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A machine so simple that 
you can understand it in 

less than one minute

Wishful thinking…

Deterministic Finite Automata
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The machine accepts a string if the 
process ends in a double circle
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The machine accepts a string if 
the process ends in a double circle

states

start state (q0)
accept states 

(F)

transitions

Anatomy of a Deterministic 
Finite Automaton

The alphabet of a finite automaton is the 
set where the symbols come from, for 

example {0,1}

The language of a finite automaton is the 
set of strings that it accepts

The singular of automata is automaton.

L(M) = All strings of 0s and 1s

The Language L(M) of Machine M

0,1

q0

The language of a finite automaton is the 
set of strings that it accepts
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L(M) = { w | w has an even number of 1s}

q0

0

q1

1
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The Language L(M) of Machine M

An alphabet Σ is a finite set (e.g., Σ = {0,1})

A string over Σ is a finite-length sequence of 
elements of Σ

For x a string, |x| is the length of x

The unique string of length 0 will be denoted 
by ε and will be called the empty or null 

string

Notation

A language over Σ is a set of strings over Σ

Q is the finite set of states

Σ is the alphabet

 : Q  Σ → Q  is the transition function

q0  Q is the start state

F  Q is the set of accept states

A finite automaton is M = (Q, Σ, , q0, F) 

L(M) = the language of machine M
= set of all strings machine M accepts

Q = {q0, q1, q2, q3}

Σ = {0,1}

 : Q  Σ → Q transition function

q0  Q is start state

F  = {q1, q2}  Q accept states

M = (Q, Σ, , q0, F)  where

 0 1

q0 q0 q1

q1 q2 q2

q2 q3 q2

q3 q0 q2

q2
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M

The finite-state automata are 
deterministic, if for each pair Q  Σ of 
state and input value there is a unique 

next state given by the transition 
function.

There is another type machine in 
which there may be several possible 
next states. Such machines called 

nondeterministic.

Build an automaton that 
accepts all and only those 
strings that contain 001

{0}
0

1

{00}
0

1

{001}
1

0 0,1

EXAMPLE
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Build an automaton that 
accepts all binary numbers 
that are divisible by 3,

i.e, L = 0, 11, 110, 1001, 
1100, 1111, 10010, 10101…

1

0

0

1

1

0

A language is regular if it is 
recognized by a deterministic finite 

automaton

L = { w | w contains 001} is regular

L = { w | w has an even number of 1s} is regular

A language over Σ is a set of strings over Σ

Determine the language 
recognized by

0

1 0,1

L(M)={1n | n = 0, 1, 2, …}

Determine the language 
recognized by

L(M)={1, 01}

0 0,1

0,1

1

1

0

Determine the language 
recognized by

L(M)={0n, 0n10x | n=0,1,2…, 
and x is any string}

1

0,1

0,1

1

00

DFA Membership problem

Determine whether some
word belongs to the language.

Theorem: The DFA Membership 
Problem is solvable in linear time.

Let M = (Q, Σ, , q0, F) and w = w1...wm. 
Algorithm for DFA M:

p := q0;
for i := 1 to m do p := (p,wi);
if pF then return Yes else return No.
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Equivalence of two DFAs

Given a few equivalent machines, we 
are naturally interested in the 

smallest one with the least number of 
states.

Definition: Two DFAs M1 and M2 over the 
same alphabet are equivalent if they

accept the same language: L(M1) = L(M2).

Union Theorem

Given two languages, L1 and L2, define 
the union of L1 and L2 as 

L1  L2 = { w | w  L1 or w  L2 } 

Theorem: The union of two regular 
languages is also a regular language.

Theorem: The union of two regular 
languages is also a regular language

Proof (Sketch): Let 

M1 = (Q1, Σ, 1, q0, F1)  be finite automaton for L1

and 

M2 = (Q2, Σ, 2, q0, F2) be finite automaton for L2

We want to construct a finite automaton 
M = (Q, Σ, , q0, F) that recognizes L = L1  L2

1

2

Idea: Run both M1 and M2 at the same 
time!

Q = pairs of states, one from M1 and one from M2

= { (q1, q2) | q1  Q1 and q2  Q2 }

= Q1  Q2

Theorem: The union of two regular languages 
is also a regular language

0 0

q0

0

q1

1

1

0 1

p0

1

p1

0

0

Automaton for Union

0

p0 q0

1

1

0 00

1

1

p0 q1

p1 q0 p1 q1

0 0
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The Regular Operations

Union: A  B = { w | w  A or w  B } 

Intersection: A  B = { w | w  A and w  B } 

Negation: A = { w | w  A } 

Reverse: AR = { w1 …wk | wk …w1  A }

Concatenation: A  B = { vw | v  A and w  B }

Star: A* = { w1 …wk | k ≥ 0 and each wi  A }

Reverse
Reverse: AR = { w1 …wk | wk …w1  A }

How to construct a DFA for the reversal of a 
language?

The direction in which we read a string should 
be irrelevant. If we flip transitions around we 

might not get a DFA.

The Kleene closure: A*

From the definition of the concatenation, 
we definite An, n =0, 1, 2, … recursively

A0 = {ε}
An+1 = An A

Star: A* = { w1 …wk | k ≥ 0 and each wi  A }

A* is a set consisting of concatenations 
of arbitrary many strings from A.

