15-251

A\AITS —~ ~

Some vV CDUME

Grea+Thearetical Ideas
i-Computer-Science

about Generating Functions

What does this do?

O, .)Y <=17

. #,)N %)?

(., +1,0): % = | && ?
(printf("%d\t", [), (_, +1,0)):
% >1&& % < | ? (_ 1+
L %

%_))_<_* 7

(., #1,_):0;}main(){_(100,0,0);}

Turing’s Legacy:
The Limits Of Computation

1,

.
.
4

Anything | say
SEVARR LR

This lecture will change the way you
think about computer programs...

Many questions which appear easy at first
glance are impossible to solve in general

The HELLO assignment

Write a Java program to output the words
“HELLO WORLD” on the screen and halt.

Space and time are not an issue.
The program is for an ideal computer.

PASS for any working HELLO program, no
partial credit.

Grading Script

The grading script G must be able to take any
Java program P and grade it.

Pass, if P prints only the words

G(P)= HELLO WORLD” and halts.

Fail, otherwise.

How exactly might such a script work?

What does this do?

O, .)Y <=17

. #,)N %)?

(., +1,0): % = | && ?
(printf("%d\t", [), (_, +1,0)):
% >1&& % < | ? (_ 1+
L %

%_))_<_* 7

(., #1,_):0;}main(){_(100,0,0);}

Nasty Program

n:=0;

while (n is not a counter-example
to the Riemann Hypothesis) ({

n++;

}
print “Hello World”;

The nasty program is a PASS if and only if the
Riemann Hypothesis is false.

A TA nightmare: Despite
the simplicity of the
HELLO assignment,

there is no program to
correctly grade it!

(4)2\ And we will prove this.

The theory of what can
and can’t be computed
by an ideal computer is
called
Computability Theory
or Recursion Theory.

From the last lecture:

Are all reals describable? NO
Are all reals computable? NO

We saw that
computable describable
but do we also have
describable computable?

The “grading function” we just described
iIs not computable! (We’ll see a proof soon.)

This lecture will hopefully shed light on what
is and isn't possible using a program.

But wait! Why are we
reasoning about
“programs”? Don't we
need to use Turing
Machines to be
mathematically
precise?

Not necessarily.
Remember the
Church-Turing Thesis:
any reasonable (and
sufficiently powertful)
notion of a “program”
IS equivalent to a
Turing Machine. It's
okay to just reason
about “algorithms”.

What's Allowed in an “Algorithm”?

Anything that we can create
using Turing Machines!

Some examples:

* Arrays, pointers * Arithmetic operations
* Functions * Conditionals (if)
* Integers, strings * Loops (while, for, do)

As long as we use reasonable primitives like these,
we are really reasoning about Turing Machines,
so our statements have a formal backing.

Extending the ldea of a Program

Program Turing Machine

Description of states

Source code "
and transitions

Write to a special

Print statement “output” area of the tape

Return true/false Accept/Reject

All of the proofs in this lecture will be about programs.
We are still being rigorous because of this equivalence.

Computable Function

Fix a finite set of symbols, 2

A functionf: 2° 27 is computable if there is a
program P that when executed on an ideal
computer (one with infinite memory), computes f.

That is, for all strings xin 27, f(x) = P(x).

Hence: countably many computable functions!

There are only
countably many
programs.

Hence, there are only
countably many
computable
functions.

Uncountably Many Functions

The functions f: 2 {0,1} are in
1-1 onto correspondence with the
subsets of 2" (the powerset of 2.7).

Subset S of 2~ Function f,
XinS fs(x) =1
xnotinS fs(x)=0

Hence, the setof all f:~° {0,1} has

the same size as the power set of X7,
which is uncountable.

Countably many
computable functions.

Uncountably many
functions from 2" to {0,1}.

Thus, most functions
from 2" to {0,1} are not
computable.

Decidable/Undecidable Sets

A set (more precisely, alanguage) L 2'is
said to be decidable (or recursive) if there
exists a program P such that:
P(x)=yes,ifx L
P(x)=no, if x L

Notice that this is the Turing Machine
equivalent of a regular language.

The theory becomes nicer if we restrict
“computation” to the task of deciding
membership in a set.

Again, by giving a counting
argument, we can say that
there must be some
undecidable set.

The set of all languages is
uncountable, but there can
only be countably many
decidable languages
because there are only
countably many programs.

