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The $1M Questions

Millenium Prize Problems

Birch and Swinnerton-Dyer Conjecture
Hodge Conjecture

Navier-Stokes Equations

P vs NP

Poincaré Conjecture < solved!
Riemann Hypothesis

Yang-Mills Theory

The P versus NP problem

Is perhaps the biggest open problem

in computer science (and mathematics!) today.

(Even featured in the TV show NUMB3RS)

But what is the P-NP problem?
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Suppose it takes you S(n) to
solvenxnxn

V(n) time to verify the solution
Fact: V(n) = O(n2 x n?)

Question: is there some
constant c such that

S(n)=<nc ?
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Does there exist an
algorithmfornxnxn
Sudoku that runs in
time p(n) for some
polynomial p() ?

The P versus NP problem
(informally)

Is proving a theorem much more difficult
than checking the proof of a theorem?
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Let’s start at the beginning...

Hamilton Cycle

Given a graph G = (V,E), a cycle that visits all
the nodes exactly once

The Problem “HAM”

Input: Graph G = (V,E)
Output: YES if G has a Hamilton cycle
NO if G has no Hamilton cycle

The Set “HAM”
HAM = { graph G | G has a Hamilton cycle }

Circuit-Satisfiability
Input: A circuit C with one output

Output: YES if Cis satisfiable
NO if C is not satisfiable

L
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The Set “SAT”
SAT = { all satisfiable circuits C }

Bipartite Matching
Input: A bipartite graph G = (U,V,E)

Output: YES if G has a perfect matching
NO if G does not
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The Set “BI-MATCH”

BI-MATCH = { all bipartite graphs that have a
perfect matching }
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Sudoku

Input: n x n x n sudoku instance

Output: YES if this sudoku has a solution
NO if it does not

The Set “SUDOKU”
SUDOKU = { All solvable sudoku instances }

Decision Versus Search Problems

Decision Problem Search Problem
YES/NO answers
Find a Hamilton cycle
Does G have a in G if one exists,
Hamilton cycle? else return NO
Can G be Firjld a 3-co_loring of
3-colored ? G if one exists, else
return NO

Reducing Search to Decision

Given an algorithm for decision Sudoku,
devise an algorithm to find a solution

Idea:
Fill in one-by-one and
use decision algorithm

Reducing Search to Decision

Given an algorithm for decision HAM,
devise an algorithm to find a solution

Idea:
Find the edges of the
cycle one by one

Decision/Search Problems

We’ll study decision problems because
they are almost the same (asymptotically)
as their search counterparts




Polynomial Time and
The Class “P” of
Decision Problems
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What is an efficient algorithm?

\
Is an O(n) algorithm efficient?
How about O(n log n)? polynomial time
> o
O(n?)? O(n°) for some
constant ¢
O(n1%) ? )
o(nlog n) ?
non-polynomial
0" ? ™ time
o(n!) ? J

Does an algorithm
running in O(n"%) time
count as efficient?

We consider non-polynomial time
algorithms to be inefficient.

And hence a necessary condition for an
algorithm to be efficient is that it should
run in poly-time.

Asking for a poly-time algorithm for a
problem sets a (very) low bar when asking
for efficient algorithms.

The question is: can we achieve even this
for 3-coloring?
SAT?
Sudoku?
HAM?

The Class P

We say asetLC X *isin P if thereis
a program A and
a polynomial p()

such that for any x in 2 *,

A(x) runs for at most p(|x|) time
and answers question “is x in L?” correctly.

The Class P

The class of all sets L that can be
recognized in polynomial time.

The class of all decision problems that
can be decided in polynomial time.
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Why are we looking only at sets C 7 *?

What if we want to work with graphs or
boolean formulas?

Languages/Functions in P?

Example 1:
CONN = {graph G: G is a connected graph}

Algorithm A;:

If G has n nodes, then run depth first search
from any node, and count number of distinct
nodes you see. If you see n nodes, G € CONN,
else not.

Time: p,(Ix]) = ©(|x])-

Languages/Functions in P?
HAM, SUDOKU, SAT are not known to be in P

CO-HAM ={ G | G does NOT have a
Hamilton cycle}

CO-HAM € P if and only if HAM € P

Onto the new class, NP

Verifying Membership
Is there a short “proof” | can give you for:
G € HAM?
G € BI-MATCH?
C € SAT?

G € CO-HAM?