U





0k

kAA*

The Kleene closure: A*

What is A* of A={0,1}?

All binary strings

What is A* of A={11}?

All binary strings of an even 
number of 1s

Regular Languages Are 
Closed Under The Regular 

Operations

We have seen part of the proof for 
Union. The proof for intersection is 

very similar. The proof for negation is 
easy.

Theorem: Any finite language is regular

Claim 1: Let w be a string over an alphabet. 
Then {w} is a regular language. 

Proof: By induction on the number of 
characters. If {a} and {b} are regular then 

{ab} is regular

Claim 2: A language consisting of n strings is 
regular 

Proof: By induction on the number of strings. 
If {a} then L{a} is regular
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Input: Text T of length t, string S of length n

Pattern Matching

Problem: Does string S appear inside text T?

a1, a2, a3, a4, a5, …, at

Naïve method: 

Cost: Roughly nt comparisons

Automata Solution

Build a machine M that accepts any 
string with S as a consecutive substring

Feed the text to M

Cost:

As luck would have it, the Knuth, Morris, 
Pratt algorithm builds M quickly

t comparisons + time to build M

Grep

Coke Machines

Thermostats (fridge)

Elevators

Train Track Switches

Lexical Analyzers for Parsers

Real-life Uses of DFAs
Are all languages 

regular?

i.e., a bunch of a’s followed by an 
equal number of b’s

Consider the language L = { anbn | n > 0 }

No finite automaton accepts this language

Can you prove this?

anbn is not regular.  
No machine has 
enough states to 
keep track of the 
number of a’s it 
might encounter
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That is a fairly weak 
argument 

Consider the following 
example…

L = strings where the # of occurrences 
of the pattern ab is equal to the number 

of occurrences of the pattern ba

Can’t be regular.  No machine has 
enough states to keep track of the 

number of occurrences of ab

M accepts only the strings with an 
equal number of ab’s and ba’s!

b

b
a

b

a

a

a

b
a

b L = strings where the # of occurrences 
of the pattern ab is equal to the number 

of occurrences of the pattern ba

Can’t be regular.  No machine has 
enough states to keep track of the 

number of occurrences of ab

Let me show you a 
professional strength 
proof that anbn is not 

regular…

How to prove a language is not regular…

Assume it is regular, hence is accepted by
a DFA M with n states.

Show that there are two strings s1 and s2
which both reach some state in M (usually by 

pigeonhole principle)

Then show there is some string t such that 
string s1t is in the language, but s2t is not. 
However, M accepts either both or neither.
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Pigeonhole principle:

If we put n objects 
into m pigeonholes and 
if n > m, then at least 
one pigeonhole must 
have more than one 

item in it.

Theorem:  L= {anbn | n > 0 } is not regular

Proof (by contradiction):

Assume that L is regular, M=(Q,{a,b},,q0,F)

Consider (q0, ai) for i = 1,2,3, …

There are infinitely many i’s but a finite 
number of states.

(q0, an)=q and (q0, am) =q, and n  m

Since M accepts anbn (q, bn)=qf

(q0, ambn)=( (q0, am),bn)=(q, bn)= qf

It follows that M accepts ambn, and n  m 

The finite-state automata are 
deterministic, if for each pair of state 
and input value there is a unique next 
state given by the transition function.

There is another type machine in 
which there may be several possible 
next states. Such machines called 

nondeterministic.

A NFA is defined using the same 
notations M = (Q, Σ, , q0, F)

as DFA except the transition function 
 assigns a set of states to each pair 

Q  Σ of state and input.

Nondeterministic finite 
automaton (NFA)

Note, every DFA is automatically also 
a NFA.

Nondeterministic finite 
automaton

a

a

qk

a

Allows transitions from qk on the same 
symbol to many states

NFA for {0k | k is a multiple of 2 or 3}

ε

ε

0

0

0

0

0
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What does it mean that for a NFA to 
recognize a string x = x1x2…xk?

1

0

0

0
0

0,1
1

1

s1

s2

s3

s4

s0

Since each input symbol xj (for j>1) takes 
the previous state to a set of states, we 
shall use a union of these states.

What does it mean that for a NFA to 
recognize a string?

Here we are going formally define this.

For a state q and string w, *(q, w) is the set of 
states that the NFA can reach when it reads the 
string w starting at the state q. 

Thus for NFA= (Q, Σ, , q0, F), the function
*: Q x Σ* -> 2Q

is defined by *(q, y xk) = p*(q,y) (p,xk)

Find the language recognized by this 
NFA

1

0

0

00

0,1
1

1

s1

s2

s3

s4

s0

L = {0n, 0n01, 0n11 | n = 0, 1, 2…}

Find the language recognized by this 
NFA

1

0

1

1 0

1

s0

L = 1* (01, 1, 10) (00)*

0

Nondeterministic finite 
automaton

Theorem. 
If the language L is recognized by a NFA M0, 
then L is also recognized by a DFA M1.

In other words, 
if we ask if there is a NFA that is not 
equivalent to any DFA. The answer is No.

NFA vs. DFA

Advantages.
Easier to construct and manipulate.
Sometimes exponentially smaller.
Sometimes algorithms much easier.

Drawbacks
Acceptance testing slower.
Sometimes algorithms more complicated.
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Study Bee

• DFA

• NFA


