Great Theoretical Ideas In Computer Science

Anupam Gupta

CS 15-251

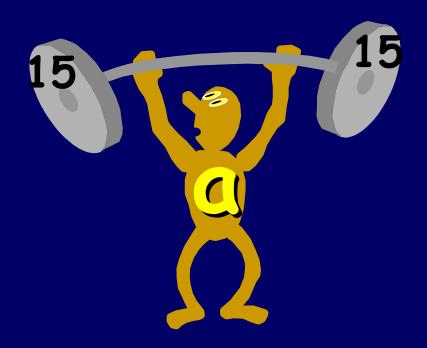
Fall 2006

Lecture 5

Sept 12, 2006

Carnegie Mellon University

Ancient Wisdom: On Raising A Number To A Power



Egyptian Multiplication

The Egyptians used decimal numbers but multiplied and divided in binary

a x b By Repeated Doubling

b has n-bit representation: $b_{n-1}b_{n-2}...b_1b_0$

Starting with a, repeatedly double largest number so far to obtain: a, 2a, 4a, ..., 2ⁿ⁻¹a

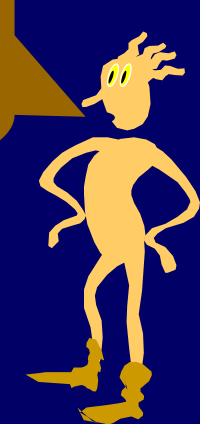
Sum together all the 2^ka where $b_k = 1$

$$b = b_0 2^0 + b_1 2^1 + b_2 2^2 + ... + b_{n-1} 2^{n-1}$$

$$ab = b_0 2^0 a + b_1 2^1 a + b_2 2^2 a + ... + b_{n-1} 2^{n-1} a$$

$$2^k a \text{ is in the sum if and only if } b_k = 1$$

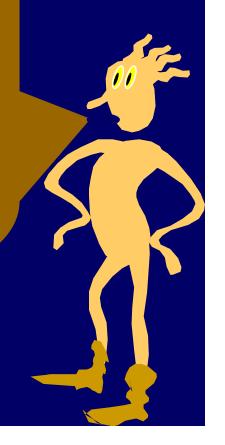
They used repeated halving to do base conversion!



Egyptian Base Conversion

Output stream will print right to left

Sometimes the Egyptians combined the base conversion by halving and multiplication by doubling into a single algorithm



70 x 13 Rhind Papyrus [1650 BC]

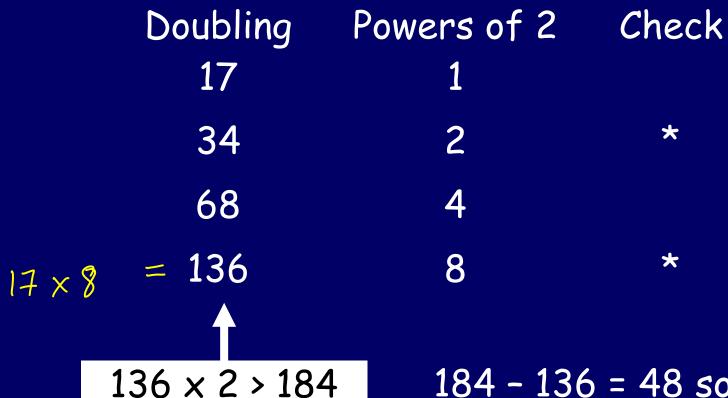
Binary for 13 is $1101 = 2^3 + 2^2 + 2^0$ $70*13 = 70*2^3 + 70*2^2 + 70*2^0$

Doubling	Halving	Odd?	Running Total
70	13	*	70
140	6	0	
280	3	*	350
560	1	*	910
	$=) 13 = (1101)_{2}$		

30 x 5

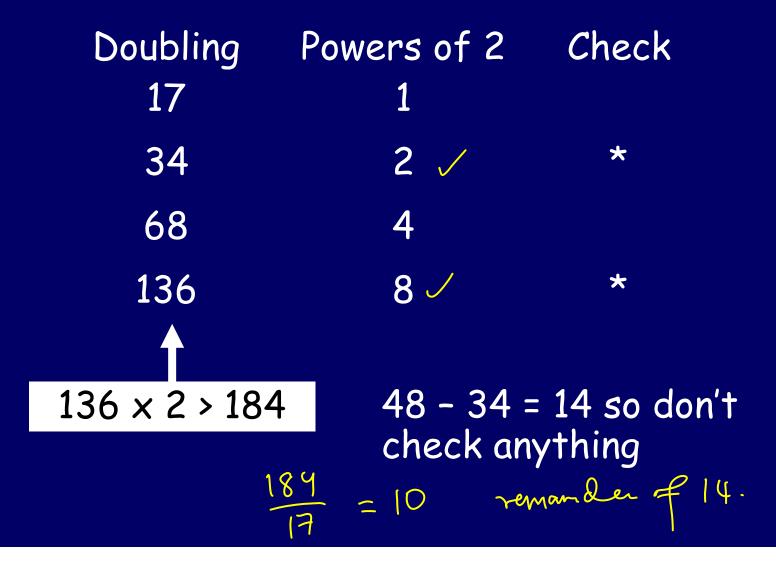
Doubling	Halving	Odd?	Running Total
5	30	0	
10 🗸	15	*	10
20 🗸	7	*	30
40 🗸	3	*	70
80 🗸	1	*	150

184 / 17 Rhind Papyrus [1650 BC]



184 - 136 = 48 so check highest multiple of 17 less than 48

184 / 17 Rhind Papyrus [1650 BC]



