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What does this do?

_(__,___,____){___/__<=1?
_(__,___+1,____):!(___%__)?
_(__,___+1,0):___%__==___/ __&&!____?
(printf("%d\t",___/__),_(__,___+1,0)):___
%__>1&&___%__<___/__?_(__,1+ 
___,____+!(___/__%(___
%__))):___<__*__?
_(__,___+1,____):0;}main(){_(100,0,0);} 



Turing’s Legacy: 
The Limits Of  Computation

Anything I say 
say is false!



This lecture will change the way you 
think about computer programs…

Many questions which appear easy at first 
glance are impossible to solve in general



The HELLO assignment

Write a Java program to output the words 
“HELLO WORLD” on the screen and halt.

Space and time are not an issue. 

The program is for an ideal computer. 

PASS for any working HELLO program, no 
partial credit.



Grading Script

How exactly might such a script work?

The grading script G must be able to take any 
Java program P and grade it.

G(P)=

Pass, if  P prints only the words 
“HELLO WORLD” and halts.

Fail, otherwise.



What does this do?

_(__,___,____){___/__<=1?
_(__,___+1,____):!(___%__)?
_(__,___+1,0):___%__==___/ __&&!____?
(printf("%d\t",___/__),_(__,___+1,0)):___
%__>1&&___%__<___/__?_(__,1+ 
___,____+!(___/__%(___
%__))):___<__*__?
_(__,___+1,____):0;}main(){_(100,0,0);} 



Nasty Program

n:=0;
while (n is not a counter-example 

to the Riemann Hypothesis) {
n++;

}
print “Hello World”;

The nasty program is a PASS if  and only if  the

Riemann Hypothesis is false.



A TA nightmare: Despite 
the simplicity of  the 
HELLO assignment, 

there is no program to 
correctly grade it! 

 And we will prove this.



The theory of  what can 
and can’t be computed 
by an ideal computer is 

called 
Computability Theory 
or Recursion Theory. 



From the last lecture:

The “grading function” we just described
is not computable! (We’ll see a proof  soon.)

Are all reals describable?
Are all reals computable?

NO
NO

We saw that 

computable �  describable

but do we also have 

describable �  computable?

This lecture will hopefully shed light on what
is and isn't possible using a program.



But wait! Why are we 
reasoning about 

“programs”? Don't we 
need to use Turing 

Machines to be 
mathematically 

precise?



Not necessarily. 
Remember the 

Church-Turing Thesis: 
any reasonable (and 
sufficiently powerful) 
notion of  a “program” 

is equivalent to a 
Turing Machine. It's 
okay to just reason 
about “algorithms”.



What's Allowed in an “Algorithm”?

Anything that we can create
using Turing Machines!

● Arithmetic operations
● Conditionals (if)
● Loops (while, for, do)

● Arrays, pointers
● Functions
● Integers, strings

Some examples:

As long as we use reasonable primitives like these,
we are really reasoning about Turing Machines,

so our statements have a formal backing.



Extending the Idea of  a Program

Program Turing Machine

Source code � Description of  states
and transitions

Print statement � Write to a special 
“output” area of  the tape

Return true/false � Accept/Reject

All of  the proofs in this lecture will be about programs. 
We are still being rigorous because of  this equivalence.



Computable Function

Hence:  countably many computable functions!

Fix a finite set of  symbols, Σ

A function f: Σ*�  Σ* is computable if  there is a 
program P that when executed on an ideal 
computer (one with infinite memory), computes f. 

That is, for all strings x in Σ*, f(x) = P(x).



There are only 
countably many 

programs. 

Hence, there are only 
countably many 

computable 
functions.



Uncountably Many Functions

The functions f: Σ*�  {0,1} are in 
1-1 onto correspondence with the 
subsets of  Σ* (the powerset of  Σ* ).

Subset S of  Σ* �  Function fS

x in S  �     fS(x) = 1

x not in S  �    fS(x) = 0

Hence, the set of  all f:Σ* �  {0,1} has 
the same size as the power set of  Σ*, 
which is uncountable.



Countably many 
computable functions.

Uncountably many
functions from Σ* to {0,1}.

Thus, most functions 
from Σ* to {0,1} are not 

computable. 



Decidable/Undecidable Sets

A set (more precisely, a language) L �  Σ* is
said to be decidable (or recursive) if  there
exists a program P such that:

P(x) = yes, if  x �  L
P(x) = no,  if   x �  L

Notice that this is the Turing Machine
equivalent of  a regular language.

The theory becomes nicer if  we restrict
“computation” to the task of  deciding
membership in a set.



Again, by giving a counting 
argument, we can say that 

there must be some 
undecidable set.

The set of  all languages is 
uncountable, but there can 

only be countably many 
decidable languages 

because there are only 
countably many programs.



Can we explicitly 
describe an 

undecidable set?



