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Recap

Theorem: Let G be a graph with n nodes
and e edges

The following are equivalent:
1. G is a tree (connected, acyclic)

2. Every two nodes of G are
joined by a unique path

3.Gisconnectedandn=e +1
4.Gisacyclicandn=e +1

5. Gis acyclic and if any two non-adjacent
points are joined by a line, the resulting
graph has exactly one cycle

Cayley’s Formula

The number of labeled trees
on n nodes is N"2

il

A graph is planar if
it can be drawn in the
plane without
crossing edges




Planar Graphs

http://lwww.planarity.net
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Euler’s Formula

If G is a connected planar graph
with n vertices, e edges and f
faces,then n-e+f=2

Graph Coloring

A coloring of a graph is an assignment of a
color to each vertex such that no neighboring
vertices have the same color

Spanning Trees

A spanning tree of a graph G is a tree that
touches every node of G and uses only
edges from G

Every connected graph has a spanning tree

Implementing Graphs

Adjacency Matrix

Suppose we have a graph G with n
vertices. The adjacency matrix is the
n x n matrix A=[a;] with:

a; =1 if (i,j) is an edge
a; =0 if (i,j) is not an edge

Good for dense graphs!




Example
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Counting Paths

The number of paths of length k from
node i to node j is the entry in position
(i,j) in the matrix Ak

Adjacency List

Suppose we have a graph G with n
vertices. The adjacency list is the list
that contains all the nodes that each
node is adjacent to

Good for sparse graphs!
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Graphical Muzak

“Can you hear the shape of a graph?”

http://www.math.ucsd.edu/~fan/hear/

Finding Optimal Trees

Trees have many nice properties
(uniqueness of paths, no cycles, etc.)

We may want to compute the “best” tree
approximation to a graph

If all we care about is communication, then
a tree may be enough. We want a tree with
smallest communication link costs
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Finding Optimal Trees

Problem: Find a minimum spanning tree, that
is, a tree that has a node for every node in the
graph, such that the sum of the edge weights
is minimum

Tree Approximations

Kruskal’s Algorithm

A simple
algorithm for
finding a
minimum
spanning tree

Finding an MST: Kruskal’s Algorithm

Create a forest where each node is a
separate tree

Make a sorted list of edges S
While S is non-empty:
Remove an edge with minimal weight

If it connects two different trees, add
the edge. Otherwise discard it.

Applying the Algorithm

Analyzing the Algorithm

The algorithm outputs a spanning tree T.

Suppose that it’s not minimal. (For simplicity,
assume all edge weights in graph are distinct)

Let M be a minimum spanning tree.

Let e be the first edge chosen by the algorithm
thatis notin M.

If we add e to M, it creates a cycle. Since this
cycle isn’t fully contained in T, it has an edge f
notinT.

N = M+e-f is another spanning tree.




Analyzing the Algorithm
N = M+e-f is another spanning tree.
Claim: e <f, and therefore N <M
Suppose not: e>f

Then f would have been visited before e by the
algorithm, but not added, because adding it
would have formed a cycle.

But all of these cycle edges are also edges of
M, since e was the first edge notin M. This
contradicts the assumption M is a tree.
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Greed is Good (In this case...)

The greedy algorithm, by adding the least
costly edges in each stage, succeeds in
finding an MST

But — in math and life — if pushed too far, the
greedy approach can lead to bad results.

TSP: Traveling Salesman Problem

Given a number of cities and the costs of
traveling from any city to any other city,
what is the cheapest round-trip route that
visits each city at least once and then
returns to the starting city?

TSP from Trees

We can use an MST to derive a TSP tour that is
no more expensive than twice the optimal tour.

Idea: walk “around” the MST and take
shortcuts if a node has already been visited.

