
1

Finite Automata

Great Theoretical Ideas In Computer Science

Victor Adamchik

Danny Sleator

CS 15-251 Spring 2010

Lecture 20 Mar 30, 2010 Carnegie Mellon University

A machine so simple that
you can understand it in

less than one minute

Wishful thinking…

Deterministic Finite Automata

0
0,1

00

1

1

1

0111 111

11

1

The machine accepts a string if the
process ends in a double circle

0
0,1

00

1

1

1

0111 111

11

1

The machine accepts a string if
the process ends in a double circle

states

start state (q0)
accept states

(F)

transitions

Anatomy of a Deterministic
Finite Automaton

The alphabet of a finite automaton is the
set where the symbols come from, for

example {0,1}

The language of a finite automaton is the
set of strings that it accepts

The singular of automata is automaton.

L(M) = All strings of 0s and 1s

The Language L(M) of Machine M

0,1

q0

The language of a finite automaton is the
set of strings that it accepts

2

0 0

1

L(M) = { w | w has an even number of 1s}

q0

0

q1

1

1

The Language L(M) of Machine M

An alphabet Σ is a finite set (e.g., Σ = {0,1})

A string over Σ is a finite-length sequence of
elements of Σ

For x a string, |x| is the length of x

The unique string of length 0 will be denoted
by ε and will be called the empty or null

string

Notation

A language over Σ is a set of strings over Σ

Q is the finite set of states

Σ is the alphabet

 : Q  Σ → Q is the transition function

q0  Q is the start state

F  Q is the set of accept states

A finite automaton is M = (Q, Σ, , q0, F)

L(M) = the language of machine M
= set of all strings machine M accepts

Q = {q0, q1, q2, q3}

Σ = {0,1}

 : Q  Σ → Q transition function

q0  Q is start state

F = {q1, q2}  Q accept states

M = (Q, Σ, , q0, F) where

 0 1

q0 q0 q1

q1 q2 q2

q2 q3 q2

q3 q0 q2

q2

0
0,1

00

1

1

1

q0

q1

q3

M

The finite-state automata are
deterministic, if for each pair Q  Σ of
state and input value there is a unique

next state given by the transition
function.

There is another type machine in
which there may be several possible
next states. Such machines called

nondeterministic.

Build an automaton that
accepts all and only those
strings that contain 001

{0}
0

1

{00}
0

1

{001}
1

0 0,1

EXAMPLE

3

Build an automaton that
accepts all binary numbers
that are divisible by 3,

i.e, L = 0, 11, 110, 1001,
1100, 1111, 10010, 10101…

1

0

0

1

1

0

A language is regular if it is
recognized by a deterministic finite

automaton

L = { w | w contains 001} is regular

L = { w | w has an even number of 1s} is regular

A language over Σ is a set of strings over Σ

Determine the language
recognized by

0

1 0,1

L(M)={1n | n = 0, 1, 2, …}

Determine the language
recognized by

L(M)={1, 01}

0 0,1

0,1

1

1

0

Determine the language
recognized by

L(M)={0n, 0n10x | n=0,1,2…,
and x is any string}

1

0,1

0,1

1

00

DFA Membership problem

Determine whether some
word belongs to the language.

Theorem: The DFA Membership
Problem is solvable in linear time.

Let M = (Q, Σ, , q0, F) and w = w1...wm.
Algorithm for DFA M:

p := q0;
for i := 1 to m do p := (p,wi);
if pF then return Yes else return No.

4

Equivalence of two DFAs

Given a few equivalent machines, we
are naturally interested in the

smallest one with the least number of
states.

Definition: Two DFAs M1 and M2 over the
same alphabet are equivalent if they

accept the same language: L(M1) = L(M2).

Union Theorem

Given two languages, L1 and L2, define
the union of L1 and L2 as

L1  L2 = { w | w  L1 or w  L2 }

Theorem: The union of two regular
languages is also a regular language.

Theorem: The union of two regular
languages is also a regular language

Proof (Sketch): Let

M1 = (Q1, Σ, 1, q0, F1) be finite automaton for L1

and

M2 = (Q2, Σ, 2, q0, F2) be finite automaton for L2

We want to construct a finite automaton
M = (Q, Σ, , q0, F) that recognizes L = L1  L2

1

2

Idea: Run both M1 and M2 at the same
time!

Q = pairs of states, one from M1 and one from M2

= { (q1, q2) | q1  Q1 and q2  Q2 }

= Q1  Q2

Theorem: The union of two regular languages
is also a regular language

0 0

q0

0

q1

1

1

0 1

p0

1

p1

0

0

Automaton for Union

0

p0 q0

1

1

0 00

1

1

p0 q1

p1 q0 p1 q1

0 0

5

The Regular Operations

Union: A  B = { w | w  A or w  B }

Intersection: A  B = { w | w  A and w  B }

Negation: A = { w | w  A }

Reverse: AR = { w1 …wk | wk …w1  A }

Concatenation: A  B = { vw | v  A and w  B }

Star: A* = { w1 …wk | k ≥ 0 and each wi  A }

Reverse
Reverse: AR = { w1 …wk | wk …w1  A }

How to construct a DFA for the reversal of a
language?

The direction in which we read a string should
be irrelevant. If we flip transitions around we

might not get a DFA.

