
15-251

Great Theoretical Ideas in
Computer Science

Lecture 21 - Dan Kilgallin

Turing Machines

Goals

Describe the nature of computation
Mathematically formalize the behavior of a
program running on a computer system
Compare the capabilities of different
programming languages

Turing Machines

What can we do to make a DFA better?
Idea: Give it some memory!
How much memory?
Infinite!
What kind of memory? Sequential access (e.
g. CD, hard drive) or RAM?
An infinite amount of RAM requires
remembering really big numbers and
needlessly complicates proofs

Turing Machines: Definition

A Turing Machine consists of
A DFA to store the machine state, called
the controller
An array that is infinitely long in both
directions, called the tape
A pointer to some particular cell in the
array, called the head

�Operation

�The head begins at cell 0 on the tape
The DFA begins in some initial state
Symbols from some alphabet are written on a finite portion
of the tape, beginning at cell 1

�Operation

At each step, the machine uses as input:
The state of the controller
The symbol written on the cell which the head is at

Using this, the machine will:
Transition to some state in the DFA (possibly the same
state)
Write some symbol (possibly the same symbol) on the
tape
Move the head left or right one cell

Two Flavors!

The machine will stop computation if the DFA
enters one of a pre-defined set of "halting"
states
�A "decision" machine will, if it reaches a
halting state, output either "Yes" or "No" (i.e.
there are "accepting" and "rejecting" halt states)
A "function" machine will, if it reaches a halting
state, have some string of symbols written on
the tape. This string of symbols is the output of
the function

Example: Doubling a Number

 1

 0

 1

0

1

2

3

4

5

Notation: (old symbol, new symbol, direction to move)
"epsilon" denotes empty cell, "H" denotes halting state(s)

Example: Doubling a Number

 1

 0

 1

0

1

2

3

4

5

Example: Doubling a Number

 1

 0

 1

0

1

2

3

4

5

Example: Doubling a Number

 1

 0

 1

0

1

2

3

4

5

Example: Doubling a Number

 1

 0

 1

0

1

2

3

4

5

Example: Doubling a Number

 1

 0

 1

0

1

2

3

4

5

Example: Doubling a Number

 1

 0

 1

0

1

2

3

4

5

Example: Doubling a Number

 1

 0

0

1

2

3

4

5

Example: Doubling a Number

 1

 0

 1

0

1

2

3

4

5

Example: Doubling a Number

 1

 0

 1

0

1

2

3

4

5

Example: Doubling a Number

 1

 0

 1

0

1

2

3

4

5

Example: Doubling a Number

 1

 0

 1

0

1

2

3

4

5

Example: Doubling a Number

 1

 0

 1

0

1

2

3

4

5

Example: Doubling a Number

 0

 1

0

1

2

3

4

5

Example: Doubling a Number

 1

 0

 1

0

1

2

3

4

5

Example: Doubling a Number

 1

 0

 1

0

1

2

3

4

5

Example: Doubling a Number

 1

 0

 1

0

1

2

3

4

5

Example: Doubling a Number

 0

 1

 0

 1

0

1

2

3

4

5

TM vs DFA

Is a decision machine more powerful than
a DFA?
Yes!
Claim: A decision machine can recognize
the set {anbn | n >= 0}

Example: anbn

Example: anbn

 a

 a

 b

 b

0

1

2

3

4

5

Example: anbn

 a

 a

 b

 b

0

1

2

3

4

5

Example: anbn

 a

 b

 b

0

1

2

3

4

5

Example: anbn

 a

 b

 b

0

1

2

3

4

5

Example: anbn

 a

 b

 b

0

1

2

3

4

5

Example: anbn

 a

 b

 b

0

1

2

3

4

5

Example: anbn

 a

 b

 b

0

1

2

3

4

5

Example: anbn

 a

 b

0

1

2

3

4

5

Example: anbn

 a

 b

0

1

2

3

4

5

Example: anbn

 a

 b

0

1

2

3

4

5

Example: anbn

 a

 b

0

1

2

3

4

5

Example: anbn

 b

0

1

2

3

4

5

Example: anbn

 b

0

1

2

3

4

5

Example: anbn

 b

0

1

2

3

4

5

Example: anbn

0

1

2

3

4

5

Example: anbn

0

1

2

3

4

5

Correctness

Every time we reach the bottom-right state,
the number of "b"s deleted equals the
number of "a"s

Correctness

0

1

2

3

4

5

Correctness

Every time we reach the bottom-right state,
the number of "b"s deleted equals the
number of "a"s
If there are more "a"s, it crashes right after
deleting the last "b"

Correctness

 a

0

1

2

3

4

5

No "a" transition!

Correctness

Every time we reach the bottom-right state,
the number of "b"s deleted equals the
number of "a"s
If there are more "a"s, it crashes right after
deleting the last "b"
If there are more "b"s, it crashes in the
bottom-right state after scanning to the left
of the "b"s

Correctness

 b

0

1

2

3

4

5

No epsilon transition!