We assume that all pairs of nodes are
connected, and edge weights satisfy the
triangle inequality d(x,y) < d(x,z) + d(z,y)

Tours from Trees

Shortcuts only decrease the cost, so
Cost(Greedy Tour) < 2 Cost(MST)
< 2 Cost(Optimal Tour)

This is a 2-competitive algorithm

Bipartite Graph

A graph is bipartite if the nodes can be
partitioned into two sets V, and V, such that
all edges go only between V, and V, (no
edges go from V, to V, or from V, to V,)
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Dancing Partners

A group of 100 boys and girls attend a
dance. Every boy knows 5 girls, and every
girl knows 5 boys. Can they be matched
into dance partners so that each pair
knows each other?

Sy =0

Dancing Partners

%%0
i

Perfect Matchings

A matching is a set of edges, no two of which
share a vertex. The matching is perfect if it
includes every vertex.

Regular Bipartite Matching Theorem: [If
every node in a bipartite graph has the same
degree d > 1, then the graph has a perfect
matching.

Note: if degrees are the same then |A| =|B|,
where A is the set of nodes “on the left” and B
is the set of nodes “on the right”

A Matter of Degree

Claim: If degrees are the same then |A| = |B|
Proof:
If there are m boys, there are md edges

If there are n girls, there are nd edges

The Regular Bipartite Matching Theorem
follows from a stronger theorem, which we
now come to. (Remind me to return to the
proof of the RBMT later.)

The Marriage Theorem

Theorem: A bipartite graph has a perfect
matching if and only if |A| =|B| =n and for
all k € [1,n]: for any subset of k nodes of A
there are at least k nodes of B that are
connected to at least one of them.

The Marriage Theorem

O
For any subset of (say)
k nodes of A there are

£ at least k nodes of B
that are connected to at
least one of them

0

The condition fails for
this graph

S

&
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The Feeling is Mutual

The condition of the theorem still holds if we swap the Proof of Marrlage Theorem

roles of A and 8: If we pick any k nodesin B, they are Call a bipartite graph “matchable” if it has
A B the same number of nodes on left and right,

and any k nodes on the left are connected to

Proof by <« at least k on the right

Contradiction: k
Strategy: Break up the graph into two
matchable parts, and recursively partition each
of these into two matchable parts, etc., until
each part has only two nodes

>n-k n-k

. Proof of Marriage Theorem
Proof of Marriage Theorem

The only way this
could fail is if one of
the missing nodes is b

Select two nodes a € A and b € B connected by
an edge

Idea: Take G, = (a,b) and G, = everything else
Add this in to form
G,, and take G, to be
everything else.

Problem: G, need not be matchable. There
could be a set of k nodes that has only k-1
neighbors.

This is a matchable
partition!*

(*Done in lecture on the document cam.)

Example
Proof: Form a bipartite graph as follows: Start with

52 cards on the left and the same 52 cards on the

Suppose that a standard
right, connected by 52 edges.

deck of cards is dealt into

13 piles of 4 cards each Now group the cards on the left into 13 sets

E according to the given piles. Group the cards on
Thenitis possible to select the right into 13 groups according to rank. Let the
a card from each pile so edges be inherited from the original ones.

that the 13 chosen cards

contain exactly one card of This bipartite graph is matchable, and thus

each rank Has a perfect matching. (k groups on the left have
to connect to 4k cards on the right, thus they

connect to at least k groups on the right.)
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Generalized Marriage:

Hall’s Theorem The proof of Hall’s Theorem is slightly

more complicated (but not much) than our

LetS={S,, S,, ...S,} be a set of finite subsets proof of the Marriage Theorem.
that satisfies: For any subset T of {1,2,...,n} let
U = the union of S;for tin T, we have: |U| = |T|.
I.E. any k subsets contain at least k elements

You can find the proof on Wikipedia, or on
pages 218 and 219 of Mathematical
Thinking by D’Angelo and West.

Then we can choose an element x; from each
S, so that {x,, x,, ...} are all distinct

Adjacency matrix
Minimum Spanning Tree
- Definition
Kruskal’s Algorithm
- Definition
- Proof of Correctness
Traveling Salesman Problem

Here’s What - Definition
You Need to - Using MST to get an
Know...

approximate solution
The Marriage Theorem




