
Theorem. Let G be a graph with n nodes and e edges. Then the following are equivalent:

1. G is a tree (connected and acyclic).

2. Every two nodes of G are joined by a unique path.

3. G is connected and n = e + 1.

4. G is acyclic and n = e + 1.

5. G is acyclic and if any two nonadjacent points are joined by a line, the resulting graph
has exactly one cycle.

Proof. We need to show that 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 1.

1 ⇒ 2: If G is a tree then every two nodes are joined by a unique path. Suppose that there
are two paths P1 and P2 between node u and node v. Tracing the two paths simultaneously
from u to v, let w be the first point that is on both paths, but for which the successor points
are on different paths. Also, let x be the next point after w that is is on both paths. Then
the paths between w and x on P1 and P2 together make a cycle. But this can’t happen if G
is acyclic.

2 ⇒ 3: If every two nodes of G are joined by a unique path, then G is connected and
n = e + 1. G is connected since any two nodes are joined by a path. To show n = e + 1,
we use induction. Assume it’s true for less than n points. Removing any edge from G
breaks G into two components, since paths are unique. Suppose the sizes are n1 and n2,
with n1 + n2 = n. By the induction hypothesis, n1 = e1 + 1 and n2 = e2 + 1; but then
n = n1 + n2 = (e1 + 1) + (e2 + 1) = (e1 + e2) + 2 = e− 1 + 2 = e + 1.

3 ⇒ 4: If G is connected and n = e + 1 then G is acyclic. Suppose G has a cycle of length
k. Then there are k points and k edges on this cycle. Since G is connected, for each node
v not on the cycle, there is a shortest path from v to a node on the cycle. Each such path
contains an edge ev not on any other (since they are shortest paths). Thus, the number of
edges is at least e ≥ (n− k) + k = n, which contradicts the assumption n = e + 1.

4 ⇒ 5: If G is acyclic and n = e + 1 then if any two nonadjacent points are joined by a line,
the resulting graph has exactly one cycle. Since G doesn’t have cycles, each component of G
is a tree. Suppose there are k components. Thus, ni = ei + 1 if the i-th component has ei

edges and ni nodes, and therefore n = e+ k. It follows that k = 1, so G is in fact connected,
and therefore a tree. For any pair of disconnected nodes u and v, there is a unique path
between them. Adding the the line (u, v) thus results in a single cycle.

5 ⇒ 1: If G is acyclic joining any nonadjacent points results in a unique cycle, then G is a
tree. Since joining any pair of nonadjacent points gives a cycle, the points must be connected
by a path. Thus G is connected.



Another Proof of Cayley’s Formula

There are several other elegant proofs of Cayley’s formula. Here we’ll give a combinatorial
proof that uses a induction, and a strengthening of the induction hypothesis.

A collection of trees is, naturally, called a forest. Let Tn,k be the number of labeled forests
on {1, . . . , n} consisting of k trees. Then Tn,1 is the number of labeled trees; we want to
show that Tn,1 = nn−2.

Suppose we have a forest F with k trees; we can assume that the vertices {1, 2, . . . , k} are in
different trees. Suppose that vertex 1 is adjacent to i nodes. Then if we delete vertex 1, the
i neighbors together with 2, . . . , k give one vertex each in the components of a forest with
k − 1 + i trees. We can reconstruct the original forest by first fixing i, then choosing the i
neighbors of 1, and then the forest of size k − 1 + i on n− 1 nodes. Therefore,

Tn,k =
n−k∑
i=0

(
n− k

i

)
Tn−1,k−1+i (1)

with the initial conditions T0,0 = 1 and Tn,0 = 0.

Proposition. Tn,k = knn−k−1. In particular, the number of labeled trees is Tn,1 = Tn = nn−2.

Proof. For a given n, suppose this holds for k − 1 ≥ 0. Then using (1) we have

Tn,k =
n−k∑
i=0

(
n− k

i

)
Tn−1,k−1+i

I.H.
=

n−k∑
i=0

(
n− k

i

)
(k − 1 + i)(n− 1)n−1−k−i

=
n−k∑
i=0

(
n− k

i

)
(n− 1− i)(n− 1)i−1

=
n−k∑
i=0

(
n− k

i

)
(n− 1)i −

n−k∑
i=1

(
n− k

i

)
i(n− 1)i−1

= nn−k − (n− k)
n−k∑
i=1

(
n− 1− k

i− 1

)
(n− 1)i−1

= nn−k − (n− k)
n−1−k∑

i=0

(
n− 1− k

i

)
(n− 1)i

= nn−k − (n− k)nn−1−k

= knn−1−k

See [1] for other elegant, and very different proofs of this result.
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Euler’s Formula. If G is a connected plane graph with n vertices, e edges and f faces,
then

n− e + f = 2

Proof. Let T ⊂ E be a subset of edges that forms a spanning tree for G. Let G∗ denote the
dual graph of G, with edge set E∗.

Consider the set of edges T ∗ ⊂ E∗ in the dual graph that correspond to edges in E\T . Then
T ∗ connects all of the faces, since T does not have a cycle. Also, T ∗ does not contain a cycle;
if it did it would separate some vertices of G inside the cycle from the vertices outside the
cycle, which is impossible since T is connected. Thus, T ∗ is a spanning tree of G∗.

Now, the number of vertices in a tree is one larger than the number of edges. Therefore,
n = eT + 1. Similarly, f = eT ∗ + 1. Combining these gives

n + f = (eT + 1) + (eT ∗ + 1) = e + 2.

3



Corollary. Suppose that G is a plane graph with n > 2 vertices. Then

(a) G has a vertex of degree at most 5;

(b) G has at most 3n− 6 edges.

Proof. Let fi be the number of faces with i sides, and let nj be the number of nodes with j
neighbors. Then

f = f1 + f2 + f3 + f4 + · · ·
n = n0 + n1 + n2 + n3 + · · ·

Moreover, since every edge has two endpoints, we have that

2e = n1 + 2n2 + 3n3 + 4n4 + · · ·

That is, every edge contributes 2 to the sum of all degrees. Similarly, we have that

2e = f1 + 2f2 + 3f3 + 4f4 + · · ·

That is, every edge borders two faces.

Now, since every face must have at least 3 sides, we have that in fact

f = f3 + f4 + f5 + · · ·
2e = 3f3 + 4f4 + 5f5 + · · ·

and therefore 2e− 3f ≥ 0.

To prove (a), suppose on the contrary that every vertex had degree at least 6. Then we
would have

n = n6 + n7 + n8 + · · ·
2e = 6n6 + 7n7 + 8n8

which would imply that 2e− 6n ≥ 0. Combining these gives

(2e− 6n) + 2(2e− 3f) = 6(e− f − n) ≥ 0

which implies e ≥ n + f , which contradicts Euler’s formula.

To prove (b), we use the relation 2e− 3f ≥ 0 and Euler’s formula to conclude that

3n− 6 = 3e− 3f ≥ e.
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Corollary. Every plane graph can be 6-colored.

Proof. By induction on the number of nodes. For small cases with fewer than 6 nodes, this is
obvious. Suppose that the statement is true for planar graphs with fewer than n nodes, and
let G be a plane graph with n nodes. Then G has a vertex v that has degree no larger than
5. Removing v from G, the resulting graph G′ = G − {v} is 6-colorable, by the induction
hypothesis. But since v has no more than 5 neighbors, we can extend the coloring to all of
G by coloring v different from its neighbors.
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