184 / 17 Rhind Papyrus [1650 BC]

```
      Doubling
      Powers of 2
      Check

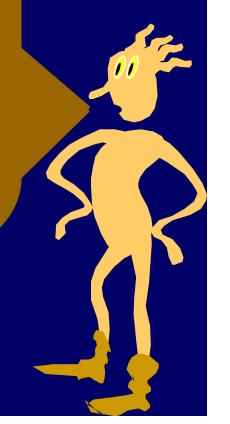
      17
      1

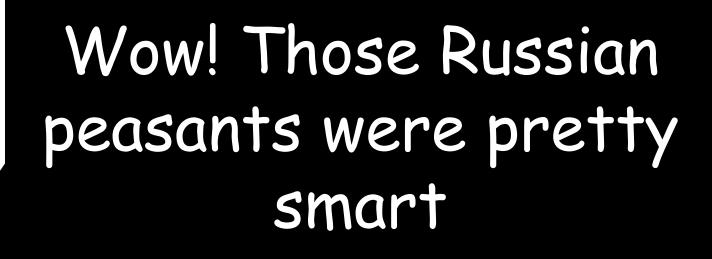
      34
      2
      *

      68
      4

      136
      8
      *
```

184 = 17*8 + 17*2 + 14184/17 = 10 with remainder 14 This method is called "Egyptian Multiplication / Division" or "Russian Peasant Multiplication / Division"





Standard Binary Multiplication = Egyptian Multiplication

Our story so far...

We can view numbers in many different, but corresponding ways

Representation:

Understand the relationship between different representations of the same information or idea

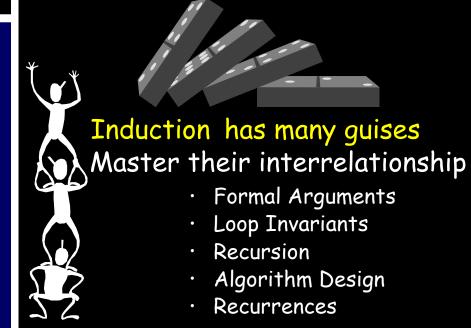
1

2

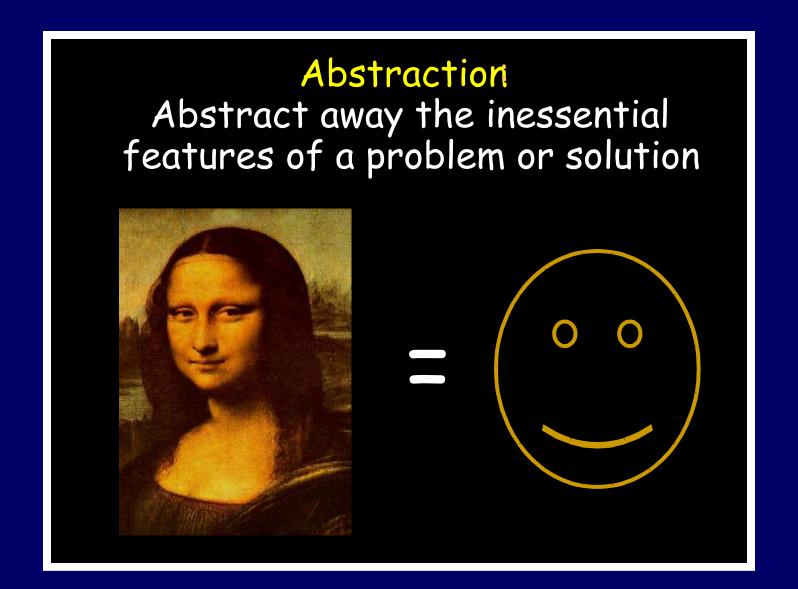
K

Our story so far...

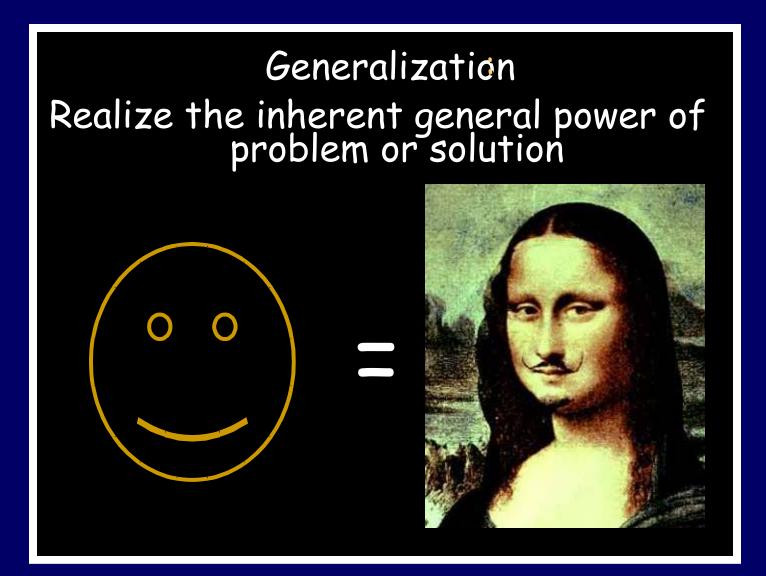
Induction is how we define and manipulate mathematical ideas



Let's Articulate New One:



And it's "twin"



This method costs only 3 multiplications. The savings are significant if b:=a⁸ is executed often

