
15-251
Great Theoretical Ideas

in Computer Science
about

AWESOMESome

Generating Functions
ProbabilityInfinity

Computability
With Alan! (not Turing)

Mind-
blowing

What does this do?

_(__,___,____){___/__<=1?
_(__,___+1,____):!(___%__)?
_(__,___+1,0):___%__==___/ __&&!____?
(printf("%d\t",___/__),_(__,___+1,0)):___
%__>1&&___%__<___/__?_(__,1+
___,____+!(___/__%(___
%__))):___<__*__?
_(__,___+1,____):0;}main(){_(100,0,0);}

Turing’s Legacy:
The Limits Of Computation

Anything I say
say is false!

This lecture will change the way you
think about computer programs…

Many questions which appear easy at first
glance are impossible to solve in general

The HELLO assignment

Write a Java program to output the words
“HELLO WORLD” on the screen and halt.

Space and time are not an issue.

The program is for an ideal computer.

PASS for any working HELLO program, no
partial credit.

Grading Script

How exactly might such a script work?

The grading script G must be able to take any
Java program P and grade it.

G(P)=

Pass, if P prints only the words
“HELLO WORLD” and halts.

Fail, otherwise.

What does this do?

_(__,___,____){___/__<=1?
_(__,___+1,____):!(___%__)?
_(__,___+1,0):___%__==___/ __&&!____?
(printf("%d\t",___/__),_(__,___+1,0)):___
%__>1&&___%__<___/__?_(__,1+
___,____+!(___/__%(___
%__))):___<__*__?
_(__,___+1,____):0;}main(){_(100,0,0);}

Nasty Program

n:=0;
while (n is not a counter-example

to the Riemann Hypothesis) {
n++;

}
print “Hello World”;

The nasty program is a PASS if and only if the

Riemann Hypothesis is false.

A TA nightmare: Despite
the simplicity of the
HELLO assignment,

there is no program to
correctly grade it!

 And we will prove this.

The theory of what can
and can’t be computed
by an ideal computer is

called
Computability Theory
or Recursion Theory.

From the last lecture:

The “grading function” we just described
is not computable! (We’ll see a proof soon.)

Are all reals describable?
Are all reals computable?

NO
NO

We saw that

computable � describable

but do we also have

describable � computable?

This lecture will hopefully shed light on what
is and isn't possible using a program.

But wait! Why are we
reasoning about

“programs”? Don't we
need to use Turing

Machines to be
mathematically

precise?

Not necessarily.
Remember the

Church-Turing Thesis:
any reasonable (and
sufficiently powerful)
notion of a “program”

is equivalent to a
Turing Machine. It's
okay to just reason
about “algorithms”.

What's Allowed in an “Algorithm”?

Anything that we can create
using Turing Machines!

● Arithmetic operations
● Conditionals (if)
● Loops (while, for, do)

● Arrays, pointers
● Functions
● Integers, strings

Some examples:

As long as we use reasonable primitives like these,
we are really reasoning about Turing Machines,

so our statements have a formal backing.

Extending the Idea of a Program

Program Turing Machine

Source code � Description of states
and transitions

Print statement � Write to a special
“output” area of the tape

Return true/false � Accept/Reject

All of the proofs in this lecture will be about programs.
We are still being rigorous because of this equivalence.

Computable Function

Hence: countably many computable functions!

Fix a finite set of symbols, Σ

A function f: Σ*� Σ* is computable if there is a
program P that when executed on an ideal
computer (one with infinite memory), computes f.

That is, for all strings x in Σ*, f(x) = P(x).

There are only
countably many

programs.

Hence, there are only
countably many

computable
functions.

Uncountably Many Functions

The functions f: Σ*� {0,1} are in
1-1 onto correspondence with the
subsets of Σ* (the powerset of Σ*).

Subset S of Σ* � Function fS

x in S � fS(x) = 1

x not in S � fS(x) = 0

Hence, the set of all f:Σ* � {0,1} has
the same size as the power set of Σ*,
which is uncountable.

Countably many
computable functions.

Uncountably many
functions from Σ* to {0,1}.

Thus, most functions
from Σ* to {0,1} are not

computable.

Decidable/Undecidable Sets

A set (more precisely, a language) L � Σ* is
said to be decidable (or recursive) if there
exists a program P such that:

P(x) = yes, if x � L
P(x) = no, if x � L

Notice that this is the Turing Machine
equivalent of a regular language.

The theory becomes nicer if we restrict
“computation” to the task of deciding
membership in a set.

Again, by giving a counting
argument, we can say that

there must be some
undecidable set.

The set of all languages is
uncountable, but there can

only be countably many
decidable languages

because there are only
countably many programs.

