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Great Theoretical Ideas In Computer Science



Today we will talk 

about 

INDUCTION



Induction is the 
primary way we:

1. Prove theorems

2.Construct and 
define objects



Dominoes

Domino Principle: Line up any 
number of dominos in a row; 
knock the first one over and 
they will all fall



Dominoes Numbered 1 to n
Fk≡ “The kth domino falls”

If we set them up in a row then each 
one is set up to knock over the next:

For all 1 ≤ k < n:
Fk ⇒ Fk+1

F1 ⇒ F2 ⇒ F3 ⇒ …
F1 ⇒ All Dominoes Fall



Standard Notation
“for all” is written “∀∀∀∀”

Example:

For all k>0, P(k) ∀∀∀∀k>0, P(k)=



Dominoes Numbered 1 to n
Fk≡ “The kth domino falls”

∀∀∀∀k, 0 ≤ k < n-1:

Fk ⇒ Fk+1
F0 ⇒ F1 ⇒ F2 ⇒ …
F0 ⇒ All Dominoes Fall



The Natural Numbers

One domino for each natural number:

0 1 2 3 4    5 ….

N = { 0, 1, 2, 3, . . .}



Plato: The Domino Principle 
works for an infinite row of 
dominoes

Aristotle: Never seen an 
infinite number of anything, 

much less dominoes. 



Plato’s Dominoes
One for each natural number

Theorem: An infinite row of dominoes, 
one domino for each natural number.

Knock over the first domino and they all will fall

Suppose they don’t all fall.  Let k > 0 be the 
lowest numbered domino that remains standing. 
Domino k-1 ≥ 0 did fall, but k-1 will knock over 
domino k. Thus, domino k must fall and remain 
standing. Contradiction.

Proof: 



Mathematical Induction
statements proved instead of

dominoes fallen

Infinite sequence of
dominoes

Infinite sequence of 
statements: S0, S1, …

Fk ≡ “domino k fell” Fk ≡ “Sk proved”

Conclude that Fk is true for all k

Establish: 1. F0
2. For all k, Fk ⇒ Fk+1



Inductive Proof / Reasoning
To Prove ∀k ∈ N, Sk

Assume hypothetically that 

Sk for any particular k; ∀k, Sk ⇒ Sk+1

Establish “Base Case”:  S0

Establish that ∀k, Sk ⇒ Sk+1

Conclude that Sk+1



Inductive Proof / Reasoning
To Prove ∀k ∈ N, Sk

Establish “Base Case”:  S0

“Induction Hypothesis” Sk

“Induction Step”
Use I.H.  to show Sk+1

∀k, Sk ⇒ Sk+1

Establish that ∀k, Sk ⇒ Sk+1



Inductive Proof / Reasoning
To Prove ∀k ≥ b, Sk

Establish “Base Case”:  Sb

Establish that ∀k ≥ b, Sk ⇒ Sk+1

Assume k ≥ b

“Inductive Hypothesis”: Assume Sk

“Inductive Step:” Prove that Sk+1 follows



Theorem:?

The sum of the first 
n odd numbers is n2.

Check on small values:
1 = 1
1+3 = 4
1+3+5 = 9
1+3+5+7 = 16



Theorem:?

The sum of the first n 
odd numbers is n2.

The kth odd number is
expressed by the formula
(2k – 1), when k>0.



Sn ≡ “The sum of the first n 
odd numbers is n2.”

Equivalently, 

Sn is the statement that: 
“1 + 3 + 5 + (2k-1) + . . +(2n-1) = n2 ”



Sn ≡ “The sum of the first n odd numbers is n2.”
“1 + 3 + 5 + (2k-1) + . . +(2n-1) = n2”

Trying to establish that: ∀n ≥ 1 Sn



Sn ≡ “The sum of the first n odd numbers is n2.”
“1 + 3 + 5 + (2k-1) + . . +(2n-1) = n2”

Trying to establish that: ∀n ≥ 1 Sn



Assume “Induction Hypothesis”: Sk
(for any particular k≥ 1) 

1+3+5+…+ (2k-1) = k2

Induction Step:
Add (2k+1) to both sides.
1+3+5+…+ (2k-1)+(2k+1) = k2 +(2k+1) 
Sum of first k+1 odd numbers = (k+1)2

CONCLUDE: Sk+1

Sn ≡ “The sum of the first n odd numbers is n2.”
“1 + 3 + 5 + (2k-1) + . . +(2n-1) = n2”

Trying to establish that: ∀n ≥ 1 Sn



In summary:

1) Establish base case: S1

2) Establish domino property: ∀k ≥ 1 Sk ⇒ Sk+1

By induction on n, we conclude that: ∀k ≥ 1 Sk

Sn ≡ “The sum of the first n odd numbers is n2.”
“1 + 3 + 5 + (2k-1) + . . +(2n-1) = n2”

Trying to establish that: ∀n ≥ 1 Sn



THEOREM: 

The sum of the first 
n odd numbers is n2.