Powering By Repeated Multiplication

Input: a,n

Output: Sequence starting with a,

ending with an, such that

each entry other than the

first is the product of two

previous entries

Example

Input: a,5

Output: a, a^2, a^3, a^4, a^5 or axa, a^2, a^3, a^5 Output: a, a^2, a^3, a^5 or

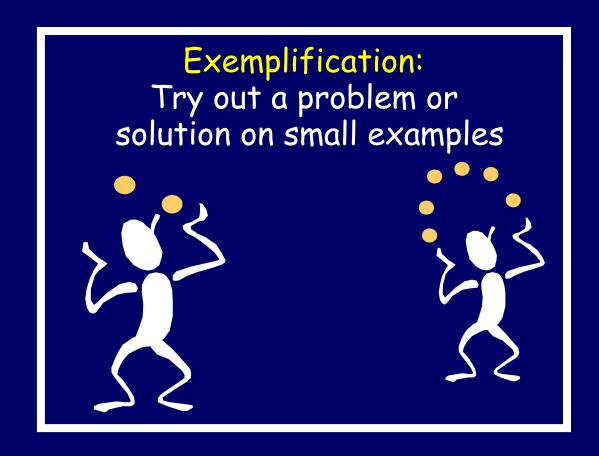
Output: a, a^2, a^4, a^5

Given a constant n,
how do we implement
b:=aⁿ
with the fewest number
of multiplications?

Definition of M(n)

M(n) = Minimum number of multiplications required to produce aⁿ from a by repeated multiplication

What is M(n)? Can we calculate it exactly? Can we approximate it?



Very Small Examples

What is M(1)?

M(1) = 0

[a]

M(n) = Minimum number of multiplications required to produce and from a by repeated multiplication

What is M(0)?

Not clear how to define M(0)

What is M(2)?

$$M(2) = 1$$

 $[a,a^2]$

$$M(8) = ?$$

a, a^2 , a^4 , a^8 is one way to a second make a^8 in 3 multiplications 3

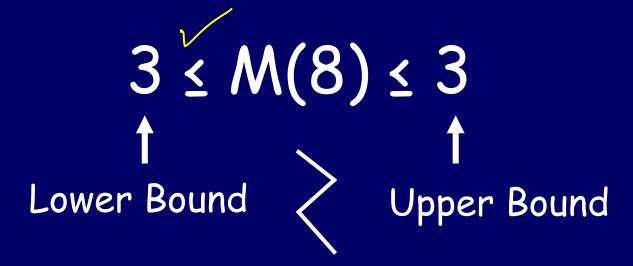
What does this tell us about the value of M(8)?

$? \leq M(8) \leq 3$

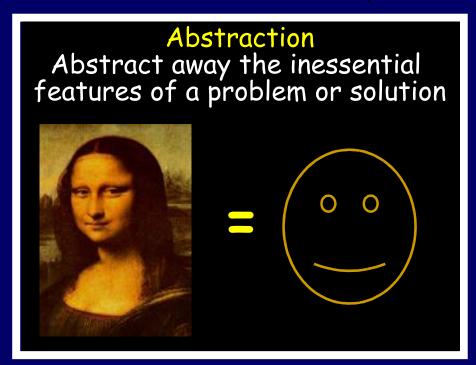
3 ≤ M(8) by exhaustive search

There are only two sequences with 2 multiplications. Neither of them make 8:

 a, a^2, a^3 and a, a^2, a^4



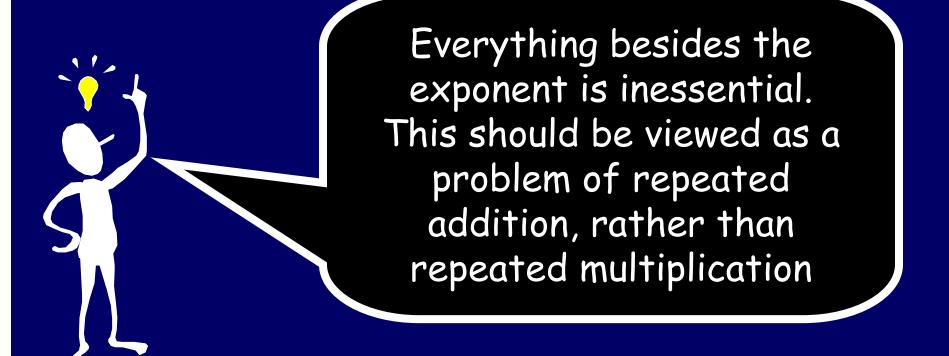
What is the more essential representation of M(n)?



Representation: Understand the relationship between different representations of the same idea 1 2 3

The "a" is a red herring

axay is ax+y



Addition Chains

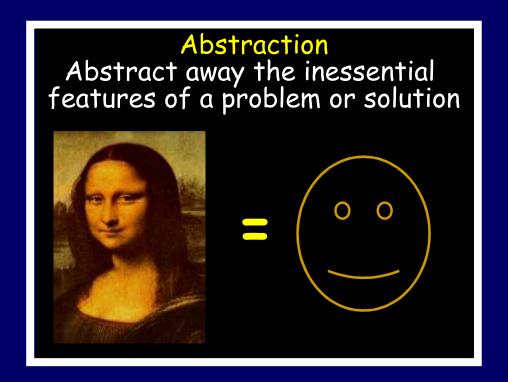
M(n) = Number of stages required to make n, where we start at 1 and in each stage we add two previously constructed numbers

