.. 15-251

Great Theoretical Ideas

-iA Computer Science
for

4/28/10

Complexity Theory:
The P vs NP question

Lecture 27 (April 27, 2010)

The Clay Mathematics Institute

NogkwNS

The $1M Questions

Millenium Prize Problems

Birch and Swinnerton-Dyer Conjecture
Hodge Conjecture

Navier-Stokes Equations

P vs NP

Poincaré Conjecture < solved!
Riemann Hypothesis

Yang-Mills Theory

The P versus NP problem

Is perhaps the biggest open problem

in computer science (and mathematics!) today.

(Even featured in the TV show NUMB3RS)

But what is the P-NP problem?

N
(o]
o o
N
o]

I 3x3x3

4/28/10

nxnxn

Sudoku
[F] 12 6 c|B|3
C 4|8 EJA 0 D
DlA[8] | 3] [2]7 F 6| 5
6 E F C 8 7
_9'3 | ,A 2
E 6|F]5 8|4 3 1
cla| [1]3/e[p| ol 2| |E [
D 6 5|E|B 1 04
96| 1 JFi372] Jo| A]
Al8 Dlo|e|B 2|5
2 A D 5|6 C F
5 2 A 4.8
Bl [| 4 |1 [AT2|F[| o
o| |7 Flajc| |p 2|9(B
5 |1 | |AjeolB | | D
2/ D A 9 1 4
4x4x4
Sudoku

Suppose it takes you S(n) to
solvenxnxn

V(n) time to verify the solution
Fact: V(n) = O(n2 x n?)

Question: is there some
constant c such that

S(n)=<nc ?

Sudoku
2/9 4[377/8]1 56
1,7, 3|64 5|98 2
5682 1 9|7 3 4
65 7|1 92348
9 8 2|43 6|51 7
43118 5/ 7|6 2 9
319|7/8 4|12/ 65
7 4 6|52 1|8 9 3
82 519 6 3|4 71
] 3x3x3
Sudoku
O|F|2|2]JA|7]|5 1 B6|E|D]JC|B 3]
ISENE BRRE REER AR
AR BREE HEEH OREE
REEE DERE BREE BN
IEEE ENE NEE 512
EB|7|0J2/A|6|F|5 8 4|0 3 1
NBEE BERE BBRE BEEE
AlDlzlelslslelBls1]7iclelrlols
BEEE BENE GEEE ERE
[7]clF]ale|ale]cDlole]B]1]2]5
AENE DREE PR BREE
S5|E[0|DJFIC[2]|2]B!7 Al3 4 8|6
DEEE EENE IEDHE G 0
To[E[7]s/e[F[3|cl«|p[e|al2]e[B
IBEE AR BREE BERE
~l2/D AlE 9| € E 1 4
4x4x4
i 5 g‘é P vs NP problem
P AN e _

Does there exist an
algorithmfornxnxn
Sudoku that runs in
time p(n) for some
polynomial p() ?

The P versus NP problem
(informally)

Is proving a theorem much more difficult
than checking the proof of a theorem?

4/28/10

Let’s start at the beginning...

Hamilton Cycle

Given a graph G = (V,E), a cycle that visits all
the nodes exactly once

The Problem “HAM”

Input: Graph G = (V,E)
Output: YES if G has a Hamilton cycle
NO if G has no Hamilton cycle

The Set “HAM”
HAM = { graph G | G has a Hamilton cycle }

Circuit-Satisfiability
Input: A circuit C with one output

Output: YES if Cis satisfiable
NO if C is not satisfiable

L
W

The Set “SAT”
SAT = { all satisfiable circuits C }

Bipartite Matching
Input: A bipartite graph G = (U,V,E)

Output: YES if G has a perfect matching
NO if G does not

o —o

o

b 0 ° o
[) 0 ’
v "]
0L\, 0 v

s

<

The Set “BI-MATCH”

BI-MATCH = { all bipartite graphs that have a
perfect matching }

4/28/10

Sudoku

Input: n x n x n sudoku instance

Output: YES if this sudoku has a solution
NO if it does not

The Set “SUDOKU”
SUDOKU = { All solvable sudoku instances }

Decision Versus Search Problems

Decision Problem Search Problem
YES/NO answers
Find a Hamilton cycle
Does G have a in G if one exists,
Hamilton cycle? else return NO
Can G be Firjld a 3-co_loring of
3-colored ? G if one exists, else
return NO

Reducing Search to Decision

Given an algorithm for decision Sudoku,
devise an algorithm to find a solution

Idea:
Fill in one-by-one and
use decision algorithm

Reducing Search to Decision

Given an algorithm for decision HAM,
devise an algorithm to find a solution

Idea:
Find the edges of the
cycle one by one

Decision/Search Problems

We’ll study decision problems because
they are almost the same (asymptotically)
as their search counterparts

Polynomial Time and
The Class “P” of
Decision Problems

4/28/10

What is an efficient algorithm?

\
Is an O(n) algorithm efficient?
How about O(n log n)? polynomial time
> o
O(n?)? O(n°) for some
constant ¢
O(n1%) ?)
o(nlog n) ?
non-polynomial
0" ? ™ time
o(n!) ? J

Does an algorithm
running in O(n"%) time
count as efficient?

We consider non-polynomial time
algorithms to be inefficient.

And hence a necessary condition for an
algorithm to be efficient is that it should
run in poly-time.

Asking for a poly-time algorithm for a
problem sets a (very) low bar when asking
for efficient algorithms.

The question is: can we achieve even this
for 3-coloring?
SAT?
Sudoku?
HAM?

