. Great Theoretical Ideas In Computer Science

Victor Adamchik €S 15-251 Spring 2010
Danny Sleator
Lecture 20 Mar 30, 2010 Carnegie Mellon University

Finite Automata

00

Deterministic Finite Automata

a@ed A machine so simple that
you can understand it in
less than one minute

Wishful thinking...

N %/%
N A
~F

The machine accepts a string if the
process ends in a double circle

accept states
start state (qO)O (F)
0,1 (' 1
N A TN
#
v\o y
transitions O /
states

The machine accepts a string if
the process ends in a double circle

Anatomy of a Deterministic
Finite Automaton

The singular of automata is automaton.

The alphabet of a finite automaton is the
set where the symbols come from, for
example {0,1}

The language of a finite automaton is the
set of strings that it accepts

The Language L(M) of Machine M

m 0,1

L(M) = All strings of Os and 1s

The language of a finite automaton is the
set of strings that it accepts

The Language L(M) of Machine M
No No
1
=
1

L(M) ={ w | w has an even number of 1s}

Notation
An alphabet £ is a finite set (e.g., £ = {0,1})

A string over I is a finite-length sequence of
elements of X

For x a string, |x| is the length of x

The unique string of length O will be denoted
by € and will be called the empty or null
string

A language over I is a set of strings over I

A finite automaton is M = (Q, Z, 3, qo, F)
Q is the finite set of states
Z is the alphabet
8§ : Qx X — Q is the transition function
Qo € Q is the start state
F c Q is the set of accept states

L(M) = the language of machine M
= set of all strings machine M accepts

M=(Q, L, 8,do F) where Q ={qo, g1, 9, g3}
Z={0,1}
g, € Q is start state

F ={d,, 9,} = Q accept states

8 :Q x X — Qtransition function

The finite-state automata are
deterministic, if for each pair Q x X of
state and input value there is a unique

next state given by the transition
function.

There is another type machine in
which there may be several possible
next states. Such machines called
nondeterministic.

8 | o 1
Yo Yo 1
a1 P P!
qz ds dz
ds Yo [P}
EXAMPLE

Build an automaton that
accepts all and only those
strings that contain 001

1 0 0,1

3, .00
— :(O}—P(OO}

1

Build an automaton that A language over I is a set of strings over I

accepts all binary numbers

_ that are divisible by 3, A language is regular if it is
i.e, L=0,11, 110, 1001, recognized by a deterministic finite
1100, 1111, 10010, 10101.. automaton

L = { w | w contains 001} is regular

1
8 O L = { w | w has an even number of 1s} is regulan
1 L»

1 0
Determine the language Determine the language
recognized by recognized by

1 0,1
0 1 0,1
-3 -
1

LMm)={1n|n=0,1, 2, .} L(M)={1, 01}

DFA Membership problem

Determine the language
recognized by Determine whether some
word belongs to the language.

o 0 Theorem The DFA Membership
Problem is solvable in linear time.
8 1 1

-_— 0.1 Let M=(Q,Z,8,qo F)and w = wy...w,,.
U Algorithm for DFA M:
0.1 P = Qo
fori:=1tomdop := a(p,w):
if peF then return Yes else return No.

L(M)={O", O"10x | n=0,1,2.,
and x is any string}

Equivalence of two DFAs

Definition: Two DFAs M; and M, over the
same alphabet are equivalent if they

accept the same language: L(M,) = L(M,).

Given a few equivalent machines, we
are naturally interested in the
smallest one with the least number of
states.

Union Theorem

Given two languages, L, and L,, define
the union of L; and L, as

Liulb,={w|lweljorwel,}

Theorem: The union of two regular
languages is also a regular language.

Theorem: The union of two regular
languages is also a regular language

Proof (Sketch): Let
M= (Q, Z, 5, qlo, F;) be finite automaton for L,
and
M, =(Q,, Z, 5,, qg, F,) be finite automaton for L,

We want to construct a finite automaton
M=(Q, Z, 38, qo, F) that recognizes L =L, U L,

Idea: Run both M; and M, at the same

Q = pairs of states, one from M; and one from A
{091 9) 191 e Q and q; € Q. }
= Q x Q,

Theorem: The union of two regular languages
is also a regular language

0]

Automaton for Union

1
~-©=06
1
ONO ouo

1
(o) —
—

1

The Regular Operations
Union: AuB={w|weAorweB}
Intersectionn AnB={w|weAandw c B}
Negation: —A = {w |wg A}

Reverse: AR = {w; .w, | w,.w; € A}

Concatenation: A - B={w |ve Aandw e B}

Star: A* = {w; .w, | k20and eachw, € A}

Reverse

Reverse: AR = {w; .w, | w,.w €A}

How to construct a DFA for the reversal of a
language?

The direction in which we read a string should
be irrelevant. If we flip transitions around we
might not get a DFA.