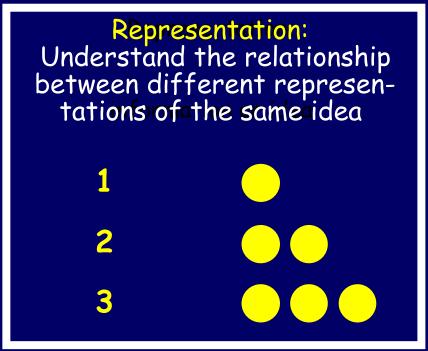
Examples

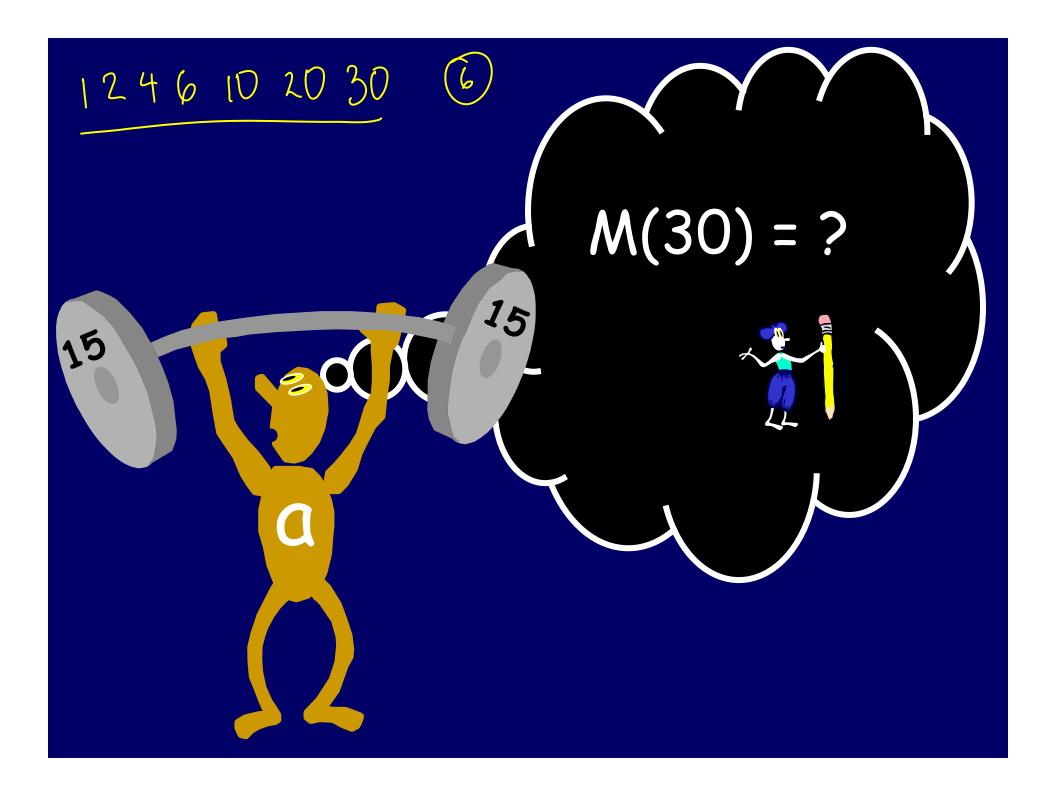
Addition Chain for 8: 1 2 3 5 8

Minimal Addition Chain for 8: 1248

Addition Chains Are a Simpler Way To Represent The Original Problem







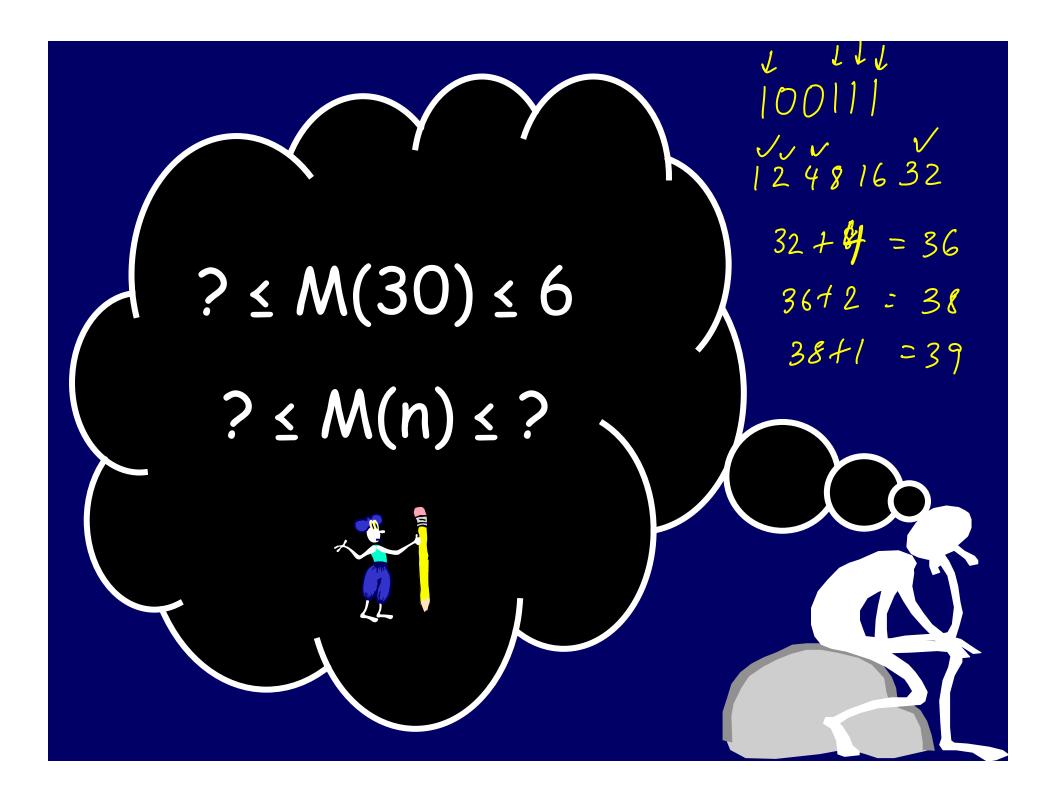
Addition Chains For 30

 1
 2
 4
 8
 16
 24
 28
 30

 1
 2
 4
 5
 10
 20
 30

1 2 3 5 10 15 30

1 2 4 8 10 20 30



Binary Representation

Let B_n be the number of 1s in the binary representation of n

E.g.:
$$B_5 = 2 \text{ since } 5 = (101)_2$$

Proposition: $B_n \leq \lfloor \log_2(n) \rfloor + 1$

Proof: It is at most the number of bits in the binary representation of n

Binary Method

