15-251

Great Theoretical Ideas In
Computer Science

Lecture 21 - Dan Kilgallin

Turing Machines

Goals

e Describe the nature of computation

e Mathematically formalize the behavior of a
program running on a computer system

e Compare the capabillities of different
programming languages

Turing Machines

e \What can we do to make a DFA better?

e Idea: Give it some memory!

e How much memory?

e Infinite!

e \What kind of memory? Sequential access (e.
g. CD, hard drive) or RAM?

e An infinite amount of RAM requires
remembering really big numbers and
needlessly complicates proofs

Turing Machines: Definition

e A Turing Machine consists of
oA DFA to store the machine state, called
the controller
o An array that is infinitely long in both
directions, called the tape
o A pointer to some particular cell in the
array, called the head

Operation

e [IThe head begins at cell 0 on the tape

e The DFA begins in some initial state

e Symbols from some alphabet are written on a finite portion
of the tape, beginning at cell 1

Operation

e At each step, the machine uses as input:
o The state of the controller
o The symbol written on the cell which the head is at
e Using this, the machine will:
o Transition to some state in the DFA (possibly the same
state)
o Write some symbol (possibly the same symbol) on the
tape
o Move the head left or right one cell

Two Flavors!

e The machine will stop computation if the DFA
enters one of a pre-defined set of "halting"
states

e [JA "decision” machine will, if it reaches a
halting state, output either "Yes" or "No" (i.e.
there are "accepting" and "rejecting" halt states)

e A "function” machine will, if it reaches a halting
state, have some string of symbols written on
the tape. This string of symboils is the output of
the function

Example: Doubling a Number

e.0.R @)

Notation: (old symbol, new symbol, direction to move)
"epsilon” denotes empty cell, "H" denotes halting state(s)

Example: Doubling a Number

Example: Doubling a Number

Example: Doubling a Number

Example: Doubling a Number

Example: Doubling a Number

Example: Doubling a Number

Example: Doubling a Number

Example: Doubling a Number

Example: Doubling a Number

Example: Doubling a Number

Example: Doubling a Number

Example: Doubling a Number

Example: Doubling a Number

Example: Doubling a Number

Example: Doubling a Number

Example: Doubling a Number

Example: Doubling a Number

TM vs DFA

e Is a decision machine more powerful than
a DFA?

e Yes!

e Claim: A decision machine can recognize

the set {a"b" [n >= 0}

Example: a"b"

zl.zl.R

b.b.R bh.b.R

€.€.R

€.€.R

zl.zl.L

Example: a"b"

zl.zl.l—\’

b.b.R b.b.R

€.€.R e e R

Example: a"b"

zl.zl.l—\’

b.b.R b.b.R

—()

zl.E.R
€. €.R

€.€.R

zl.zl.L
d.d.

—

Example: a"b"

zl.zl.l—\’

b.b.R b.b.R

—()

zl.E.R
€. €.R

€.€.R

e.e.R

Example: a"b"

zl.zl.l—\’

b.b.R b.b.R

—()

zl.E.R
€. €.R

€.€.R

e.e.R

Example: a"b"

zl.zl.l—\’

b.b.R b.b.R

—()

€. €.R

zl.E.R

€.€.R

e.e.R

Example: a"b"

zl.zl.l—\’

b.b.R b.b.R

—()

€. €.R

zl.E.R

€.€.R

e.e.R

Example: a"b"

zl.zl.l—\’

b.b.R b.b.R

—()

€. €.R

zl.E.R

€.€.R

e.e.R

Example; anbn

zl.zl.R

b.b.R b.b.R

—()

zl.E.R
€. €.R

€.€.R

e.e.R

Example; anbn

zl.zl.R

b.b.R b.b.R

—()

zl.E.R
€. €.R

€.€.R

e.e.R

Example; anbn

zl.zl.R

b.b.R b.b.R

—()

zl.E.R
€. €.R

=

€.€.R

e.e.R

Example; anbn

zl.zl.R

b.b.R b.b.R

—()

zl.E.R
€. €.R

€.€.R

e.e.R

Example; anbn

zl.zl.R

b.b.R b.b.R

—()

zl.E.R
€. €.R

€.€.R

e.e.R

Example; anbn

zl.zl.R

b.b.R b.b.R

—()

