural has a unique 
factorization into primes written in 

non-decreasing order.

Definition: A number > 1 is prime if it has no 
other factors, besides 1 and itself. 

Primes: 2, 3, 5, 7, 11, 13, 17, …

Factorizations:
42 = 2 * 3 * 7
84 = 2 * 2 * 3 * 7
13 = 13



Multiplication
might just be a “one-way” function

Multiplication is fast to compute
Reverse multiplication is apparently slow

We have a feasible method to multiply 1000 
bit numbers [Egyptian multiplication]

Factoring the product of two random  1000 
bit primes has no known feasible approach.



Grade School GCD algorithm

GCD(A,B) is the greatest common divisor, 
i.e., the largest number that goes evenly 
into both A and B.

What is the GCD of 12 and 18?
12 = 22 * 3 18 = 2*32

Common factors: 21 and 31

Answer: 6



How to find GCD(A,B)?

A Naïve method:

Factor A into prime powers. 

Factor B into prime powers.

Create GCD by multiplying together each common 
prime raised to the highest power that goes into 
both A and B.



Hang on!

This requires 
factoring A and B. 

No one knows a 
particularly fast way 
to factor numbers in 

general.



EUCLID 
had a much better way 

to compute GCD!



Ancient Recursion: 
Euclid’s GCD algorithm

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)



A small example

Note: GCD(67, 29) = 1

Euclid(67,29) 67 mod 29 = 9
Euclid(29,9) 29 mod 9   = 2

Euclid(9,2) 9 mod 2     = 1
Euclid(2,1) 2 mod 1     = 0

Euclid(1,0) outputs 1

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)



Important questions to ask

Is the algorithm correct?

Does the algorithm stop?

How many steps does the algorithm run for?



But is it correct?

Claim: GCD(A,B) = GCD(B, A mod B)

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)



But is it correct?

Claim: GCD(A,B) = GCD(B, A mod B)
value of GCD is
an invariant!

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)



But is it correct?

Claim: GCD(A,B) = GCD(B, A mod B)

d|A and d|B ⇔ d| (A - kB )
The set of common divisors of A, B equals
the set of common divisors of B, A-kB.

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)



Does the algorithm stop?

Claim: After first step, A ≥ B ≥ 0

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)



Does the algorithm stop?

Claim: A mod B < ½ A
Proof:

If B = ½ A then A mod B = 0
If B < ½ A then any X Mod B < B  < ½ A
If B > ½ A then A mod B = A - B  < ½ A

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)



Does the algorithm stop?

GCD(A,B) calls GCD(B, A mod B)

Less than ½ of A

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)



Euclid’s GCD Termination

GCD(A,B) calls GCD(B, <½A)

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)



Euclid’s GCD Termination

GCD(A,B) calls GCD(B, <½A)

which calls GCD(<½A, B mod <½A)

Less than ½ of A

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)



Euclid’s GCD Termination

Every two recursive calls, 
the input numbers drop by 

half. 

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)



Euclid’s GCD Termination

Theorem: If two input numbers have an n 
bit binary representation, Euclid’s 

Algorithm will not take more than 2n 
calls to terminate. 

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)



Important questions to ask

Is the algorithm correct?

Does the algorithm stop?

How many steps does the algorithm run for?



Question:

If X and Y are less than n, 
what is a reasonable upper bound 
on the number of recursive calls 

that Euclid(X,Y) will make?.



Answer:

If X and Y are less than n, 
Euclid(X,Y) will make no more 

than 2log2n calls.



Euclid(67,29) 67 – 2*29 = 67 mod 29 = 9
Euclid(29,9) 29 – 3*9 = 29 mod 9   = 2
Euclid(9,2) 9 – 4*2 = 9 mod 2     = 1
Euclid(2,1) 2 – 2*1 = 2 mod 1      = 0
Euclid(1,0) outputs 1

Euclid(A,B)

If B=0 then return A

else return Euclid(B, A mod B)



Let <r,s> denote the number r*67 + s*29. 
Calculate all intermediate values in this 

representation.