(Repeated Doubling Method)

```
Phase I (Repeated Doubling)
For \lfloor \log_2(n) \rfloor stages:

Add largest so far to itself (1, 2, 4, 8, 16, ...)
```

Phase II (Make n from bits and pieces) Expand n in binary to see how n is the sum of B_n powers of 2. Use B_n - 1 stages to make n from the powers of 2 created in phase I

Total cost: $\lfloor \log_2 n \rfloor + B_n - 1$

Binary Method

Applied To 30

Phase I

1, 2, 4, 8, 16

Cost: 4 additions

Phase II

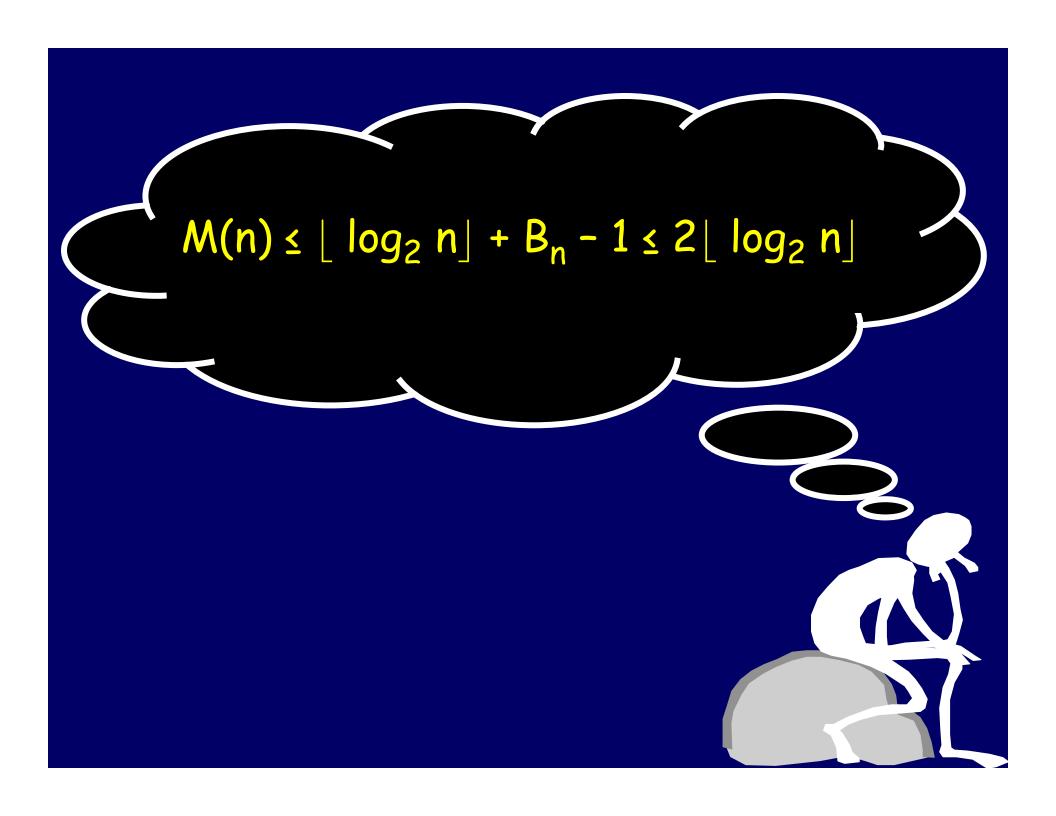
$$30 = (11110)_2$$

$$2 + 4 = 6$$

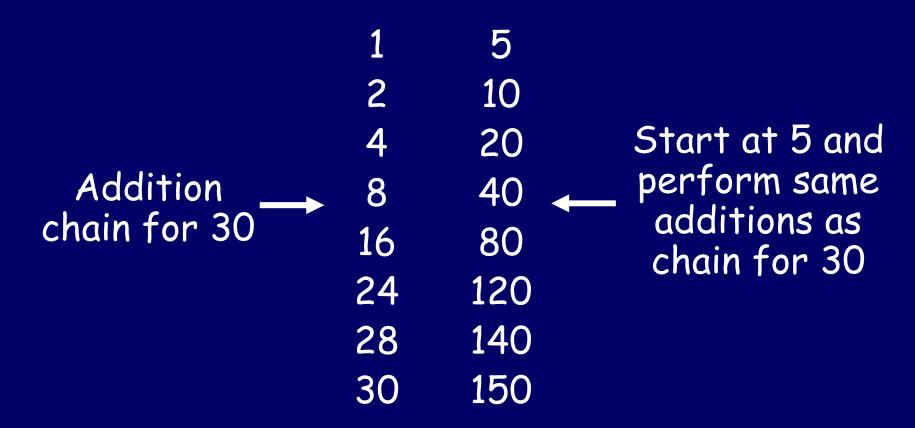
$$6 + 8 = 14$$

$$14 + 16 = 30$$

Cost: 3 additions



Rhind Papyrus [1650 BC] What is 30 x 5?