Can we explicitly
describe an

undecidable set?

The Halting Problem

Notation And Conventions

When we write P by itself, we are talking
about the text of the source code for P.

P(x) means the output that arises from
running program P on input x, assuming
that P eventually halts.

P(x) = � means P did not halt on x

The meaning of P(P)

It follows from our conventions that P(P)
means the output obtained when we run
P on the text of its own source code.

The Halting Set K

Definition:

K is the set of all programs P such that P(P) halts.

K = { Program P | P(P) halts }

The Halting Problem

Is the Halting Set K decidable? In other words,
is there a program HALT such that:

HALT(P) = yes, if P(P) halts

HALT(P) = no, if P(P) does not halt

THEOREM: There is no program to
solve the halting problem
(Alan Turing 1937)

Suppose a program HALT existed that
solved the halting problem.

HALT(P) = yes, if P(P) halts
HALT(P) = no, if P(P) does not halt

We will call HALT as a subroutine in a new
program called CONFUSE.

CONFUSE

Does CONFUSE(CONFUSE) halt?

CONFUSE(P)

{ if (HALT(P))
then loop forever; //i.e., we don't halt

 else exit; //i.e., we halt

 // text of HALT goes here

}

CONFUSE
CONFUSE(P)

{ if (HALT(P))

then loop forever; //i.e., we don't halt

 else exit; //i.e., we halt

 // text of HALT goes here }

Suppose CONFUSE(CONFUSE) halts:

then HALT(CONFUSE) = TRUE,
so CONFUSE will loop forever on input CONFUSE

Suppose CONFUSE(CONFUSE) does not halt
then HALT(CONFUSE) = FALSE,

so CONFUSE will halt on input CONFUSE
CONTRADICTION

Alan Turing (1912-1954)

Theorem: [1937]

There is no program to
solve the halting

problem

Turing’s argument is
essentially the

reincarnation of
Cantor’s Diagonalization
argument that we saw
in the previous lecture.

P0 P1 P2 … Pj …

P0

P1

…

Pi

…

A
ll

P
ro

g
ra

m
s

All Programs (the input)

Programs (computable functions) are countable,
so we can put them in a (countably long) list

P0 P1 P2 … Pj …

P0

P1

…

Pi

…

A
ll

P
ro

g
ra

m
s

All Programs (the input)

YES, if Pi(Pj) halts
No, otherwise

P0 P1 P2 … Pj …

P0 d0

P1 d1

… …

Pi di

…
…

A
ll

P
ro

g
ra

m
s

All Programs (the input)

Let di =
HALT(Pi)

CONFUSE(Pi) halts iff di = no
(The CONFUSE function is the negation of the diagonal.)

Hence CONFUSE cannot be on this list.

Is there a real
number that can be
described, but not

computed?

Consider the real
number R whose
binary expansion

has a 1 in the
jth position iff the jth

program halts on
input itself.

Proof that R cannot be computed

MYSTERY solves the halting problem!

Suppose it is, and program FRED computes it.

then consider the following program:

MYSTERY(program text P)

 for j = 0 to forever do {

 if (P == Pj)

then use FRED to compute jth bit of R

 return YES if (bit == 1), NO if (bit == 0)

 }

I'm still not satisfied by
the CONFUSE

argument that the
Halting Problem is

undecidable. Isn't there
a simpler way to

specifically show an
undecidable problem?

There actually is a simpler
proof, but showing it

requires us to extend our
understanding of what

Turing Machines are
capable of.

Reminder: What is a Turing
Machine Capable of?

● Arithmetic operations
● Conditionals (if)
● Loops (while, for, do)

● Arrays, pointers
● Functions
● Integers, strings

Some examples:

But what about “obtain a copy of my
own source code”? Is this allowed as

pseudocode for an “algorithm”?

Have we seen something like this before?

Yes, we have seen this
before! The Auto-cannibal

Maker assignment
demonstrated that given a

program (“Eat”), it is
possible to construct a

program (the “Auto-
cannibal”) that behaves like
Eat but is aware of its own

source code.

The assignment was in
C++/Java, but the

construction is possible with
Turing Machines as well.

This result is known as the
recursion theorem: when
writing an algorithm, it is
always possible for that

algorithm to be aware of its
own source code.

Using the recursion
theorem, we can come

up with a simpler
example of an

undecidable problem.

A Simpler Variant of the Halting Set

Definition:

K0 is the set of all programs P that halt when

given no input.

K0 = { Program P | P() halts }

K0 is much simpler than K!