The Kleene closure: A*

From the definition of the concatenation,
we definite An, n =0, 1, 2, … recursively

A0 = {ε}
An+1 = An A

Star: A* = { w1 …wk | k ≥ 0 and each wi  A }

A* is a set consisting of concatenations
of arbitrary many strings from A.

U





0k

kAA*

The Kleene closure: A*

What is A* of A={0,1}?

All binary strings

What is A* of A={11}?

All binary strings of an even
number of 1s

Regular Languages Are
Closed Under The Regular

Operations

We have seen part of the proof for
Union. The proof for intersection is

very similar. The proof for negation is
easy.

Theorem: Any finite language is regular

Claim 1: Let w be a string over an alphabet.
Then {w} is a regular language.

Proof: By induction on the number of
characters. If {a} and {b} are regular then

{ab} is regular

Claim 2: A language consisting of n strings is
regular

Proof: By induction on the number of strings.
If {a} then L{a} is regular

6

Input: Text T of length t, string S of length n

Pattern Matching

Problem: Does string S appear inside text T?

a1, a2, a3, a4, a5, …, at

Naïve method:

Cost: Roughly nt comparisons

Automata Solution

Build a machine M that accepts any
string with S as a consecutive substring

Feed the text to M

Cost:

As luck would have it, the Knuth, Morris,
Pratt algorithm builds M quickly

t comparisons + time to build M

Grep

Coke Machines

Thermostats (fridge)

Elevators

Train Track Switches

Lexical Analyzers for Parsers

Real-life Uses of DFAs
Are all languages

regular?

i.e., a bunch of a’s followed by an
equal number of b’s

Consider the language L = { anbn | n > 0 }

No finite automaton accepts this language

Can you prove this?

anbn is not regular.
No machine has
enough states to
keep track of the
number of a’s it
might encounter

7

That is a fairly weak
argument

Consider the following
example…

L = strings where the # of occurrences
of the pattern ab is equal to the number

of occurrences of the pattern ba

Can’t be regular. No machine has
enough states to keep track of the

number of occurrences of ab

M accepts only the strings with an
equal number of ab’s and ba’s!

b

b
a

b

a

a

a

b
a

b L = strings where the # of occurrences
of the pattern ab is equal to the number

of occurrences of the pattern ba

Can’t be regular. No machine has
enough states to keep track of the

number of occurrences of ab

Let me show you a
professional strength
proof that anbn is not

regular…

How to prove a language is not regular…

Assume it is regular, hence is accepted by
a DFA M with n states.

Show that there are two strings s1 and s2
which both reach some state in M (usually by

pigeonhole principle)

Then show there is some string t such that
string s1t is in the language, but s2t is not.
However, M accepts either both or neither.

8

Pigeonhole principle:

If we put n objects
into m pigeonholes and
if n > m, then at least
one pigeonhole must
have more than one

item in it.

Theorem: L= {anbn | n > 0 } is not regular

Proof (by contradiction):

Assume that L is regular, M=(Q,{a,b},,q0,F)

Consider (q0, ai) for i = 1,2,3, …

There are infinitely many i’s but a finite
number of states.

(q0, an)=q and (q0, am) =q, and n  m

Since M accepts anbn (q, bn)=qf

(q0, ambn)=((q0, am),bn)=(q, bn)= qf

It follows that M accepts ambn, and n  m

The finite-state automata are
deterministic, if for each pair of state
and input value there is a unique next
state given by the transition function.

There is another type machine in
which there may be several possible
next states. Such machines called

nondeterministic.

A NFA is defined using the same
notations M = (Q, Σ, , q0, F)

as DFA except the transition function
 assigns a set of states to each pair

Q  Σ of state and input.

Nondeterministic finite
automaton (NFA)

Note, every DFA is automatically also
a NFA.

Nondeterministic finite
automaton

a

a

qk

a

Allows transitions from qk on the same
symbol to many states

NFA for {0k | k is a multiple of 2 or 3}

ε

ε

0

0

0

0

0

9

What does it mean that for a NFA to
recognize a string x = x1x2…xk?

1

0

0

0
0

0,1
1

1

s1

s2

s3

s4

s0

Since each input symbol xj (for j>1) takes
the previous state to a set of states, we
shall use a union of these states.

What does it mean that for a NFA to
recognize a string?

Here we are going formally define this.

For a state q and string w, *(q, w) is the set of
states that the NFA can reach when it reads the
string w starting at the state q.

Thus for NFA= (Q, Σ, , q0, F), the function
*: Q x Σ* -> 2Q

is defined by *(q, y xk) = p*(q,y) (p,xk)

Find the language recognized by this
NFA

1

0

0

00

0,1
1

1

s1

s2

s3

s4

s0

L = {0n, 0n01, 0n11 | n = 0, 1, 2…}

Find the language recognized by this
NFA

1

0

1

1 0

1

s0

L = 1* (01, 1, 10) (00)*

0

Nondeterministic finite
automaton

Theorem.
If the language L is recognized by a NFA M0,
then L is also recognized by a DFA M1.

In other words,
if we ask if there is a NFA that is not
equivalent to any DFA. The answer is No.

NFA vs. DFA

Advantages.
Easier to construct and manipulate.
Sometimes exponentially smaller.
Sometimes algorithms much easier.

Drawbacks
Acceptance testing slower.
Sometimes algorithms more complicated.

10

Study Bee

• DFA

• NFA