The Kleene closure: A*

Star: A* = {w; .w | k20and eachw; € A}

From the definition of the concatenation,
we definite A", n =0, 1, 2, .. recursively
A° = {g}

Al = An A

A* is a set consisting of concatenations
of arbitrary many strings from A.

A* = A"
k=0

The Kleene closure: A*
What is A* of A={0,1}?

All binary strings
What is A* of A={11}?

All binary strings of an even
number of 1s

Regular Languages Are
Closed Under The Regular
Operations

We have seen part of the proof for
Union. The proof for intersection is
very similar. The proof for negation is
easy.

Theorem: Any finite language is regular

Claim 1: Let w be a string over an alphabet.
Then {w} is a regular language.

Proof: By induction on the number of
characters. If {a} and {b} are regular then
{ab} is regular

Claim 2: A language consisting of n strings is
regular

Proof: By induction on the number of strings.
If {a} then Lu{a} is regular

Pattern Matching

Input: Text T of length t, string S of length n
Problem: Does string S appear inside text T?
Naive method:

d;, 4,, 43,|04, As, ..., Ot

Cost: Roughly nt comparisons

Automata Solution

Build a machine M that accepts any
string with S as a consecutive substring

Feed the text to M

Cost: t comparisons + time to build M

As luck would have it, the Knuth, Morris,
Pratt algorithm builds M quickly

Real-life Uses of DFAs

Grep
Coke Machines
Thermostats (fridge)
Elevators
Train Track Switches

Lexical Analyzers for Parsers

Are all languages
regular?

I

Consider the language L = { a™b" | n > 0}

i.e., a bunch of a's followed by an
equal number of b's

No finite automaton accepts this language

Can you prove this?

~N

a"b" is not regular.
No machine has
enough states to
keep track of the

x number of d's it

might encounter

J

That is a fairly weak
argument

Consider the following

00
example...

_

L = strings where the # of occurrences
of the pattern ab is equal to the number
of occurrences of the pattern ba

Can't be regular. No machine has
enough states to keep track of the
number of occurrences of ab

— <"

M accepts only the strings with an
equal number of ab’s and ba's!

L = strings where the # of occurrences
of the pattern ab is equal to the number
of occurrences of the pattern ba

enough states to/keep track of the
urrences of ab

Let me show you a
professional strength
proof that a"b" is not
regular...
”

How to prove a language is not regular...

Assume it is regular, hence is accepted by
a DFA M with n states.

Show that there are two strings s; and s,
which both reach some state in M (usually by
pigeonhole principle)

Then show there is some string t such that
string st is in the language, but s,t is not.
However, M accepts either both or neither.

Pigeonhole principle:

If we put nobjects
into m pigeonholes and
if n>m, then at least

one pigeonhole must

have more than one
item in it.

Theorem: L= {a"b" | n > 0 } is not regular
Proof (by contradiction):

Assume that L is regular, M=(Q,{a,b},8,q,.F)
Consider 5(qo, @) for i = 1,2,3, ..

There are infinitely many i's but a finite
number of states.

(90, a")=q and (g, a™) =q, and n = m

Since M accepts a"b" 8(q, b")=q;
8(q0. am™b")=8(8(qo, a™),b")=8(q, b")= g

It follows that M accepts a™", and n # m

The finite-state automata are
deterministic, if for each pair of state
and input value there is a unique next
state given by the transition function.

There is another type machine in
which there may be several possible
next states. Such machines called
nondeterministic.

Nondeterministic finite
automaton (NFA)

A NFA is defined using the same
notations M = (Q, Z, 3, qo, F)
as DFA except the transition function
8 assigns a set of states to each pair
Q x X of state and input.

Note, every DFA is automatically also
a NFA.

Nondeterministic finite
automaton

Allows transitions from q, on the same
symbol to many states

NFA for {Ok | k is a multiple of 2 or 3}

0

What does it mean that for a NFA to
recognize a string X = X;X,...X,?

0o
0
S| m— Sy

0,1

Since each input symbol x; (for j>1) takes
the previous state to a set of states, we
shall use a union of these states.

What does it mean that for a NFA to
recognize a string?

Here we are going formally define this.

For a state q and string w, 8°(q, w) is the set of
states that the NFA can reach when it reads the
string w starting at the state q.

Thus for NFA= (Q, Z, 8, qo, F), the function
3 QxZT*->2Q

is defined by 6*(q, Y Xk) = UPES*(‘LY) S(p,xk)

Find the language recognized by this
NFA

L={0",0"01,0M1|n=0,1,2.}

Find the language recognized by this
NFA

O S

—_ 5

L = 17(01, 1, 10) (00)*

Nondeterministic finite
automaton

Theorem.

If the language L is recognized by a NFA M,
then L is also recognized by a DFA M,.

In other words,

if we ask if there is a NFA that is not
equivalent to any DFA. The answer is No.

NFA vs. DFA

Advantages.

Easier to construct and manipulate.
Sometimes exponentially smaller.
Sometimes algorithms much easier.

Drawbacks
Acceptance testing slower.
Sometimes algorithms more complicated.

Study Bee

10