Correctness

Every time we reach the bottom-right state,
the number of "b"s deleted equals the
number of "a"s
If there are more "a"s, it crashes right after
deleting the last "b"
If there are more "b"s, it crashes in the
bottom-right state after scanning to the left
of the "b"s
If NO "a"s, crashes immediately

Correctness

 b

 b

 b

0

1

2

3

4

5

No "b" transition!

Correctness

Every time we reach the bottom-right
state, the number of "b"s deleted equals
the number of "a"s
If there are more "a"s, it crashes right after
deleting the last "b"
If there are more "b"s, it crashes in the
bottom-right state after scanning to the left
of the "b"s
If NO "a"s, crashes immediately
If no "b"s, crashes after reading the "a"s

Correctness

 a

 a

 a

0

1

2

3

4

5

No epsilon transition!

Definitions

�A set is recursively enumerable if there is
a decision machine which answers "yes" if
and only if the input belongs to the set
A function f is computable or recursive if
there is a function machine that, when
given input x, produces output f(x)

Interlude: What is an "algorithm"?

"A precise step-by-step plan for a
computational procedure that begins with an
input value and yields an output value in a
finite number of steps."

-Corbin, Leiserson, Rivest. "Introduction to Algorithms"

Turing machines can capture this notion
precisely!

Algorithms on a TM

Given a human-comprehensible goal,
encode the input into some alphabet
Define the steps of the algorithm as a DFA
Put the input on a tape
Let the Turing Machine run
Translate the output

Objection

Why not just use a programming language,
such as C?
As it turns out, writing a C program is just
using a computer to build a Turing Machine
for you

Algorithms on a TM

Given a human-comprehensible goal,
encode the input into some alphabet
Define the steps of the algorithm as a DFA
Put the input on a tape
Let the Turing Machine run
Translate the output

Algorithms in C

Given a human-comprehensible goal,
encode the input into some alphabet
Define the steps of the algorithm as a DFA
Put the input on a tape
Let the Turing Machine run
Translate the output

Algorithms in C

Given a human-comprehensible goal,
encode the input into binary
Define the steps of the algorithm as a DFA
Put the input on a tape
Let the Turing Machine run
Translate the output

Algorithms in C

Given a human-comprehensible goal,
encode the input into binary
Define the steps of the algorithm as a
sequence of processor instructions
Put the input on a tape
Let the Turing Machine run
Translate the output

Algorithms in C

Given a human-comprehensible goal,
encode the input into binary
Define the steps of the algorithm as a
sequence of processor instructions
Put the input in computer memory
Let the Turing Machine run
Translate the output

Algorithms in C

Given a human-comprehensible goal,
encode the input into binary
Define the steps of the algorithm as a
sequence of processor instructions
Put the input in computer memory
Let the program run
Translate the output

Algorithms in C

Given a human-comprehensible goal,
encode the input into binary
Define the steps of the algorithm as a
sequence of processor instructions
Put the input in computer memory
Let the program run
Translate the output into radiation beamed
at the user's face, or ink on a paper

Extending the parallel:
15-213 in 60 seconds

String of 1's and 0's in memory representing
the arguments to a function (tape)
Handful of registers that point to locations in
memory (head(s))
Block of memory describing instructions
(controller transition function)
Special register, %eip, pointing to current
instruction (controller state)

More Objections

Can't computer programs do more than
Turing Machines can?

Jump to arbitrary memory address
Wait for input that wasn't given at
the program's start (e.g. keyboard)

Jumping to an arbitrary address: Turing
Machines can do that!

�PC: access the memory at byte with
address 0xdeadface
TM: Encode address in unary (i.e. block of
"0xdeadface" ones)
Shift the unary number so it starts at 0
Scan through the segment to find the right
endpoint. The head will be at cell
0+0xdeadface, as desired

Sub-objection?

�How do you mark a block of cells as
representing a single variable?

Define more symbols. Make a special
"marker" symbol to indicate the endpoint of
any region you want

How do you shift the variable without overwriting
other data?

Define an extra bit for each symbol, used
exclusively to store the information "is this
cell part of the unary sequence?"

Example: Doubling a Number

byte x, y, z; //compiler stores at addresses 1,2,3
int n=5; //compiler stores at bytes 4-7
int* charmander = &n; //contains value "4",
 //stored at location 11

void double(){
 int** metapod = &charmander; //metapod = 11
 **metapod *= 2; //Finds value 4 at memory
 //location 11, goes to the memory location
 //referenced, and doubles the value found
 //there
}

