
1

Algebraic Structures: 
Group Theory II

Great Theoretical Ideas In Computer Science

Victor Adamchik

Danny Sleator

CS 15-251       Spring 2010

Lecture 17 Mar. 17, 2010 Carnegie Mellon University

3. (Inverses) For every a  S there 
is  b  S such that:

Group

A group G is a pair (S,), where S is a set and  is 
a binary operation on S such that:

1.  is associative

2. (Identity) There exists an 
element e  S such that:

e  a = a  e = a, for all a  S

a  b = b  a = e

Review

order of a group G = size of the group G

order of an element g = (smallest n>0 s.t. gn = e)

g is a generator if order(g) = order(G)

Theorem:
Let x be an element of G. The 

order of x divides the order of G

Orders

(Z10: +)

Orders: example

{0,1,2,3,4,5,6,7,8,9}

smallest n>0 such that gn = e

1 10 5 10 5 2

Let G be a group. A non-empty set H 
G is a subgroup if it forms a group 

under the same operation.

Subgroups

Exercise. 
Does {0,2,4} form a subgroup of Z6 under +?

Exercise. 
Does {2n, nZ} form a subgroup of Q\{0} 
under *?
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Let G be a group. A non-empty set H 
G is a subgroup if it forms a group 

under the same operation.

Subgroups

Exercise. 
List all subgroups of Z12 under +.

Z12 {0} {0,6} {0,4,8} {0,3,6,9}

{0,2,4,6,8,10}

We are going to generalize the idea of 
congruent classes mod n in (Z,+).

Theorem. Let H is a subgroup of G. 
Define a relation:  ab iff a  b-1  H.
Then  is an equivalence relation.

Cosets

a = b (mod n) iff a - b  <n>

Theorem. Let H is a subgroup of G. 
Define a relation:  ab iff a  b-1  H.
Then  is an equivalence relation.

Proof. Reflexive: aa iff a  a-1 =e  H

Cosets

Transitive: a  c-1=(a  b-1)(b  c-1)  H 

Symmetric: b  a-1=(a  b-1)-1  H

The equivalent classes for this relation is 
called the right cosets of H in G.

Cosets

If H is a subgroup of a group G then for any 
element g of the group the set of products 
of the form h  g where hH is a 
right coset of H denoted by the symbol Hg.

Exercise.
Write down the right coset of the 
subgroup {0,3,6,9} of Z12 under +.

Cosets

Right coset = {h g | h  H, g  G}

{0,3,6,9} + {0,1,2,3,4,5,6,7,8,9,10,11} =

[3]+0 = {0,3,6,9}
[3]+1 = {1,4,7,10}
[3]+2 = {2,5,8,11}

Theorem.
If H is a finite subgroup of G and xG, 
then |H|=|Hx|

Cosets

Proof. We prove this by finding a bijection 
between H and Hx.

It is onto, because Hx consists of the 
elements of the form hx, where hH.

Assume that there are h1, h2H. .

Then h1x= h2x. It follows, h1=h2.



3

Theorem.
If H is a finite subgroup of G, 
then G = xG Hx.

Cosets: partitioning

Proof. Cosets are equivalent classes.
The two cosets are either equal or disjoint.

Since G is finite, there are finitely many such 
cosets.

Every element x of G belongs to the coset
determined by it.

x = x e  Hx, since eH.

Lagrange’s Theorem 

Theorem: 

If G is a finite group, and H is a 

subgroup then the order of H divides 

the order of G. 

In symbols, |H| divides |G|.

Lagrange’s Theorem 

Theorem: |H| divides |G|.

Proof:  G is partitioning into cosets.

Pick a representative from each coset

G = j=1…k Hxj

Each coset contains |H| elements.

It follows |G| = k |H|. Thus |H| is a divisor 
of |G|.

Lagrange’s Theorem: what is for? 

The theorem simplifies the problem of

finding all subgroups of a finite group.

Consider group of symmetry of square 

YSQ = { R0, R90, R180, R270, F|, F—, F  , F   }

Except {R0} and Ysq, all other subgroups 
must have order 2 or 4. 
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Lagrange’s Theorem

Exercise.

Suppose that H and K are subgroups of G 
and assume that 

|H| = 9, |K| = 6, |G| < 50. 

What are the possible values of |G|?

LCM(9,6) = 18, so |G|=18 or 36

Isomorphism

Mapping between objects, which shows 
that they are structurally identical.

Any property which is preserved by an 
isomorphism and which is true for one 

of the objects, is also true of the other.