Theorem?

The sum of the first 
n numbers is ½n(n+1).



Theorem? The sum of the 
first n numbers is 
½n(n+1).

Try it out on small numbers!
1              = 1 =½1(1+1).
1+2 = 3  =½2(2+1).
1+2+3 = 6  =½3(3+1).
1+2+3+4 = 10 =½4(4+1).



Theorem? The sum of the 
first n numbers is 
½n(n+1).

= 0 =½0(0+1).
1              = 1 =½1(1+1).
1+2 = 3  =½2(2+1).
1+2+3 = 6  =½3(3+1).
1+2+3+4 = 10 =½4(4+1).



Notation:
∆0 = 0 

∆n= 1 + 2 + 3 + . . . + n-1 + n

Let Sn be the statement 
“∆n =n(n+1)/2”



Sn ≡ “∆n =n(n+1)/2”
Use induction to prove ∀k ≥ 0, Sk



Sn ≡ “∆n =n(n+1)/2”
Use induction to prove ∀k ≥ 0, Sk



Sn ≡ “∆n =n(n+1)/2”
Use induction to prove ∀k ≥ 0, Sk

Establish “Base Case”: S0.

∆0=The sum of the first 0 numbers = 0. 

Setting n=0, the formula gives 0(0+1)/2 = 0.

Establish that ∀k ≥ 0, Sk ⇒ Sk+1

“Inductive Hypothesis” Sk: ∆k =k(k+1)/2 

∆k+1 =  ∆k            + (k+1) 
= k(k+1)/2 + (k+1)   [Using I.H.]
= (k+1)(k+2)/2        [which proves Sk+1]



Theorem:

The sum of the first 
n numbers is ½n(n+1).



Primes:
A natural number n>1 is 
called prime if it has no 
divisors besides 1 and 
itself.

n.b. 1 is not considered 
prime.



Theorem:?

Every natural number > 1 can 
be factored into primes.

Sn ≡ “n can be factored into 
primes”

Base case:
2 is prime ⇒ S2 is true.



Trying to prove Sk-1 ⇒ Sk

How do we use the fact 
Sk-1 ≡ “k-1 can be factored into primes”

to prove that
Sk ≡ “k can be factored into primes”

Hmm!?



Theorem:?

Every natural number>1 can 
be factored into primes.

A different approach:

Assume 2,3,…,k-1 all can be 
factored into primes. 

Then show that k can be 
factored into primes.



Sn ≡ “n can be factored into primes”
Use induction to prove ∀k > 1, Sk



Sn ≡ “n can be factored into primes”
Use induction to prove ∀k > 1, Sk



All Previous Induction
To Prove ∀k, Sk

Establish Base Case:  S0

Establish that ∀k, Sk ⇒ Sk+1

Let k be any natural number.

Induction Hypothesis: 
Assume  ∀j<k, Sj

Use that to derive Sk

Also called
Strong 

Induction



Let k be any number

“All Previous” Induction
Repackaged As

Standard Induction

Establish Base 
Case:  S0

Establish Domino 
Effect:

Let k be any number
Assume  ∀∀∀∀j<k, Sj

Prove Sk

Define Ti = ∀∀∀∀j ≤ i, Sj

Establish Base 
Case T0

Establish that 
∀k, Tk ⇒ Tk+1

Assume Tk-1

Prove Tk



And there are more 
ways to do inductive 

proofs



Aristotle’s 
Contrapositive

Let S be a sentence of the form “A ⇒ B”.

The Contrapositive of S is 
the sentence “¬B ⇒ ¬A”.

A ⇒ B: When A is true, B is true.

¬B ⇒ ¬A: When B is false, A is false. 



Aristotle’s 
Contrapositive

Logically equivalent:

A B “A⇒B” “¬B ⇒ ¬A”.