Can we explicitly
describe an
undecidable set?

The Halting Problem

Notation And Conventions

When we write P by itself, we are talking
about the text of the source code for P.

P(x) means the output that arises from
running program P on input x, assuming
that P eventually halts.

P(x) = means P did not halt on x

The meaning of P(P)

It follows from our conventions that P(P)
means the output obtained when we run
P on the text of its own source code.

The Halting Set K

Definition:
K is the set of all programs P such that P(P) halts.
K={Program P | P(P) halts }

The Halting Problem

Is the Halting Set K decidable? In other words,
is there a program HALT such that:

HALT(P) = vyes, if P(P) halts
HALT(P) = no, if P(P)does not halt

THEOREM: There is no program to
solve the halting problem
(Alan Turing 1937)

Suppose a program HALT existed that
solved the halting problem.

HALT(P) = yes,if P(P) halts
HALT(P) = no, if P(P)does not halt

We will call HALT as a subroutine in a new
program called CONFUSE.

CONFUSE

CONFUSE(P)
{ if (HALT(P))
then loop forever; lli.e., we don't halt

else exit; lli.e., we halt
/| text of HALT goes here

}
Does CONFUSE(CONFUSE) halt?

CONFUSE

CONFUSE(P)
{ if (HALT(P))
then loop forever; lli.e., we don't halt
else exit; lli.e., we halt
Il text of HALT goes here }

Suppose CONFUSE(CONFUSE) halts:
then HALT(CONFUSE) = TRUE,
so CONFUSE will loop forever on input CONFUSE

Suppose CONFUSE(CONFUSE) does not halt
then HALT(CONFUSE) = FALSE,
so CONFUSE will hgltan ing

Alan Turing (1912-1954)

Theorem: [1937]

There is no program to
solve the halting
problem

Turing’s argument is
essentially the
reincarnation of
Cantor’s Diagonalization
argument that we saw
in the previous lecture.

All Programs (the input)

All Programs

Programs (computable functions) are countable,
so we can put them in a (countably long) list

All Programs (the input)

All Programs

YES, if P,(P) halts
No, otherwise

All Programs (the input)

All Programs

Letd.=
HALT(P,)

CONFUSE(P,) halts iff d. = no
(The CONFUSE function is the negation of the diagonal.)

Hence CONFUSE cannot be on this list.

Is there a real
number that can be
described, but not
computed?

Consider the real
number R whose
binary expansion
has a1 in the
jt" position iff the jt
program halts on
input itself.

Proof that R cannot be computed

Suppose itis, and program FRED computes it.
then consider the following program:

MYSTERY(program text P)
for j=0 to forever do {

if (P==P))

then use FRED to compute jt" bit of R

return YES if (bit==1), NO if (bit ==0)
}

MYSTERY solves the halting problem!

I'm still not satisfied by
the CONFUSE
argument that the
Halting Problem is
undecidable. Isn't there
a simpler way to
specifically show an
undecidable problem?

There actually is a simpler
proof, but showing it
requires us to extend our
understanding of what
Turing Machines are
capable of.

Reminder: What is a Turing
Machine Capable of?

Some examples:

* Arrays, pointers * Arithmetic operations
* Functions * Conditionals (if)
* Integers, strings * Loops (while, for, do)

But what about “obtain a copy of my
own source code”? Is this allowed as
pseudocode for an “algorithm”?

Have we seen something like this before?

Yes, we have seen this
before! The Auto-cannibal
Maker assignment
demonstrated that given a
program (“Eat”), itis
possible to construct a
program (the “Auto-
cannibal”) that behaves like
Eat but is aware of its own
source code.

The assignment was in
C++/Java, but the
construction is possible with
Turing Machines as well.
This result is known as the
recursion theorem: when
writing an algorithm, it is
always possible for that
algorithm to be aware of its
own source code.

Using the recursion
theorem, we can come
up with a simpler
example of an
undecidable problem.

A Simpler Variant of the Halting Set

Definition:

K, is the set of all programs P that halt when
given no input.

K,={Program P | P() halts }

K, is much simpler than K!

K,is Undecidable

Suppose there was some program HALT2 that
decides K. Consider the following program:

CONTRADICT()

{
Let s be the source code for CONTRADICT;

if (HALT2(s))
then loop forever;

else exit;
Il text of HALT2 goes here

}

CONTRADICT is able to directly turn around and
contradict the statement from HALT2, so HALT2 cannot
be correct in all cases, so K is undecidable.