The Class P

We say asetLC X *isin P if thereis
a program A and
a polynomial p()

such that for any x in 2 *,

A(x) runs for at most p(|x|) time
and answers question “is x in L?” correctly.

The Class P

The class of all sets L that can be
recognized in polynomial time.

The class of all decision problems that
can be decided in polynomial time.

4/28/10

Why are we looking only at sets C 7 *?

What if we want to work with graphs or
boolean formulas?

Languages/Functions in P?

Example 1:
CONN = {graph G: G is a connected graph}

Algorithm A;:

If G has n nodes, then run depth first search
from any node, and count number of distinct
nodes you see. If you see n nodes, G € CONN,
else not.

Time: p,(Ix]) = ©(|x])-

Languages/Functions in P?
HAM, SUDOKU, SAT are not known to be in P

CO-HAM ={ G | G does NOT have a
Hamilton cycle}

CO-HAM € P if and only if HAM € P

Onto the new class, NP

Verifying Membership
Is there a short “proof” | can give you for:
G € HAM?
G € BI-MATCH?
C € SAT?

G € CO-HAM?

NP
AsetLENP

if there exists an algorithm A and a
polynomial p()

ForallxeL Forallx' &L
there exists y with For all y’ with
Iyl = p(IxI) ly'l = p(Ix'])

such that A(x,y) = YES we have A(x',y') = NO

in p(|x|) time in p(|x]) time

4/28/10

Recall the Class P

WesayasetLC Z*isin P if thereis
a program A and
a polynomial p()

such that for any x in 2 *,

A(x) runs for at most p(|x|) time
< and answers question “is x in L?” correctly.

can think of A as “proving” that xisinL

NP
AsetLENP

if there exists an algorithm A and a
polynomial p()

ForallxelL Forall x' &L
there exists a y with For all y’ with |
Iyl = p(IxI) y'l = p(Ix'])

such that A(x,y) = YES Such that A(x',y’) = NO

in p(|x|) time in p(|x]) time

Example: HAM € NP

Let A(x,y) be a program that takes two
strings x and y, and returns YES if the
following conditions hold otherwise it
returns NO.

+ y is a representation of a labeled graph

* x is a representation of a cycle with the
same labeled vertices as y

« every edge of the cycle x is in the graph y

(All of these conditions can be easily checked in linear time)

By our definition, this proves HAM € NP

The Class NP

The class of sets L for which there exist
“short” proofs of membership
(of polynomial length)
that can be “quickly” verified
(in polynomial time).

Recall: A doesn’t have to find these proofs y; it just needs to be
able to verify that y is a “correct” proof.

P C NP

For any L in P, we can just take y to be the
empty string and satisfy the requirements.

Hence, every language in P is also in NP.

Languages/Functions in NP?

G € HAM? (Yes, already saw)
G € BI-MATCH? (isin P)

G € SAT? (Yes. explain it)
G € CO-HAM? (not clear)

Proof that something is in NP is often trivial.

Summary: P versus NP

Set L is in P if membership in L can be
decided in poly-time.

Set L is in NP if each x in L has a short “proof
of membership” that can be verified in poly-

time.
Fact: PC NP

Question: Does NP C P ?

4/28/10

Why Care?

NP Contains Lots of Problems
We Don’t Know to be in P

Classroom Scheduling
Packing objects into bins
Scheduling jobs on machines

Finding cheap tours visiting a subset of cities

Allocating variables to registers
Finding good packet routings in networks
Decryption

OK, OK, | care...

But where do | begin
if | want to reason about
the P=NP problem?

How can we prove that
NP C P?

| would have to show that
every setin NP has a
polynomial time algorithm...

How do | do that?
It may take a long time!
Also, what if | forgot one of
the sets in NP?

We can describe
just one problem L in NP,
such that
if this problem L isin P,
then NP CP.

Itis a problem that can
capture all other problems
in NP.

The “Hardest” Setin NP

4/28/10

BEH R B Sudoku
—— Sudoku has a
; : polynomial time
algorithm
if and only if
— P=NP

The “Hardest” Sets in NP
Sudoku Clique

SAT Independent-Set

3-Colorability HAM

These problems are all
“polynomial-time equivalent”.

l.e., each of these can be reduced to any
of the others in poly-time

“Poly-time reducible to each other”

Reducing problem Y to problem X in poly-time

F is poly-time
computable

Answer

Instance |, of g lr;s;?lnt):zf
problem Y }V)é:\a Xroblevm X {,,;1\\1
| <= [EEys
ﬁ 7| Answer | ¥
Oracle for Oracle for
problem Y problem X

How do you prove these
are the hardest?

Theorem [Cook/Levin]:

SAT is one language in NP, such that if we
can show SAT is in P, then we have shown
NPCP.

SAT is a language in NP that can capture all
other languages in NP.

We say SAT is NP-complete.

4/28/10

Last lecture...

3-colorability Circuit Satisfiability

Last lecture...

SAT and 3COLOR: Two problems that seem
quite different, but are substantially the
same.

Also substantially the same as CLIQUE and
INDEPENDENT SET.

If you get a polynomial-time algorithm for one,

you get a polynomial-time algorithm for ALL.

|Any language in NP |

can be reduced
(in polytime to)
an instance of

v
SAT

can be reduced
(in polytime to)
an instance of

v

3COLOR | [hence 3coLoris NP-complete

Definition of P and NP

Definition of problems

SAT, 3-COLOR, HAM,
SUDOKU, BI-MATCH

SAT, 3-COLOR, HAM, SUDOKU
all essentially equivalent.

Here’s What :)
You Need t Solve any one in poly-time
ou Need to = solve all of them in poly-time
Know...

10