67=<1,0>     29=<0,1>

Euclid(67,29) 9=<1,0> – 2*<0,1> 9 =<1,-2>
Euclid(29,9) 2=<0,1> – 3*<1,-2> 2=<-3,7>
Euclid(9,2) 1=<1,-2> – 4*<-3,7> 1=<13,-30>
Euclid(2,1) 0=<-3,7> – 2*<13,-30> 0=<-29,67> 

Euclid(1,0) outputs 1 = 13*67 – 30*29



Euclid’s Extended GCD algorithm

Input: X,Y

Output: r,s,d such that rX+sY = d = GCD(X,Y)

67=<1,0> 29=<0,1>
Euclid(67,29) 9=67 – 2*29 9 =<1,-2>
Euclid(29,9) 2=29 – 3*9 2=<-3,7>
Euclid(9,2) 1=9 – 4*2 1=<13,-30>
Euclid(2,1) 0=2 – 2*1 0=<-29,67> 

Euclid(1,0) outputs 1 = 13*67 – 30*29



The multiplicative inverse of y ∈ Zn
* is 

the unique z ∈ Zn
* such that 

y ×n z ≡n 1.

The unique inverse of a must exist because 
the y row contains a permutation of the 
elements and hence contains a unique 1.

2

4

1

3

3

213y

3

4
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z

322

411

4

1

14

4×Z5
*



The multiplicative inverse of y ∈ Zn
* is 

the unique z ∈ Zn
* such that 

y ×n z ≡n 1.

To quickly compute the inverse of y:

Run ExtendedEuclid(x,n). 
returns a, b, and d such that ay+bn = d

But d = GCD(y,n) = 1, so ay + bn = 1

Hence ay = 1 (mod n)
Thus, a is the multiplicative inverse of y.



The RSA story

Pick 2 distinct, random 1000 bit 
primes, p and q.

Multiply them to get n = (p*q)
Multiply (p-1) and (q-1) to compute φ(n)
Randomly pick an e s.t. GCD(e,n) = 1.

Publish n and e

Compute multiplicative inverse of e mod φ(n)
to get a secret number d.

(me)d = med = m1 (mod n)



Leonardo Fibonacci

In 1202, Fibonacci proposed a problem 
about the growth of rabbit populations.



Inductive Definition or  
Recurrence Relation for the

Fibonacci Numbers

Stage 0, Initial Condition, or Base Case:
Fib(0) = 0; Fib (1) = 1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

0

0

13853211Fib(n)

7654321n



A (Simple) Continued Fraction Is Any 
Expression Of The Form:
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where a, b, c, … are whole numbers.



A Continued Fraction can have a finite 
or infinite number of terms.

We also denote this fraction by [a,b,c,d,e,f,…]
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A Finite Continued Fraction
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+

+

Denoted by [2,3,4,2,0,0,0,…]



An Infinite Continued Fraction
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Recursively Defined Form For CF

CF whole number, or 

1
         = whole number

CF

=

+



Ancient Greek Representation:
Continued Fraction Representation
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Ancient Greek Representation:
Continued Fraction Representation
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= [1,1,1,1,0,0,0,…]



Ancient Greek Representation:
Continued Fraction Representation
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Ancient Greek Representation:
Continued Fraction Representation

8 1
1

15
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= [1,1,1,1,1,0,0,0,…]



Ancient Greek Representation:
Continued Fraction Representation

13 1
1

18
1
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= [1,1,1,1,1,1,0,0,0,…]



A Pattern?

Let  r1 = [1,0,0,0,…] = 1

r2 = [1,1,0,0,0,…] = 2/1

r3 = [1,1,1,0,0,0…] = 3/2

r4 = [1,1,1,1,0,0,0…] = 5/3

and so on.

Theorem:

rn = Fib(n+1)/Fib(n)



Proposition:
Any finite continued fraction 

evaluates to a rational.

Theorem (proof later)
Any rational has a finite 

continued fraction 
representation.



Hmm.
Finite CFs = Rationals. 

Then what do 
infinite continued fractions 

represent?



An infinite continued fraction
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Quadratic Equations

X2 – 3x – 1 = 0

X2 =  3X +  1

X   =  3    + 1/X

X = 3 + 1/X = 3 + 1/[3 + 1/X] = …

3 13

2
X

+
=



A Periodic CF
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Theorem:
Any solution to a quadratic
equation has a periodic 
continued fraction.