Isomorphism

Example.
{1,2,3,…}, or {I, II, III,…}, or 
{один, два, три,…}

Mathematically we want to think about
these sets as being the same.

Group Isomorphism

Definition. Let G be a group with 
operation  and H with . 
An isomorphism of G to H is a bijection
f: GH that satisfies

f(x  y) = f(x)  f(y)

If we replace bijection by injection, 
such mapping is called a homomorphism. 

Group Isomorphism

Example. 
G = (Z, +),  H = (even, +)

Isomorphism is provided by f(n) = 2 n

f(n + m) = 2 (n+m) = (2n)+(2m)=f(n)+f(m)

Group Isomorphism

Example. 
G = (R+, ),  H = (R, +)

Isomorphism is provided by f(x) = log(x)

f(x  y) = 
log(x  y) = log(x) + log(y) = f(x) + f(y)
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Group Isomorphism

Theorem. Let G be a group with 
operation , H with  and they are 
isomorphic f(x  y) = f(x)  f(y). Then 

f(eG) = eH

Proof. f(eG)= f(eG  eG) = f(eG)  f(eG). 

On the other hand, f(eG)=f(eG)  eH

f(eG)  eH = f(eG)  f(eG) f(eG) = eH

Group Isomorphism

Theorem. Let G be a group with 
operation , H with  and they are 
isomorphic f(x  y) = f(x)  f(y). Then 

f(x-1) = f(x)-1, xG

Proof. 

f(x)  f(x-1) = f(x  x-1) =f(eG) = eH. 

Group Isomorphism

In order to prove that two groups and are 
not isomorphic, one needs to demonstrate 
that there is no isomorphism from onto . 
Usually, in practice, this is accomplished by 
finding some property that holds in one 
group, but not in the other. 

Examples.  (Z4, +) and (Z6, +)
They have different orders.

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

* 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

Exercise. 
Verify that (Z4, +) is isomorphic to 
(Z*5, *)

Group Isomorphism

Exercise. 
Verify that (Z4, +) is isomorphic to 
(Z*5, *)

Z4 is generated by 1 as in 0, 1, 2, 3, (then back to 0)

Z*5 is generate by 2 as in 1, 2, 4, 3, (then back to 1)

0  1 
1  2 
2  4 
3  3

f(x)= 2x mod 5

Cyclic Groups

Definition. Let G be a group and xG. 
Then <x>={xk | k Z} is a cyclic subgroup 
generated by x.

Examples. 
(Zn,+) = <1>
(Z*5,*) = <2> or <3>



6

Cyclic Groups

Theorem. A group of prime order is 
cyclic, and furthermore any non-identity 
element is a generator.

Proof.  Let |G|=p (prime) and xG.

By Lagrange’s theorem, order(x) divides |G|.

Since p is prime, there are two divisors 1 and 
p.  Clearly it is not 1, because otherwise x=e.

Cyclic Groups

Theorem. Any finite cyclic group of 
order n is isomorphic to (Zn,+). 
Any infinite cyclic group is isomorphic 
to (Z,+)
Proof.  Let G={x0,x1,x2,…,xn-1}.

Mapping is given by f(xk) = k.

f(xk xm)=f(xk+m)=k+m=f(xk)+f(xm) (homomorphism)

One-to-one: f(xk)=0k=0 and ak=e.

Permutation Groups

If the set is given by A = {1, 2, 3, . . . , n} 
then let Sn denote the set of all 

permutations on A. 
It forms a group under function composition. 

We call Sn the symmetric group of degree n and 
call any subgroup of Sn a permutation group.

An element of Sn is represented by 










1

4

3

3

4

2

2

1

Permutation Groups

Cayley’s Theorem. Every group is isomorphic 
to a permutation group. 

Sketch of proof. Let G be a group with 
operation . For each xG, we define
x:G G given by x(g) = x  g for all gG.

This function x is a permutation on G.

Next we create a permutation group out of x.

Now we define f: GSn by f(x)= x

Cayley’s Theorem. Every group is isomorphic 
to a permutation group. 

We define f: G Sn by f(x)= x

One-to-one. Suppose f(a)=f(b). It follows 
a= b and in particular a(e)= b(e). 
Thus, a e = b e and then a = b.

Onto. It follows from definition of x

Homomorphism. f(a b) = ab, f(a)f(b)= aa

To prove ab= aa , we write
ab(x)=(ab)x=a (bx)=a(bx)=a(b(x))=(ab)(x)

Study Bee

• Lagrange’s Theorem
• Cosets
• Cyclic Group
• Permutation Group
• Cayley’s Theorem