Repeated doubling is the same as the Egyptian binary multiplication

Rhind Papyrus [1650 BC]

Actually used faster chain for 30*5

5
 10

4 20

8 40

10 50

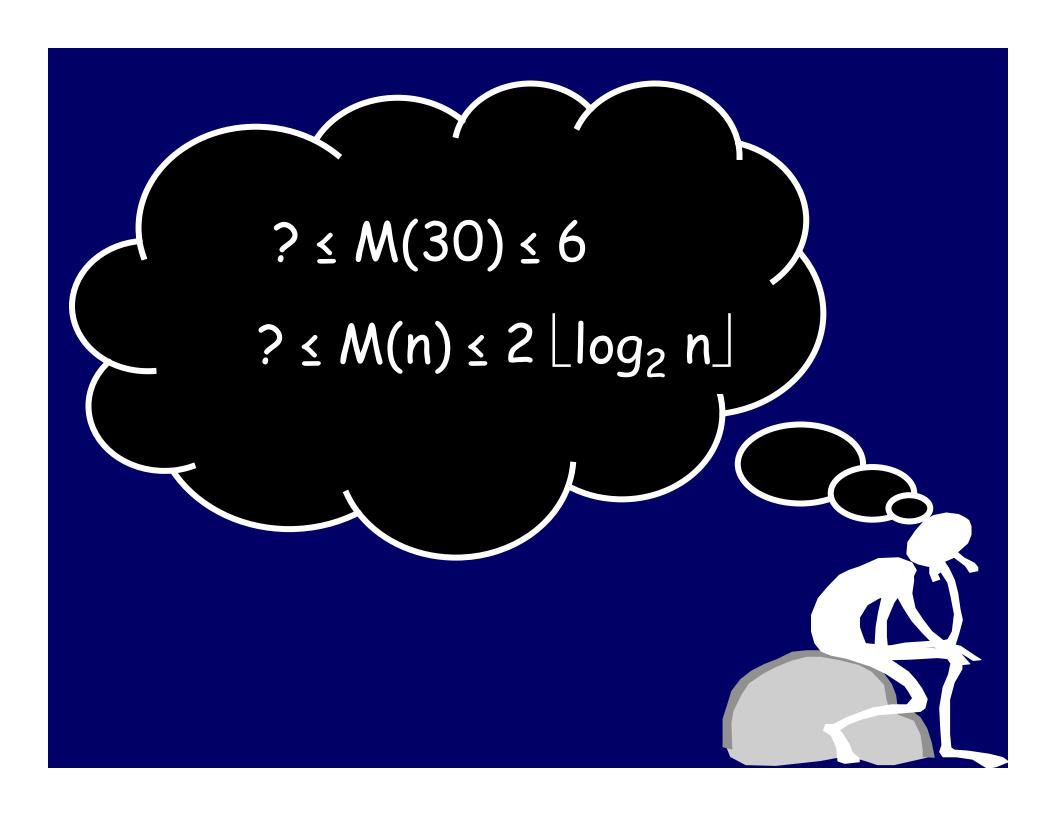
20 100

30 150

The Egyptian Connection

A shortest addition chain for n gives a shortest method for the Egyptian approach to multiplying by the number n

The fastest scribes would seek to know M(n) for commonly arising values of n



A Lower Bound Idea

You can't make any number bigger than 2^n in n steps

1 2 4 8 16 32 64 . . .

Let S_k = "No k stage addition chain contains a number greater than $2^{k''}$

Base case: k=0. S_0 is true since no chain can exceed 2^0 after 0 stages

$$\forall k \geqslant 0$$
, $S_k \Rightarrow S_{k+1}$

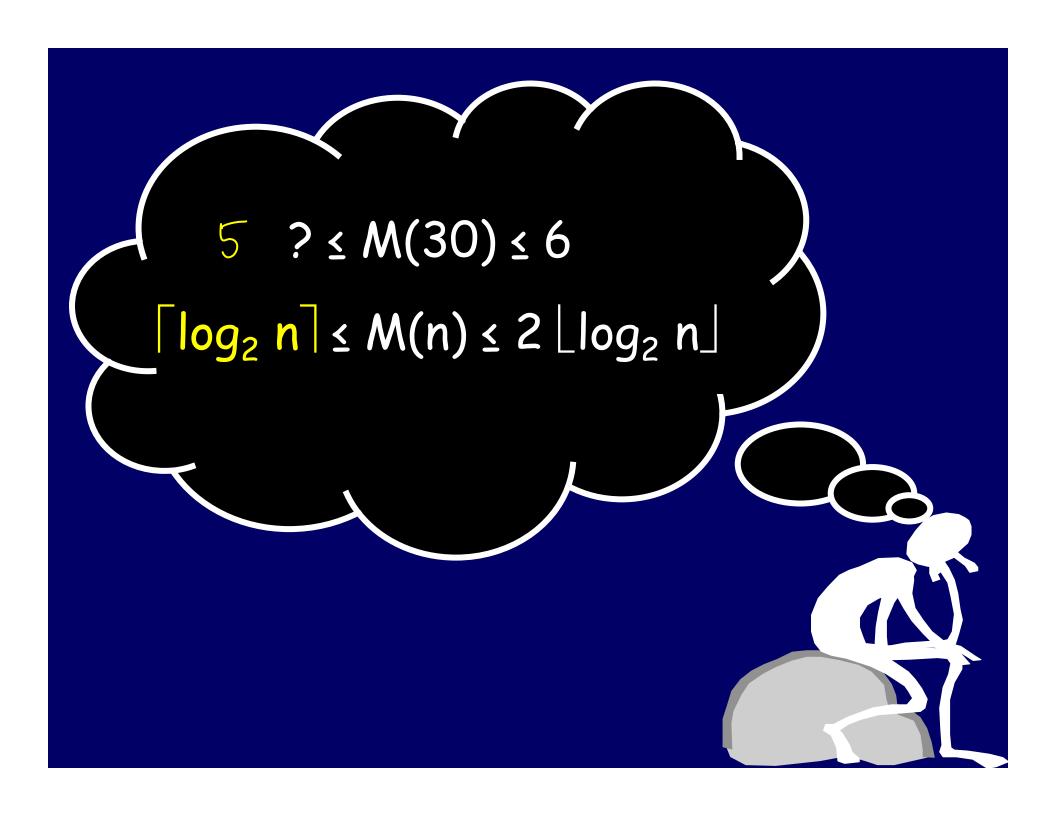
At stage k+1 we add two numbers from the previous stage From S_k we know that they both are bounded by 2^k Hence, their sum is bounded by 2^{k+1} . Hence, no number greater than 2^{k+1} can be present by stage k+1