False False True True

False True True True

True False False False

True True True True



Contrapositive or 
Least Counter-Example 
Induction to Prove ∀k, Sk

Establish “Base Case”:  S0

Establish that ∀k, Sk ⇒ Sk+1

Let k>0 be the least number such that Sk is false.
Prove that ¬Sk ⇒ ¬Sk-1

Contradiction of k being the least counter-example!



Least Counter-Example 
Induction to Prove ∀k, Sk

Establish “Base Case”:  S0

Establish that ∀k, Sk ⇒ Sk+1

Assume that Sk is the least 
counter-example.

Derive the existence of a 
smaller counter-example Sj (for j < k)



Rene Descartes [1596-1650]

“Method Of Infinite Decent”
Show that for any counter-example you find 
a smaller one. Hence, if a counter-example 
exists there would be an infinite sequence of 
smaller and smaller counter examples.



Each number > 1 has a prime 
factorization.

Let n be the least counter-example.  

Hence n is not prime 

⇒ so n = ab. 

If both a and b had prime factorizations, 
then n would too. 

Thus a or b is a smaller counter-example.



Inductive reasoning 
is the high level idea:

“Standard” Induction
“All Previous” Induction 
“Least Counter-example”

all just 
different packaging.



Euclid’s theorem on 
the unique

factorization of a 
number into primes.

Assume there is a least 
counter-example. Derive a 

contradiction, or the 
existence of a smaller
counter-example.



Theorem: Each natural has a unique factorization 
into primes written in non-decreasing order.



Theorem: Each natural has a unique factorization 
into primes written in non-decreasing order.



Theorem: Each natural has a unique factorization 
into primes written in non-decreasing order.



Theorem: Each natural has a unique 
factorization into primes written in 

non-decreasing order.

Let n be the least counter-example. n has at 
least two ways of being written as a product 
of primes:

n = p1 p2 .. pk = q1 q2 … qt

The p’s must be totally different primes than 
the q’s or else we could divide both sides by 
one of a common prime and get a smaller 
counter-example. Without loss of generality, 
assume p1 > q1 . 



Theorem: Each natural has a unique 
factorization into primes written in 

non-decreasing  order.
Let n be the least counter-example. 

n = p1 p2 .. pk = q1 q2 … qt [ p1 > q1 ]

n ≥ p1p1 > p1 q1 + 1 [Since p1 > q1]

.



Theorem: Each natural has a unique 
factorization into primes written in 

non-decreasing  order.
Let n be the least counter-example. 

n = p1 p2 .. pk = q1 q2 … qt         [ p1 > q1 ]

n ≥ p1p1 > p1 q1 + 1 [Since p1 > q1]

m = n – p1q1 [Thus 1< m < n]

Notice: m = p1(p2 .. pk – q1) = q1(q2 … qt  - p1)

Thus, p1|m and q1|m

By unique factorization of m, p1q1|m, thus m = p1q1z 



Theorem: Each natural has a unique 
factorization into primes written in 

non-decreasing  order.
Let n be the least counter-example. 
n = p1 p2 .. pk = q1 q2 … qt         [ p1 > q1 ]

n ≥ p1p1 > p1 q1 + 1 [Since p1 > q1]

m = n – p1q1 [Thus 1< m < n]
Notice: m = p1(p2 .. pk – q1) = q1(q2 … qt  - p1)
Thus, p1|m and q1|m
By unique factorization of m, p1q1|m, thus m = p1q1z 
We have: m = n – p1q1 = p1(p2 .. pk - q1 ) = p1q1z
Dividing by p1 we obtain: (p2 .. pk - q1 ) = q1z 
p2 .. pk = q1z + q1 = q1(z+1)  so q1|p2…pk
And hence, by unique factorization of p2…pk,
q1 must be one of the primes p2,…,pk. Contradiction of q1<p1.



Yet another way of 
packaging inductive 
reasoning is to define 

“invariants”.

Invariant: 
1. Not varying; constant. 

2. Mathematics. Unaffected 
by a designated operation, 

as 
a transformation of 

coordinates.



Yet another way of 
packaging inductive 
reasoning is to define 

“invariants”.

Invariant:
3. programming A rule, such 
as the ordering an ordered
list or heap, that applies 

throughout the life of a data
structure or procedure. Each 
change to the data structure
must maintain the correctness 

of the invariant.