Recursively Enumerable Sets

Recursively Enumerable

A set (more precisely, alanguage) L 2'is
defined to be recursively enumerable (or

semi-decidable) if there exists a program
P such that:

If x L, then P(x) halts and outputs “yes”.
If x L, then either P(x) halts and outputs
“no”, or P(x) does not halt.

Does decidable imply recursively enumerable? Yes!
Does recursively enumerable imply decidable? No!

Example: The Halting Set K

Even though K is not decidable, it is easy to
show that it is recursively enumerable. Here
is a program P that demonstrates that fact:

HALF_HALT(P)

{
run P(P);

output “yes”;

}

HALF_HALT will always output “yes” if P(P) halts,
and will never output “yes” if P(P) does not halt,
which is all that needs to be true.

Why the Name “Enumerable”?

A language L is recursively enumerable if and
only if there is some program P that enumerates
it. Such a program must output an infinite list of
strings, where each string that is output belongs
to L and each string in L eventually shows up at
least once in the list.

How do we Enumerate the Halting Set?

ENUM_HALT(P)

{
for each natural number i
{
For each program P of length i
{
Run P(P) for i steps;
If P(P) halted in that time, output it
}
}

A Non-Example?

Is there a simple set that is not recursively
enumerable?

Yes! The complement of the Halting Set
cannot be recursively enumerable:

K'={Program P | P(P) does not halt}

K'is not Recursively Enumerable

Proof:

Suppose that there was a program HALF_NON_HALT
that demonstrated that K* was recursively enumerable.
HALT(P)

{
for each natural number i:
{
run HALF_HALT(P) for i steps;
run HALF_NON_HALT(P) for i steps;
if either one halts, we know the correct answer, so output it;
}
}

One of the two calls must eventually finish, so HALT
decides K, even though K is undecidable! Contradiction!

In general, if a program
IS recursively
enumerable and its
complementis
recursively enumerable,

then that program must
be decidable.

Computability Vocabulary Overview

* A set Sis decidable if there is a program that returns
“yes” on input x whenever x S and returns “no” on
input x whenever x S.

*A set S is recursively enumerable if there is a program
that returns “yes” on input x wheneverx S.If x S,
then the program may either return “no” or it may run
forever.

* A function f is computable if there is a program P such
that for all strings x, P(x) = f(x).

* A real number x is computable if there is a program P
that outputs the digits of x in order, in such a way that
every digit is eventually output.

Oracles and Reductions

Oracle For Set S

Isx S?

YES/NO

Oracle
for S

Example Oracle
S = Odd Naturals

»

Oracle
for S

K,= the set of programs that take

no input and halt

Hey, | ordered an
oracle for the
famous halting
set K, but when |

opened the
package it was an

oracle for the
different set K,,.

GIVEN:
Oracle

for K,

But you can use this oracle for K,

to build an oracle for K.

K,= the set of programs that take

no input and halt
P =[inputl; Q]
Does P(P) halt?

Oracle
for K

Oracle

for K,

We’ve reduced the problem
of deciding membership in
K to the problem of

deciding membership in K.

Hence, deciding
membership for K, must be

at least as hard as deciding
membership for K.

Thus if K, were

decidable
then K would be as well.

We already know K is not
decidable, hence K, is

not decidable.

HELLO = the set of programs that
print hello and halt

Does P halt?
\ Let P’ be P with all print
k statements removed.
(assume there are
no side effects)

Is [P’; print HELLO]
a hello program?

—

BUILD:)
Oracle

for K, Oracle

Hence, the set HELLO is
not decidable.

EQUAL = All <P,Q> such that P and Q have
identical output behavior on all inputs

IsPin set HELLO?

Let HI = [print HELLO]

Oracle

Halting with input, Halting
without input, HELLO, and
EQUAL are all undecidable.

Turing Machine/Program
equivalence

The Halting Problem:
Definition, Proof of
Undecidability

The recursion theorem

Recursively
enumerable sets

')
I
=
a e 1
-|I \ ¥ I ILL,I:':"'I :
[M5 w e N b
b By e
} - 3 4 " i

4 T

Here's What Oracles and Computability
You Need to reductions

Know...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