The Halting Problem



Notation And Conventions

When we write P by itself, we are talking 
about the text of  the source code for P.

P(x) means the output that arises from 
running program P on input x, assuming 
that P eventually halts.

P(x) = �  means P did not halt on x



The meaning of  P(P)

It follows from our conventions that P(P) 
means the output obtained when we run 
P on the text of  its own source code.



The Halting Set K

Definition:

K is the set of  all programs P such that P(P) halts.

K = { Program P | P(P) halts }

The Halting Problem

Is the Halting Set K decidable? In other words, 
is there a program HALT such that:

HALT(P) =     yes, if  P(P) halts

HALT(P) =     no,   if  P(P) does not halt



THEOREM: There is no program to 
solve the halting problem
(Alan Turing 1937)

Suppose a program HALT existed that 
solved the halting problem.

HALT(P) =     yes, if  P(P) halts
HALT(P) =     no,   if  P(P) does not halt

We will call HALT as a subroutine in a new 
program called CONFUSE. 



CONFUSE

Does CONFUSE(CONFUSE) halt?

CONFUSE(P)

{  if  (HALT(P)) 
then loop forever; //i.e., we don't halt

   else exit; //i.e., we halt

   // text of  HALT goes here

}



CONFUSE
CONFUSE(P)

{  if  (HALT(P)) 

then loop forever; //i.e., we don't halt

   else exit; //i.e., we halt

   // text of  HALT goes here  }

Suppose CONFUSE(CONFUSE) halts:

then HALT(CONFUSE) = TRUE,
so CONFUSE will loop forever on input CONFUSE

Suppose CONFUSE(CONFUSE) does not halt
then HALT(CONFUSE) = FALSE,

so CONFUSE will halt on input CONFUSE
CONTRADICTION



Alan Turing (1912-1954)

Theorem: [1937]

There is no program to 
solve the halting 

problem



Turing’s argument is 
essentially the 

reincarnation of  
Cantor’s Diagonalization 
argument that we saw 
in the previous lecture.



P0 P1 P2 … Pj …

P0

P1

…

Pi

…

A
ll 

P
ro

g
ra

m
s

All Programs (the input)

Programs (computable functions) are countable,
so we can put them in a (countably long) list



P0 P1 P2 … Pj …

P0

P1

…

Pi

…

A
ll 

P
ro

g
ra

m
s

All Programs (the input)

YES, if  Pi(Pj) halts
No, otherwise



P0 P1 P2 … Pj …

P0 d0 

P1 d1

… …

Pi di

…
…
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m
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All Programs (the input)

Let di = 
HALT(Pi) 

CONFUSE(Pi) halts iff  di = no
(The CONFUSE function is the negation of  the diagonal.)

Hence CONFUSE cannot be on this list.



Is there a real 
number that can be 
described, but not 

computed?



Consider the real 
number R whose 
binary expansion 

has a 1 in the 
jth position iff  the jth  

program halts on 
input itself.



Proof  that R cannot be computed

MYSTERY solves the halting problem!

Suppose it is, and program FRED computes it.

then consider the following program:

MYSTERY(program text P)

   for j = 0 to forever do {

      if  (P == Pj) 

then use FRED to compute jth bit of  R

      return YES if  (bit == 1), NO if  (bit == 0)

    }



I'm still not satisfied by 
the CONFUSE 

argument that the 
Halting Problem is 

undecidable. Isn't there 
a simpler way to 

specifically show an 
undecidable problem?



There actually is a simpler 
proof, but showing it 

requires us to extend our 
understanding of  what 

Turing Machines are 
capable of.



Reminder: What is a Turing 
Machine Capable of?

● Arithmetic operations
● Conditionals (if)
● Loops (while, for, do)

● Arrays, pointers
● Functions
● Integers, strings

Some examples:

But what about “obtain a copy of  my 
own source code”? Is this allowed as 

pseudocode for an “algorithm”?

Have we seen something like this before?



Yes, we have seen this 
before! The Auto-cannibal 

Maker assignment 
demonstrated that given a 

program (“Eat”), it is 
possible to construct a 

program (the “Auto-
cannibal”) that behaves like 
Eat but is aware of  its own 

source code.



The assignment was in
C++/Java, but the 

construction is possible with 
Turing Machines as well. 

This result is known as the 
recursion theorem: when 
writing an algorithm, it is 
always possible for that 

algorithm to be aware of  its 
own source code.



Using the recursion 
theorem, we can come 

up with a simpler 
example of  an 

undecidable problem.



A Simpler Variant of  the Halting Set

Definition:

K0 is the set of  all programs P that halt when 

given no input.

K0 = { Program P | P() halts }

K0 is much simpler than K!



