Theorem. Let G be a graph with n nodes and e edges. Then the following are equivalent:

1. G is a tree (connected and acyclic).
Every two nodes of G are joined by a unique path.
G is connected and n = e + 1.

G is acyclic and n = e + 1.

AT B

G is acyclic and if any two nonadjacent points are joined by a line, the resulting graph
has exactly one cycle.

Proof. We need to show that 1 = 2=3=4=5= 1.

1= 2: If G is a tree then every two nodes are joined by a unique path. Suppose that there
are two paths P, and P, between node u and node v. Tracing the two paths simultaneously
from u to v, let w be the first point that is on both paths, but for which the successor points
are on different paths. Also, let « be the next point after w that is is on both paths. Then
the paths between w and x on P; and P, together make a cycle. But this can’t happen if G
is acyclic.

2 = 3: If every two nodes of G are joined by a unique path, then G is connected and
n = e+ 1. (G is connected since any two nodes are joined by a path. To show n = e + 1,
we use induction. Assume it’s true for less than n points. Removing any edge from G
breaks G into two components, since paths are unique. Suppose the sizes are n; and no,
with n; + ny = n. By the induction hypothesis, ny = e; + 1 and ny = ey + 1; but then
n=ni+ny=(e1+1)+(e2+1)=(e1+ey)+2=e—1+2=e+1

3= 4: If G is connected and n = e + 1 then G is acyclic. Suppose G has a cycle of length
k. Then there are k points and k edges on this cycle. Since GG is connected, for each node
v not on the cycle, there is a shortest path from v to a node on the cycle. Each such path
contains an edge e, not on any other (since they are shortest paths). Thus, the number of
edges is at least e > (n — k) + k = n, which contradicts the assumption n = e + 1.

4 = 5. If G is acyclic and n = e+ 1 then if any two nonadjacent points are joined by a line,
the resulting graph has exactly one cycle. Since G doesn’t have cycles, each component of G
is a tree. Suppose there are k components. Thus, n; = e; + 1 if the ¢-th component has e;
edges and n; nodes, and therefore n = e+ k. It follows that kK = 1, so G is in fact connected,
and therefore a tree. For any pair of disconnected nodes u and v, there is a unique path
between them. Adding the the line (u,v) thus results in a single cycle.

5= 1: If G is acyclic joining any nonadjacent points results in a unique cycle, then G is a
tree. Since joining any pair of nonadjacent points gives a cycle, the points must be connected
by a path. Thus G is connected.



Another Proof of Cayley’s Formula

There are several other elegant proofs of Cayley’s formula. Here we’ll give a combinatorial
proof that uses a induction, and a strengthening of the induction hypothesis.

A collection of trees is, naturally, called a forest. Let T}, ; be the number of labeled forests
on {1,...,n} consisting of k trees. Then T, is the number of labeled trees; we want to
show that T}, ; = n"2,

Suppose we have a forest F' with k trees; we can assume that the vertices {1,2,...,k} are in
different trees. Suppose that vertex 1 is adjacent to 2 nodes. Then if we delete vertex 1, the
1 neighbors together with 2,...,k give one vertex each in the components of a forest with
k — 1+ trees. We can reconstruct the original forest by first fixing ¢, then choosing the i
neighbors of 1, and then the forest of size Kk — 1 + i on n — 1 nodes. Therefore,

n—k
n—=k
f=3 (") v 1)

i=0
with the initial conditions Ty = 1 and 7;, o = 0.

Proposition. T, ;, = kn"~*=1_1In particular, the number of labeled trees is Th1=T,=n""2

Proof. For a given n, suppose this holds for £ — 1 > 0. Then using (1) we have
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See [1] for other elegant, and very different proofs of this result.



Euler’s Formula. If G is a connected plane graph with n vertices, e edges and f faces,
then
n—e+ f=2

Proof. Let T' C E be a subset of edges that forms a spanning tree for G. Let G* denote the
dual graph of GG, with edge set E*.

Consider the set of edges T* C E* in the dual graph that correspond to edges in F\T. Then
T™ connects all of the faces, since T does not have a cycle. Also, T does not contain a cycle;
if it did it would separate some vertices of G inside the cycle from the vertices outside the
cycle, which is impossible since T' is connected. Thus, 7™ is a spanning tree of G*.

Now, the number of vertices in a tree is one larger than the number of edges. Therefore,
n = ep + 1. Similarly, f = ey« + 1. Combining these gives

n+f=(er+1)+ (er-+1)=e+2.



Corollary. Suppose that GG is a plane graph with n > 2 vertices. Then

(a) G has a vertex of degree at most 5;

(b) G has at most 3n — 6 edges.

Proof. Let f; be the number of faces with ¢ sides, and let n; be the number of nodes with j
neighbors. Then

J = htfotfa+fat--
n = n0+n1+n2—i—n3+~'

Moreover, since every edge has two endpoints, we have that
2¢e = nyp+2ny+3nz+4ng + -

That is, every edge contributes 2 to the sum of all degrees. Similarly, we have that
2e = fi+2fa+3fs+4fst---

That is, every edge borders two faces.

Now, since every face must have at least 3 sides, we have that in fact

= f+fatfs+-
% = Bfy+Afit 5t

and therefore 2e — 3f > 0.

To prove (a), suppose on the contrary that every vertex had degree at least 6. Then we
would have

n = Ngt+ny+ng+---
2e = 6n6+7n7+8n8

which would imply that 2e — 6n > 0. Combining these gives
(2e —6n) +2(2e—3f)=6(e—f—n)>0
which implies e > n + f, which contradicts Euler’s formula.

To prove (b), we use the relation 2e — 3f > 0 and Euler’s formula to conclude that

3n—6=3e—3f >e.



Corollary. Every plane graph can be 6-colored.

Proof. By induction on the number of nodes. For small cases with fewer than 6 nodes, this is
obvious. Suppose that the statement is true for planar graphs with fewer than n nodes, and
let G be a plane graph with n nodes. Then G has a vertex v that has degree no larger than
5. Removing v from G, the resulting graph G’ = G — {v} is 6-colorable, by the induction
hypothesis. But since v has no more than 5 neighbors, we can extend the coloring to all of
G by coloring v different from its neighbors.
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