K0 is Undecidable
Suppose there was some program HALT2 that
decides K0. Consider the following program:

CONTRADICT()

{

 Let s be the source code for CONTRADICT;

 if (HALT2(s))

then loop forever;

 else exit;

 // text of HALT2 goes here

}

CONTRADICT is able to directly turn around and
contradict the statement from HALT2, so HALT2 cannot

be correct in all cases, so K0 is undecidable.

Recursively Enumerable Sets

Recursively Enumerable

A set (more precisely, a language) L � Σ* is
defined to be recursively enumerable (or
semi-decidable) if there exists a program
P such that:

If x � L, then P(x) halts and outputs “yes”.

If x � L, then either P(x) halts and outputs

 “no”, or P(x) does not halt.

Does decidable imply recursively enumerable?
Does recursively enumerable imply decidable?

Yes!
No!

Example: The Halting Set K

Even though K is not decidable, it is easy to
show that it is recursively enumerable. Here
is a program P that demonstrates that fact:

HALF_HALT(P)

{
 run P(P);

 output “yes”;

}

HALF_HALT will always output “yes” if P(P) halts,
and will never output “yes” if P(P) does not halt,
which is all that needs to be true.

Why the Name “Enumerable”?

A language L is recursively enumerable if and
only if there is some program P that enumerates
it. Such a program must output an infinite list of
strings, where each string that is output belongs
to L and each string in L eventually shows up at
least once in the list.

How do we Enumerate the Halting Set?

ENUM_HALT(P)

{

 for each natural number i
 {

 For each program P of length � i

 {

 Run P(P) for i steps;

 If P(P) halted in that time, output it
 }

 }

}

A Non-Example?

Is there a simple set that is not recursively
enumerable?

Yes! The complement of the Halting Set
cannot be recursively enumerable:

K' = {Program P | P(P) does not halt}

HALT(P)

{

 for each natural number i:
 {

 run HALF_HALT(P) for i steps;

 run HALF_NON_HALT(P) for i steps;

 if either one halts, we know the correct answer, so output it;

 }

}

Proof:

Suppose that there was a program HALF_NON_HALT
that demonstrated that K' was recursively enumerable.

K' is not Recursively Enumerable

One of the two calls must eventually finish, so HALT
decides K, even though K is undecidable! Contradiction!

In general, if a program
is recursively

enumerable and its
complement is

recursively enumerable,
then that program must

be decidable.

Computability Vocabulary Overview
● A set S is decidable if there is a program that returns

 “yes” on input x whenever x � S and returns “no” on

 input x whenever x � S.

●A set S is recursively enumerable if there is a program
 that returns “yes” on input x whenever x � S. If x � S,
 then the program may either return “no” or it may run
 forever.

● A function f is computable if there is a program P such
 that for all strings x, P(x) = f(x).

● A real number x is computable if there is a program P
 that outputs the digits of x in order, in such a way that
 every digit is eventually output.

Oracles and Reductions

Oracle
for S

Oracle For Set S

Is x � S?

YES/NO

Example Oracle
 S = Odd Naturals

Oracle
for S

4?

No

81?

Yes

K0= the set of programs that take
no input and halt

GIVEN:
Oracle
for K0

Hey, I ordered an
oracle for the

famous halting
set K, but when I

opened the
package it was an

oracle for the
different set K0.

But you can use this oracle for K0

to build an oracle for K.

GIVEN:
Oracle
for K0

P = [input I; Q]
Does P(P) halt?

BUILD:
Oracle
for K

Does [I:=P;Q] halt?

K0= the set of programs that take
no input and halt

We’ve reduced the problem
of deciding membership in

K to the problem of
deciding membership in K0.

Hence, deciding
membership for K0 must be
at least as hard as deciding

membership for K.

Thus if K0 were
decidable

then K would be as well.

We already know K is not
decidable, hence K0 is

not decidable.

HELLO = the set of programs that
print hello and halt

GIVEN:
HELLO
Oracle

Does P halt?

BUILD:
Oracle
for K0

Let P’ be P with all print
statements removed.

(assume there are
no side effects)

Is [P’; print HELLO]
a hello program?

Hence, the set HELLO is
not decidable.

EQUAL = All <P,Q> such that P and Q have
identical output behavior on all inputs

GIVEN:

EQUAL
Oracle

Is P in set HELLO?

BUILD:
HELLO
Oracle

Let HI = [print HELLO]

Are P and HI equal?

Halting with input, Halting
without input, HELLO, and

EQUAL are all undecidable.

Here's What
You Need to

Know...

Turing Machine/Program
equivalence

The Halting Problem:
Definition, Proof of

Undecidability

The recursion theorem

Recursively
enumerable sets

Oracles and Computability
reductions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