K0 is Undecidable
Suppose there was some program HALT2 that 
decides K0. Consider the following program:

CONTRADICT()

{

    Let s be the source code for CONTRADICT;

    if  (HALT2(s)) 

then loop forever;

   else exit;

   // text of  HALT2 goes here

}

CONTRADICT is able to directly turn around and 
contradict the statement from HALT2, so HALT2 cannot 

be correct in all cases, so K0 is undecidable.



Recursively Enumerable Sets



Recursively Enumerable

A set (more precisely, a language) L �  Σ* is
defined to be recursively enumerable (or
semi-decidable) if  there exists a program
P such that:

If  x �  L, then P(x) halts and outputs “yes”.

If  x �  L, then either P(x) halts and outputs

        “no”, or P(x) does not halt.

Does decidable imply recursively enumerable?
Does recursively enumerable imply decidable?

Yes!
No!



Example: The Halting Set K

Even though K is not decidable, it is easy to
show that it is recursively enumerable. Here
is a program P that demonstrates that fact:

HALF_HALT(P)

{  
        run P(P);

        output “yes”;

}

HALF_HALT will always output “yes” if  P(P) halts,
and will never output “yes” if  P(P) does not halt,
which is all that needs to be true.



Why the Name “Enumerable”?

A language L is recursively enumerable if  and
only if  there is some program P that enumerates
it. Such a program must output an infinite list of
strings, where each string that is output belongs
to L and each string in L eventually shows up at
least once in the list.



How do we Enumerate the Halting Set?

ENUM_HALT(P)

{

        for each natural number i
        {

                For each program P of  length �  i

                {

                        Run P(P) for i steps;

                        If  P(P) halted in that time, output it
                }

        }

}



A Non-Example?

Is there a simple set that is not recursively
enumerable?

Yes! The complement of  the Halting Set
cannot be recursively enumerable:

K' = {Program P | P(P) does not halt}



HALT(P)

{

        for each natural number i:
        {

                run HALF_HALT(P) for i steps;

                run HALF_NON_HALT(P) for i steps;

                if  either one halts, we know the correct answer, so output it;

        }

}

Proof:

Suppose that there was a program HALF_NON_HALT 
that demonstrated that K' was recursively enumerable.

K' is not Recursively Enumerable

One of  the two calls must eventually finish, so HALT 
decides K, even though K is undecidable! Contradiction!



In general, if  a program 
is recursively 

enumerable and its 
complement is 

recursively enumerable, 
then that program must 

be decidable.



Computability Vocabulary Overview
● A set S is decidable if  there is a program that returns

  “yes” on input x whenever x �  S and returns “no” on

  input x whenever x �  S.

●A set S is recursively enumerable if  there is a program
 that returns “yes” on input x whenever x �  S. If  x �  S,
 then the program may either return “no” or it may run
 forever.

● A function f  is computable if  there is a program P such
 that for all strings x, P(x) = f(x).

● A real number x is computable if  there is a program P
 that outputs the digits of  x in order, in such a way that
 every digit is eventually output.



Oracles and Reductions



Oracle 
for S

Oracle For Set S

Is x �  S?

YES/NO



Example Oracle
 S = Odd Naturals

Oracle 
for S

4?

No

81?

Yes



K0= the set of  programs that take 
no input and halt

GIVEN:
Oracle 
for K0

Hey, I ordered an 
oracle for the 

famous halting 
set K, but when I 

opened the 
package it was an 

oracle for the 
different set K0.

But you can use this oracle for K0

to build an oracle for K.



GIVEN:
Oracle 
for K0

P = [input I; Q]
Does P(P) halt?

BUILD:
Oracle 
for K

Does [I:=P;Q] halt?

K0= the set of  programs that take 
no input and halt



We’ve reduced the problem 
of  deciding membership in 

K to the problem of  
deciding membership in K0.

Hence, deciding 
membership for K0 must be 
at least as hard as deciding 

membership for K.



Thus if  K0 were 
decidable 

then K would be as well. 

We already know K is not 
decidable, hence K0 is 

not decidable.



HELLO = the set of  programs that 
print hello and halt

GIVEN:
HELLO 
Oracle 

Does P halt?

BUILD:
Oracle 
for K0

Let P’ be P with all print 
statements removed. 

(assume there are
no side effects) 

Is [P’; print HELLO]
a hello program?



Hence, the set HELLO is 
not decidable.



EQUAL = All <P,Q> such that P and Q have 
identical output behavior on all inputs

GIVEN:

EQUAL
Oracle 

Is P in set HELLO?

BUILD:
HELLO
Oracle

Let HI = [print HELLO]

Are P and HI equal?



Halting with input, Halting 
without input, HELLO, and

EQUAL are all undecidable.



Here's What 
You Need to 

Know...

Turing Machine/Program 
equivalence

The Halting Problem:
Definition, Proof  of  

Undecidability

The recursion theorem

Recursively
enumerable sets

Oracles and Computability 
reductions
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