€. €.R

zl.E.R

€.€.R

e.e.R

Example; anbn

zl.zl.R

b.b.R b.b.R

—()

zl.E.R
€. €.R

€.€.R

e.e.R

Example; anbn

zl.zl.R

b.b.R b.b.R

—()

zl.E.R
€. €.R

€.€.R

e.e.R

Example; anbn

zl.zl.R

b.b.R b.b.R

—()

zl.E.R
€. €.R

€.€.R

e.e.R

Correctness

e Every time we reach the bottom-right state,
the number of "b"s deleted equals the
number of "a"s

Correctness

zl.zl.R

Correctness

e Every time we reach the bottom-right state,
the number of "b"s deleted equals the
number of "a"s

e If there are more
deleting the last "b"

a's, it crashes right after

Correctness

a.a.

]).]).R]).]).R

—()

zl.E.R
€.€.R

€.€.R

€.€.1R

No "a" transition!

Correctness

e Every time we reach the bottom-right state,
the number of "b"s deleted equals the
number of "a"s

e If there are more
deleting the last "b"

e If there are more "b"s, it crashes in the
bottom-right state after scanning to the left
of the "b"s

a's, it crashes right after

Correctness

a.a.

]).]).R]).]).R

—()

zl.E.R
€.€.R

€.€.R

€.€.1R

No epsilon transition!

Correctness

e Every time we reach the bottom-right state,
the number of "b"s deleted equals the
number of "a"s

o If there are more
deleting the last "b"

e If there are more "b"s, it crashes in the
bottom-right state after scanning to the left
of the "b"s

o If NO "a"s, crashes immediately

a's, it crashes right after

Correctness

a.a.

]).]).R]).]).R

—()

€.€.R

-

zl.E.R

€.€.R

zl.zl.L
cl.cl.

No "b" transition!

Correctness

e Every time we reach the bottom-right
state, the number of "b"s deleted equals
the number of "a"s

e |If there are more
deleting the last "b"

e If there are more "b"s, it crashes in the
bottom-right state after scanning to the left
of the "b"s

o If NO "a"s, crashes immediately

e If no "b"s, crashes after reading the "a

a's, it crashes right after

Correctness

a.a.

bh.b.R

—()

zl.E.R
€.€.R

€.€.R

€.€.1R

No epsilon transition!

b.b.R

Definitions

e [|A set is recursively enumerable if there is
a decision machine which answers "yes" if
and only if the input belongs to the set

e A function f is computable or recursive if
there is a function machine that, when
given input x, produces output f(x)

Interlude: What is an "algorithm"?

e "A precise step-by-step plan for a
computational procedure that begins with an
input value and yields an output value 1n a

finite number of steps.”
-Corbin, Leiserson, Rivest. "Introduction to Algorithms"

e Turing machines can capture this notion
precisely!

Algorithms on a TM

e Given a human-comprehensible goal,
encode the input into some alphabet

e Define the steps of the algorithm as a DFA

e Put the input on a tape

e Let the Turing Machine run

e [ranslate the output

Objection

e \Why not just use a programming language,
such as C?

e As it turns out, writing a C program is just
using a computer to build a Turing Machine
for you