Change Of Variable

All numbers obtainable in m stages are bounded by 2^m . Let m = $log_2(n)$

Thus, all numbers obtainable in $log_2(n)$ stages are bounded by n

$$M(n) \ge \lceil \log_2 n \rceil$$



Theorem: 2^k is the largest number that can be made in k stages, and it can only be made by repeated doubling.

Proof by Induction:

Base k = 0 is clear

To make anything as big as 2^k requires having some number as big as 2^{k-1} in k-1 stages

By I.H., we must have all the powers of 2 up to 2^{k-1} at stage k-1. Hence, we can only double 2^{k-1} at stage k.

Theorem: M(30) > 5

Suppose that M(30)=5

At the last stage, we added two numbers x_1 and x_2 to get 30

Without loss of generality (WLOG), we assume that $x_1 \ge x_2$

Thus, $x_1 \ge 15$

By doubling bound, $x_1 \le 16$

But $x_1 \neq 16$ since there is only one way to make 16 in 4 stages and it does not make 14 along the way. Thus, $x_1 = 15$ and M(15)=4

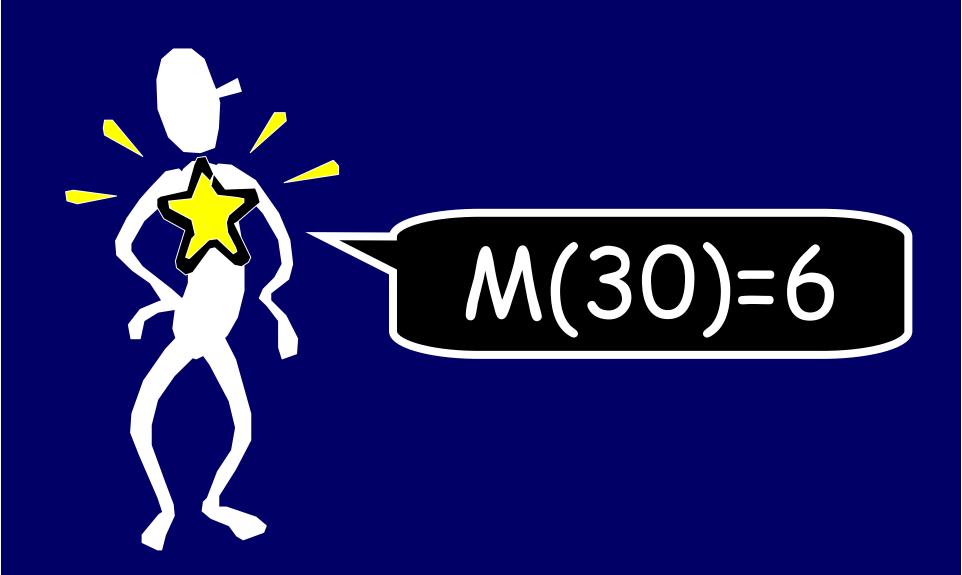
Suppose M(15) = 4

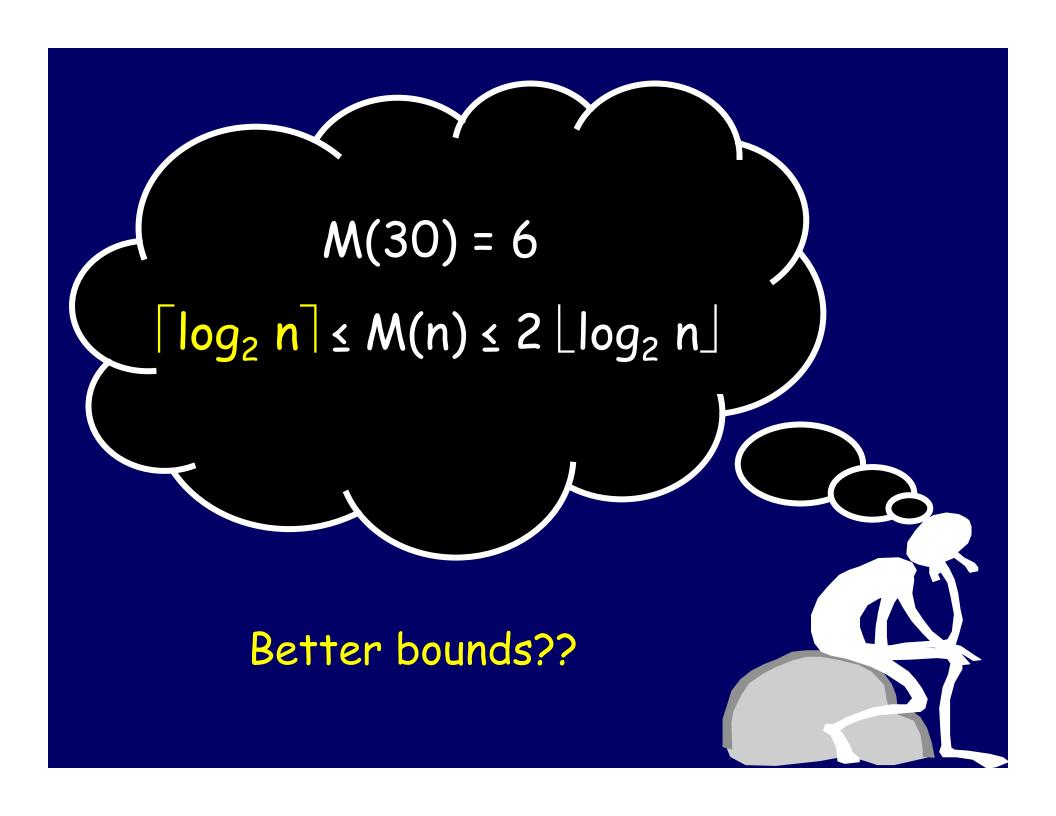
At stage 3, a number bigger than 7.5, but not more than 8 must have existed

There is only one sequence that gets 8 in 3 additions: 1 2 4 8

That sequence does not make 7 along the way and hence there is nothing to add to 8 to make 15 at the next stage

Thus, M(15) > 4 CONTRADICTION





Factoring Bound

 $M(a \times b) \leq M(a) + M(b)$

Proof:

Construct a in M(a) additions

Using a as a unit follow a construction method for b using M(b) additions. In other words, each time the construction of b refers to a number y, use the number ay instead

Example

$$45 = 5 \times 9$$

$$M(5)=3$$

[1 2 4 5]

$$M(45) \le 3 + 4$$
 [1 2 4 5 10 20 40 45]

"5 × [1 2 4 8 9]"

$$M(9)=4$$
 [1 2 4 8 9]

Corollary (Using Induction)

 $M(a_1a_2a_3...a_n) \leq M(a_1)+M(a_2)+...+M(a_n)$

Proof:

For n = 1 the bound clearly holds

Assume it has been shown for up to n-1

Now apply previous theorem using

 $A = a_1 a_2 a_3 \dots a_{n-1}$ and $b = a_n$ to obtain:

 $M(a_1a_2a_3...a_n) \leq M(a_1a_2a_3...a_{n-1}) + M(a_n)$

By inductive assumption,

$$M(a_1a_2a_3...a_{n-1}) \leq M(a_1) + M(a_2) + ... + M(a_{n-1})$$

More Corollaries

Corollary: $M(a^k) \leq kM(a)$

Corollary:
$$M(p_1^{\alpha_1} p_2^{\alpha_2} ... p_n^{\alpha_n}) \le \alpha_1 M(p_1) + \alpha_2 M(p_2) + ... + \alpha_n M(p_n)$$

Does equality hold for $M(a \times b) \leq M(a) + M(b)$?

$$M(33) < M(3) + M(11)$$

$$M(3) = 2$$

[1 2 3]

$$M(11)=5$$

[1 2 3 5 10 11]

$$M(3) + M(11) = 7$$

$$M(33) = 6$$

[1 2 4 8 16 32 33]

The conjecture of equality fails!

Conjecture: M(2n) = M(n) + 1(A. Goulard)

A fastest way to an even number is to make half that number and then double it

Proof given in 1895 by F. de Janquieres in L'Internation

FALSE! M(191)=M(382)=11

Furthermore, there are infinitely many such examples

Open Problem

Is there an n such that: M(2n) < M(n)

Conjecture

Each stage might as well consist of adding the largest number so far to one of the other numbers

First Counter-example: 12,509 [1 2 4 8 16 17 32 64 128 256 512 1024 1041 2082 4164 8328 8345 12509]

Open Problem

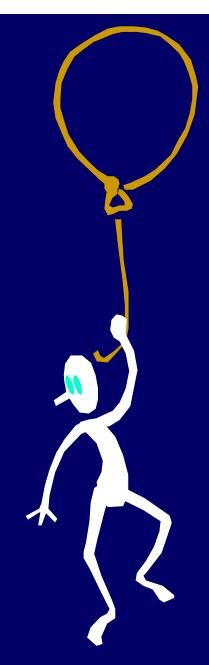
Prove or disprove the Scholz-Brauer Conjecture:

$$M(2^{n}-1) \le n - 1 + B_{n}$$

(The bound that follows from this lecture is too weak: $M(2^n-1) \le 2n-1$)

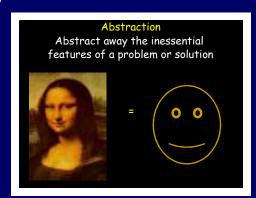
High Level Point

Don't underestimate "simple" problems. Some "simple" mysteries have endured for thousand of years



Raising a number to a power with fewest multiplications

Shortest addition chain





Works for any structure which is

- 1. associative $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 2. a^k is well defined such that $a^{x+y} = a^x \cdot a^y$

E.g. adding and multiplying numbers multiplying matrices, modular arithmetic

Egyptian Multiplication

Raising To A Power

Minimal Addition Chain

Lower and Upper Bounds

Repeated doubling method

Representation:
Understand the relationship between different representations of the same idea