Example: Doubling a Number

 x y z 1 0 1 0 # - - - - - #

Want to double here

Delimiters

Unary

Data we
don't want to
delete

Example: Doubling a Number

 x y z 1 0 1 0 # - - - - - #

Example: Doubling a Number

 x y z 1 0 1 0 # - - - - - #

Copy "-" over

Example: Doubling a Number

 x y z 1 0 1 0 - - - - - #

Copy "-" over

Example: Doubling a Number

 x y z 1 0 1 0 # - - - - #

Copy "-" over

Example: Doubling a Number

 - x y z 1 0 1 0 # - - - - #

Copy "-" over

Example: Doubling a Number

 - x y z 1 0 1 0 # - - - - #

Copy "-" over
Repeat, without deleting old data

Example: Doubling a Number

 - x y z 1 0 1 0 # - - - #

Copy "-" over
Repeat, without deleting old data

Example: Doubling a Number

 - (x,-) y z 1 0 1 0 # - - - #

Copy "-" over
Repeat, without deleting old data

Example: Doubling a Number

 - (x,-) (y,-) (z,-) (1,-) 0 1 0 # #

Copy "-" over
Repeat, without deleting old data

Example: Doubling a Number

 - (x,-) (y,-) (z,-) (1,-) 0 1 0 # #

Copy "-" over
Repeat, without deleting old data
Two "#" in a row indicate shift complete

Example: Doubling a Number

 - (x,-) (y,-) (z,-) (1,-) 0 1 0 # #

Copy "-" over
Repeat, without deleting old data
Two "#" in a row indicate shift complete

Example: Doubling a Number

 - (x,-) (y,-) (z,-) (1,-) 0 1 0 # #

Copy "-" over
Repeat, without deleting old data
Two "#" in a row indicate shift complete
Scan left till you find a "-"

Example: Doubling a Number

 - (x,-) (y,-) (z,-) (1,-) 0 1 0 # #

Copy "-" over
Repeat, without deleting old data
Two "#" in a row indicate shift complete
Scan left till you find a "-"
Double as before

Waiting for input: Cheat

Allow user to edit symbols on the tape
while the TM is running
Consider a state that does nothing on an
empty symbol, moves right on anything
else
When it sees a blank symbol, it's stuck
until the user changes it
Note: For doing this, it's convenient to
allow the head to stay put on a transition,
but not necessary

C vs Turing Machine

�Any algorithm that can be done in C can
be done with a Turing Machine
Any algorithm that can be done on a
Turing Machine can be done in C (easy to
write a TM simulator)
Thus, C and Turing Machines have the
same computational power

How about Java?

It is also easy to simulate a TM in Java
Thus, it can simulate a Turing Machine that
simulates C!
Java has at least as much computational
power as C
Java can also be simulated on a TM
Thus, C can simulate a Turing Machine
simulating Java
Therefore, C and Java have the same
computational power!

Generalizing

In fact, a Turing Machine can simulate
programs from ANY language that will run
on a PC
Just like with C; nothing but RAM and
registers
Thus, any programming language in which
it is possible to simulate a Turing Machine
has the same power as any other
language that can simulate a Turing
Machine

Definition

A computational system is said to be
Turing-complete if it has at least as much
computational power as a Turing Machine

Turing-completeness

Many, many models of computation are Turing-
complete:

Several other theoretical models (e.g. Post
productions, Lambda Calculus)
Any mainstream programming language
LaTeX
The C pre-processor
Legos
The Starcraft Map Editor

Meta-simulations

�Any Turing Machine can be simulated in
some C program
Any C program can be simulated in some
Turing Machine
Thus, you can have a Turing Machine
simulating a C program simulating a Turing
Machine...
Or, a C program simulating a Turing
Machine simulating a C program

Definition

�A Universal Turing Machine is a TM that
can simulate the behavior of any other
Turing Machine
Analogous to a Virtual Machine,
Interpreter, or Operating System
"Yo dawg, I heard you liek Turing
Machines, so we put a Turing Machine in
your Turing Machine so you can recurse
while you recurse."

Universal Turing Machine

Universal Machines can be as small as 4
states, and have an alphabet as small as 6
symbols. Stores nearly all data on tape
However, It takes much longer to simulate the
TM than to run it directly

How Universal is it?

So, can a Universal Turing Machine
compute every possible function?
No!

Halting problem
Busy Beaver function
Rice's Theorem

Wait until next week for proof

Interlude: History Lesson

In fact, Turing Machines were formulated to
prove there were undecidable mathematical
problems
Developed as an answer to Hilbert's
"Entscheidungsproblem"
This, along with Alonzo Church's Lambda
Calculus, established the field of modern
theoretical computer science

Can we do better?

Can we modify our definition so that it can
compute more functions?

More tape heads?
can simulate multi-threading with just
one head

More tapes?
already have infinite space

Non-deterministic controller?
NFA's don't give any more
computational power

Can anything else do better?

Church-Turing thesis: "Any function that is
computable in the intuitive sense is computable
by a Universal Turing Machine"

 -Alonzo Church and Alan Turing

Can anything else do better?

Thesis , not theorem
Implication: The universe is a giant Turing
Machine
Theological question, not mathematical!
Would solve issues such as

Free will
Possibility of an omnipotent god
Possibility of an omniscient god
Absolute truth

What you should know:

Two types of Turing Machines
Computable function, R.E. set
Turing-completeness
Turing Machine/Computer Program
Relationship
Universal Turing Machine
Church-Turing Thesis