Algorithms on a TM

e Given a human-comprehensible goal,
encode the input into some alphabet

e Define the steps of the algorithm as a DFA

e Put the input on a tape

e Let the Turing Machine run

e [ranslate the output

Algorithms in C

e Given a human-comprehensible goal,
encode the input into some alphabet

e Define the steps of the algorithm as a DFA

e Put the input on a tape

e Let the Turing Machine run

e [ranslate the output

Algorithms in C

e Given a human-comprehensible goal,
encode the input into binary

e Define the steps of the algorithm as a DFA

e Put the input on a tape

e Let the Turing Machine run

e [ranslate the output

Algorithms in C

e Given a human-comprehensible goal,
encode the input into binary

e Define the steps of the algorithm as a
sequence of processor instructions

e Put the input on a tape

e Let the Turing Machine run

e Iranslate the output

Algorithms in C

e Given a human-comprehensible goal,
encode the input into binary

e Define the steps of the algorithm as a
sequence of processor instructions

e Put the input in computer memory

e Let the Turing Machine run

e Translate the output

Algorithms in C

e Given a human-comprehensible goal,
encode the input into binary

e Define the steps of the algorithm as a
sequence of processor instructions

e Put the input in computer memory

e L et the program run

e Translate the output

Algorithms in C

e Given a human-comprehensible goal,
encode the input into binary

e Define the steps of the algorithm as a
sequence of processor instructions

e Put the input in computer memory

e L et the program run

e Translate the output into radiation beamed
at the user's face, or ink on a paper

Extending the parallel:
15-213 In 60 seconds

e String of 1's and O's in memory representing
the arguments to a function (tape)

e Handful of registers that point to locations in
memory (head(s))

e Block of memory describing instructions
(controller transition function)

e Special register, %eip, pointing to current
instruction (controller state)

More Objections

e Can't computer programs do more than
Turing Machines can?
oJump to arbitrary memory address
o Wait for input that wasn't given at
the program'’s start (e.g. keyboard)

Jumping to an arbitrary address: Turing
Machines can do that!

e [|PC: access the memory at byte with
address Oxdeadface

e TM: Encode address in unary (i.e. block of
"Oxdeadface" ones)

e Shift the unary number so it starts at O

e Scan through the segment to find the right
endpoint. The head will be at cell
0+0xdeadface, as desired

Sub-objection?

e [|[How do you mark a block of cells as
representing a single variable?

o Define more symbols. Make a special
"marker" symbol to indicate the endpoint of
any region you want

e How do you shift the variable without overwriting
other data”

o Define an extra bit for each symbol, used
exclusively to store the information "is this
cell part of the unary sequence?”

Example: Doubling a Number

byte X, y, z; //compiler stores at addresses 1,2,3

int n=5; //compiler stores at bytes 4-7

Int* charmander = &n; //contains value "4",
//stored at location 11

void double(){
Int** metapod = &charmander; //metapod = 11
**metapod *= 2; //Finds value 4 at memory
//location 11, goes to the memory location
/Ireferenced, and doubles the value found
/[there

Example: Doubling a Number

Data we
don't want to
delete Delimiters

H! } '

1101110 #o-|-|-|-|-#

1 t 1t

Want to double here Unary

Example: Doubling a Number

Example: Doubling a Number

e Copy "-" over

Example: Doubling a Number

e Copy "-" over

Example: Doubling a Number

e Copy "-" over

Example: Doubling a Number

e Copy "-" over

Example: Doubling a Number

e Copy "-" over
e Repeat, without deleting old data

Example: Doubling a Number

e Copy "-" over
e Repeat, without deleting old data

Example: Doubling a Number

e Copy "-" over
e Repeat, without deleting old data

Example: Doubling a Number

e Copy "-" over
e Repeat, without deleting old data

Example: Doubling a Number
e Copy "-" over
e Repeat, without deleting old data
e Two "#" In a row Indicate shift complete

Example: Doubling a Number
e Copy "-" over
e Repeat, without deleting old data
e Two "#" In a row Indicate shift complete