NP
AsetLENP

if there exists an algorithm A and a
polynomial p()

ForallxeL Forallx' &L
there exists y with For all y’ with
Iyl = p(IxI) ly'l = p(Ix'])

such that A(x,y) = YES we have A(x',y') = NO

in p(|x|) time in p(|x]) time
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Recall the Class P

WesayasetLC Z*isin P if thereis
a program A and
a polynomial p()

such that for any x in 2 *,

A(x) runs for at most p(|x|) time
< and answers question “is x in L?” correctly.

can think of A as “proving” that xisinL

NP
AsetLENP

if there exists an algorithm A and a
polynomial p()

ForallxelL Forall x' &L
there exists a y with For all y’ with |
Iyl = p(IxI) y'l = p(Ix'])

such that A(x,y) = YES Such that A(x',y’) = NO

in p(|x|) time in p(|x]) time

Example: HAM € NP

Let A(x,y) be a program that takes two
strings x and y, and returns YES if the
following conditions hold otherwise it
returns NO.

+ y is a representation of a labeled graph

* x is a representation of a cycle with the
same labeled vertices as y

« every edge of the cycle x is in the graph y

(All of these conditions can be easily checked in linear time)

By our definition, this proves HAM € NP

The Class NP

The class of sets L for which there exist
“short” proofs of membership
(of polynomial length)
that can be “quickly” verified
(in polynomial time).

Recall: A doesn’t have to find these proofs y; it just needs to be
able to verify that y is a “correct” proof.

P C NP

For any L in P, we can just take y to be the
empty string and satisfy the requirements.

Hence, every language in P is also in NP.

Languages/Functions in NP?

G € HAM? (Yes, already saw)
G € BI-MATCH? (isin P)

G € SAT? (Yes. explain it)
G € CO-HAM? (not clear)

Proof that something is in NP is often trivial.




Summary: P versus NP

Set L is in P if membership in L can be
decided in poly-time.

Set L is in NP if each x in L has a short “proof
of membership” that can be verified in poly-

time.
Fact: PC NP

Question: Does NP C P ?
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Why Care?

NP Contains Lots of Problems
We Don’t Know to be in P

Classroom Scheduling
Packing objects into bins
Scheduling jobs on machines

Finding cheap tours visiting a subset of cities

Allocating variables to registers
Finding good packet routings in networks
Decryption

OK, OK, | care...

But where do | begin
if | want to reason about
the P=NP problem?

How can we prove that
NP C P?

| would have to show that
every setin NP has a
polynomial time algorithm...

How do | do that?
It may take a long time!
Also, what if | forgot one of
the sets in NP?

We can describe
just one problem L in NP,
such that
if this problem L isin P,
then NP CP.

Itis a problem that can
capture all other problems
in NP.




The “Hardest” Setin NP
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BEH R B Sudoku
—— Sudoku has a
; : polynomial time
algorithm
if and only if
— P=NP

The “Hardest” Sets in NP
Sudoku Clique

SAT Independent-Set

3-Colorability HAM

These problems are all
“polynomial-time equivalent”.

l.e., each of these can be reduced to any
of the others in poly-time

“Poly-time reducible to each other”

Reducing problem Y to problem X in poly-time

F is poly-time
computable

Answer

Instance |, of g lr;s;?lnt):zf
problem Y }V)é:\a Xroblevm X {,,;1\\1
| <= [EEys
ﬁ 7| Answer | ¥
Oracle for Oracle for
problem Y problem X

How do you prove these
are the hardest?

Theorem [Cook/Levin]:

SAT is one language in NP, such that if we
can show SAT is in P, then we have shown
NPCP.

SAT is a language in NP that can capture all
other languages in NP.

We say SAT is NP-complete.
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Last lecture...

3-colorability Circuit Satisfiability

Last lecture...

SAT and 3COLOR: Two problems that seem
quite different, but are substantially the
same.

Also substantially the same as CLIQUE and
INDEPENDENT SET.

If you get a polynomial-time algorithm for one,

you get a polynomial-time algorithm for ALL.

|Any language in NP |

can be reduced
(in polytime to)
an instance of

v
SAT

can be reduced
(in polytime to)
an instance of

v

3COLOR | [hence 3coLoris NP-complete

Definition of P and NP

Definition of problems

SAT, 3-COLOR, HAM,
SUDOKU, BI-MATCH

SAT, 3-COLOR, HAM, SUDOKU
all essentially equivalent.

Here’s What : )
You Need t Solve any one in poly-time
ou Need to = solve all of them in poly-time
Know...
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