Invariant Induction
Suppose we have a time varying 
world state: W0, W1, W2, …

Each state change is assumed to come from a 
list of permissible operations. We seek to 
prove that statement S is true of all future 

worlds. 

Argue that S is true of the initial world.

Show that if S is true of some  world – then S 
remains true after one permissible operation is 
performed.



Invariant Induction
Suppose we have a time varying world 

state: W0, W1, W2, …
Each state change is assumed to come 
from a list of permissible operations. 

Let S be a statement true of W0.

Let W be any possible future world state.

Assume S is true of W.

Show that S is true of any world W’ obtained 
by applying a permissible operation to W.



Odd/Even Handshaking Theorem: 
At any party at any point in time define a 
person’s parity as ODD/EVEN according to 
the number of hands they have shaken.

Statement: The number of people of odd 
parity must be even.



Statement: The number of people of odd 
parity must be even.



Statement: The number of people of odd 
parity must be even.

Initial case: Zero hands have been shaken at the 
start of a party, so zero people have odd parity.

If 2 people of different parities shake, then they 
both swap parities and the odd parity count is 
unchanged. If 2 people of the same parity shake, 
they both change and hence the odd parity count 
changes by 2 – and remains even. 



Inductive reasoning is 
the high level idea:

Standard Induction
Least Counter-example
All-Previous Induction 

Invariants
all just different packaging.



Induction is also how we can 
define and construct our 

world.

So many things, 
from buildings to computers, 
are built up stage by stage, 
module by module, each 
depending on the previous 

stages.



Inductive Definition Of Functions

Stage 0, Initial Condition, or Base Case:
Declare the value of the function on some 
subset of the domain. 

Inductive Rules
Define new values of the function in terms of 
previously defined values of the function

F(x) is defined if and only if it is implied by 
finite iteration of the rules. 



0

F(n)

7654321n

Inductive Definition
Example

Initial Condition, or Base Case:

F(0) = 1

Inductive Rule:

For n > 0, F(n) = F(n-1) + F(n-1)

1 2 4 8 16 32 64 128

Inductive definition of 
the powers of 2!



0

F(n)

7654321n

Inductive Definition
Example

Initial Condition, or Base Case:

F(1) = 1

Inductive Rule:

For n > 1, F(n) = F(n/2) + F(n/2)

% 1 2 % 4 % % %

F(x) = x for 
x being a power of 2!



Leonardo Fibonacci
In 1202, Fibonacci proposed a problem 
about the growth of rabbit populations



rabbits

7654321month

Rabbit Reproduction
A rabbit lives forever

The population starts as single newborn pair

Every month, each productive pair begets a 
new pair which will become productive after 
2 months old

Fn= # of rabbit pairs at the beginning of 
the nth month

1 1 3 52 8 13



Fibonacci Numbers

Stage 0, Initial Condition, or Base Case:

Fib(1) = 1; Fib (2) = 1

Inductive Rule:

For n>3, Fib(n) =

rabbits

7654321month

1 1 3 52 8 13

Fib(n-1) + Fib(n-2)



Programs to compute Fib(n)?

Stage 0, Initial Condition, or Base Case:
Fib(0) = 0; Fib (1) = 1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)



Top-Down, Recursive Program:
Return Fib(x);
Procedure Fib(k)

If k=0 return 0
If k=1 return 1

Otherwise return Fib(k-1)+Fib(k-2);

Inductive Definition: 
Fib(0)=0, Fib(1)=1, k>1, Fib(k)=Fib(k-1)+Fib(k-2)

Bottom-Up, Iterative Program:
Fib(0) = 0; Fib(1) =1;
Input x;
For k= 2 to x do Fib(k)=Fib(k-1)+Fib(k-2);

Return Fib(x);



What is a closed form 
formula for Fib(n) ????

Stage 0, Initial Condition, or Base Case:
Fib(0) = 0; Fib (1) = 1

Inductive Rule
For n>1, Fib(n) = Fib(n-1) + Fib(n-2)

0

0

13853211Fib(n)

7654321n



Leonhard Euler (1765)
J. P. M. Binet (1843)

August de Moivre (1730)



Study Bee

Inductive Proof
Standard Form
All Previous Form
Least-Counter Example Form
Invariant Form

Inductive Definition
Bottom-Up Programming
Top-Down Programming
Recurrence Relations
Fibonacci Numbers

Logic
Contrapositive Form of S