Example: Doubling a Number
e Copy "-" over
e Repeat, without deleting old data
e Two "#" In a row Indicate shift complete

e Scan left till you find a "-

Example: Doubling a Number
e Copy "-" over
e Repeat, without deleting old data
e Two "#" In a row Indicate shift complete

e Scan left till you find a "-
e Double as before

Waiting for input: Cheat

e Allow user to edit symbols on the tape
while the TM is running

e Consider a state that does nothing on an
empty symbol, moves right on anything
else

e \When it sees a blank symbol, it's stuck
until the user changes it

e Note: For doing this, it's convenient to
allow the head to stay put on a transition,
but not necessary

C vs Turing Machine

e [/Any algorithm that can be done in C can
be done with a Turing Machine

e Any algorithm that can be done on a
Turing Machine can be done in C (easy to
write a TM simulator)

e Thus, C and Turing Machines have the
same computational power

How about Java®?

e It is also easy to simulate a TM in Java

e Thus, it can simulate a Turing Machine that
simulates C!

e Java has at least as much computational
power as C

e Java can also be simulatedona TM

e Thus, C can simulate a Turing Machine
simulating Java

e Therefore, C and Java have the same
computational power!

Generalizing

e In fact, a Turing Machine can simulate
programs from ANY language that will run
ona PC

e Just like with C; nothing but RAM and
registers

e Thus, any programming language in which
it is possible to simulate a Turing Machine
has the same power as any other
language that can simulate a Turing
Machine

Definition

e A computational system is said to be
Turing-complete if it has at least as much
computational power as a Turing Machine

Turing-completeness

e Many, many models of computation are Turing-
complete:
o Several other theoretical models (e.g. Post
productions, Lambda Calculus)
o Any mainstream programming language
oLaTeX
o The C pre-processor
o Legos
o The Starcraft Map Editor

Meta-simulations

e [/Any Turing Machine can be simulated in
some C program

e Any C program can be simulated in some
Turing Machine

e Thus, you can have a Turing Machine
simulating a C program simulating a Turing
Machine...

e Or, a C program simulating a Turing
Machine simulating a C program

Definition

e [/A Universal Turing Machine is a TM that
can simulate the behavior of any other
Turing Machine

e Analogous to a Virtual Machine,
Interpreter, or Operating System

e "Yo dawg, | heard you liek Turing
Machines, so we put a Turing Machine In
your Turing Machine so you can recurse
while you recurse.”

Universal Turing Machine

e Universal Machines can be as small as 4
states, and have an alphabet as small as 6
symbols. Stores nearly all data on tape

e However, It takes much longer to simulate the
TM than to run it directly

How Universal is it?

e S0, can a Universal Turing Machine
compute every possible function?
e NO!
o Halting problem
o Busy Beaver function
oRice's Theorem
e \Wait until next week for proof

Interlude: History Lesson

e In fact, Turing Machines were formulated to
prove there were undecidable mathematical
problems

e Developed as an answer to Hilbert's
"Entscheidungsproblem”

e This, along with Alonzo Church's Lambda
Calculus, established the field of modern
theoretical computer science

Can we do better?

e Can we modify our definition so that it can
compute more functions?
o More tape heads?
m can simulate multi-threading with just
one head
o More tapes?
m already have infinite space
o Non-deterministic controller?
mNFA's don't give any more
computational power

Can anything else do better?

e Church-Turing thesis: "Any function that is
computable in the intuitive sense is computable
by a Universal Turing Machine”

-Alonzo Church and Alan Turing

Can anything else do better?

e [Thesis, not theorem
e Implication: The universe is a giant Turing

Machine

e Theological question, not mathematical!
e \WVould solve issues such as

o Free wi
o Possibi
o Possibi

|
ity of an omnipotent god
ity of an omniscient god

o Absolute truth

What you should know:

e Two types of Turing Machines

e Computable function, R.E. set

e Turing-completeness

e Turing Machine/Computer Program
Relationship

e Universal Turing Machine

e Church-Turing Thesis