Converse: 
Any periodic continued 

fraction is the solution of a 
quadratic equation. 
(try to prove this!)



So they express more 
than just the rationals…

What about those 
non-recurring infinite
continued fractions?



Non-periodic CFs
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What is the pattern?

1
3

1
7

1
15

1
1

1
292

1
1

1
1

1
1

1
2

1 ....

π = +

+

+

+

+

+

+

+

+
+

No one knows!



What a cool representation!

Finite CF: Rationals

Periodic CF: Quadratic roots

And some numbers reveal 
hidden regularity.  



More good news: Convergents

Let α = [a1, a2, a3, ...] be a CF. 

Define: C1 = [a1,0,0,0,0..] 

C2 = [a1,a2,0,0,0,...] 

C3 = [a1,a2,a3,0,0,...]  and so on.

Ck is called the k-th convergent of α

α is the limit of the sequence C1, C2, C3,…



Best Approximator Theorem

A rational p/q is the best approximator to a 
real α if no rational number of denominator 
smaller than q comes closer to α.

BEST APPROXIMATOR THEOREM:
Given any CF representation of α, 
each convergent of the CF is a 
best approximator for α !



Best Approximators of π
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π = +

+

+

+

+

+

+

+

+
+

C1 = 3

C2 = 22/7

C3 = 333/106

C4 = 355/113

C5 = 103993/33102

C6 =104348/33215  



Is there 
life after
π and e?

Golden Ratio: the divine proportion

φ = 1.6180339887498948482045…

“Phi” is named after the Greek sculptor Phidias



Golden ratio supposed to arise in…

Parthenon, Athens (400 B.C.)

b
a

a

b
1.618=

The great pyramid at Gizeh

Ratio of a person’s height 

to the height of his/her navel

Mostly

circumstantial

evidence…



Pentagon
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1 0
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2

Definition of φ (Euclid)

Ratio obtained when you divide a line segment into two unequal 
parts such that the ratio of the whole to the larger part is the
same as the ratio of the larger to the smaller.

A B C



Expanding Recursively

φ
φ

= +1
1



Expanding Recursively
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Expanding Recursively
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Continued Fraction Representation

φ = +
+
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Continued Fraction Representation
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Remember?

We already saw the convergents of this CF

[1,1,1,1,1,1,1,1,1,1,1,…]

are of the form

Fib(n+1)/Fib(n)

n
1

1 5
l m

2
i →∞

−

+
= φ =n

n

F

F

Hence:



1,1,2,3,5,8,13,21,34,55,….

2/1 = 2
3/2 = 1.5
5/3 = 1.666…
8/5 = 1.6
13/8 = 1.625
21/13 = 1.6153846…
34/21 = 1.61904…

φ = 1.6180339887498948482045



Continued fraction representation of a 
standard fraction

67 1
2

129
3

1
4

2

= +

+

+



e.g., 67/29 = 2 with remainder 9/29
= 2 + 1/ (29/9)

67 1 1 1
2 2 2

29 2 129
3 3

19 9
4

2

= + = + +

+ +

+



A Representational Correspondence

67 1 1 1
2 2 2

29 2 129
3 3

19 9
4

2

= + = + +

+ +

+

Euclid(67,29) 67 div 29 = 2
Euclid(29,9) 29 div 9   = 3
Euclid(9,2) 9 div 2     = 4
Euclid(2,1) 2 div 1      = 2
Euclid(1,0)



Euclid’s GCD = Continued Fractions

Euclid(A,B) = Euclid(B, A mod B)
Stop when B=0

1

mod

A A

BB B

A B

 
= +  

Theorem: All fractions have finite 
continuous fraction expansions



Fibonacci Magic Trick
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Study Bee

GCD
Euclid’s algorithm
Extended Euclid’s algorithm

Given X,Y, outputs r,s and GCD(X,Y)
such that rX + sY = GCD(X,Y)

Use it to find X-1 (for X in Zn*)

Continued Fractions
Finite CFs = rationals
Periodic CFs = roots of quadratics
Convergents

e.g. convergents of [1,1,1,…] = Fn/Fn-1

Golden Ratio φ
Solution to quadratic x2 – x – 1 = 0.
φ = [1,1,1,1,…]


