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Group

A group G is a pair (S,¢), where S is a set and ¢ is
a binary operation on S such that:

1. ¢ is associative

2. (Identity) There exists an
element e e S such that:

e¢vda=-aee=aqa, foralaes

3. (Inverses) For every a € S there
is b € S such that:

aeb=Dbea=z=e

Review

order of a group 6 = size of the group 6
order of an element g = (smallest n>0 s.t. g" = e)

g is a generator if order(g) = order(G)

Orders

Theorem:

Let x be an element of 6. The
order of x divides the order of G

Orders: example
(Z10* +)
{0/1/2/3/4/5/6 /7/8/9}

smallest n>0 such that g"=e
110 5 10 5 2

Subgroups

Let G be a group. A non-empty set H
G is a subgroup if it forms a group
under the same operation.

Exercise.
Does {0,2,4} form a subgroup of Z, under +?

Exercise.

Does {2", heZ} form a subgroup of Q\{0}
under *?




Subgroups

Let G be a group. A non-empty set H
G is a subgroup if it forms a group
under the same operation.

Exercise.
List all subgroups of Z;, under +.

Z;, {0} {06} {0,4,8} {0,3,6,9}

{0,2,4,6,8,10}

Cosets

We are going to generalize the idea of
congruent classes mod n in (Z,+).

a=b(modn)iffa-be<n>
Theorem. Let H is a subgroup of 6.

Define a relation: a~b iff a ¢ b-1 € H.
Then ~ is an equivalence relation.

Cosets

Theorem. Let H is a subgroup of 6.
Define a relation: a~b iff a ¢ b-! € H.
Then ~ is an equivalence relation.

Proof. Reflexive: a~a iff a ¢ a-! =e € H
Symmetric: b ¢ a*!=(a ¢ b-1)' e H

Transitive: a ¢ ¢c'!=(a ¢ b-1)(b ¢ c) e H

Cosets

The equivalent classes for this relation is
called the right cosets of H in 6.

If His a subgroup of a group & then for any
element g of the group the set of products
of the form h ¢ g where heH is a

right coset of H denoted by the symbol AHg.

Cosets
Exercise.
Write down the right coset of the
subgroup {0,3,6,9} of Z;, under +.
Right coset ={hg| h e H, g e 6}
{0,3,6,9} + {0,1,2,3,4,5,6,7,8,9,10,11} =
[3]+0 = {0,3,6,9}

[31+1 = {1,4,7,10}
[3]+2 = {2,5,8,11}

Cosets

Theorem.
If H is a finite subgroup of 6 and xe6,
then |H|=|Hx|

Proof. We prove this by finding a bijection
between H and Hx.

It is onto, because Hx consists of the
elements of the form hx, where heH.

Assume that there are h;, h,eH. .

Then h;x= h,x. It follows, h;=h,.




Cosets: partitioning Lagrange's Theorem

Theorem.

If His a finite subgroup of G, Theorem:

then & = UyeoHx. If G is a finite group, and H is a
Proof. Cosets are equivalent classes. subgroup then the order of H divides
The two cosets are either equal or disjoint. the order of 6.
Since G is finite, there are finitely many such
cosets.

In symbols, |H| divides |G].
Every element x of 6 belongs to the coset

determined by it.

x = x e € Hx, since ecH.

Lagrange's Theorem Lagrange's Theorem: what is for?

Tl : ivi .
heorem: |H| divides [6| The theorem simplifies the problem of

Proof: 6 is partitioning into cosets. finding all subgroups of a finite group.
Pick a representative from each coset Consider group of symmetry of square
G= szl,..k HXJ
Each coset contains |H| elements. Ysq = { Ro, Roo, Rigo, Rezo, Fi F- B, F )
It follows |G| = k |H|. Thus |H| is a divisor Except {Ro} and ¥, all other subgroups
must have order 2 or 4.
of |6].
Order 2 Ry Roo Rigo Razo Fi  F_ F/ F order 4 Ro Roo Rigo Rao F|  F_ F/ F
RO R0 R90 RIBO R270 F'I F— F/ F\ R0 R0 R90 RlBO R270 Fl F— F/ F\
Rgo | Roo [Rigo|Rzzo| Ro | F(| F, | Fi | F- Rso | Roo [Rigo|Rz7o| Ro | F(| F, | Fi | F-
Rigo | Riso|Rezo| Ro |Reo | F- [ Fy | F(| F, Rigo JR1so[Rezo[ Ro [Reo | F—| Fy | F(| F,
R270 R270 RO RBO R180 F/ F\ F— F| R270 R270 R0 R90 R180 F/ F\ F— Fl
I:I I:I F/ F_ F\ Ro [Riso | Roo |Razo I:l I:I l:/ F_ F\ Ro [Riso | Roo |R270
F_ F_ F\ F| F/ ngo Ro R270 Rgo F— F— F\ I:l F/ RIBO R0 R270 R90
F, A FE | F-| FQ| Fi |Rero|Roo | Ro [Riso F, A FE | F-| FQ| Fi |Rero| Roo | Ro [Riso
F\ F\ F.I F/ F— R90 R270 R180 RO F\ F\ Fl F/ F— R90 R270 R180 R0




Lagrange's Theorem

Exercise.

Suppose that H and K are subgroups of 6
and assume that

[HI =9, |K| = 6, |6] < 50.
What are the possible values of |6]?

LCM(9,6) = 18, so |5]=18 or 36

Isomorphism

Mapping between objects, which shows
that they are structurally identical.

Any property which is preserved by an
isomorphism and which is true for one
of the objects, is also true of the other.

Isomorphism

Example.
{123,.}, or{I, II, III,.}, or
{oavH, pea, TpY,..}

Mathematically we want to think about
these sets as being the same.

Group Isomorphism

Definition. Let & be a group with
operation x and H with .

An isomorphism of G to H is a bijection
f: G—H that satisfies
fx = y) = f(x) ¢ f(y)

If we replace bijection by injection,
such mapping is called a homomorphism.

Group Isomorphism

Example.
G=(Z,+), H= (even, +)

Isomorphism is provided by f(n) =2 n

f(n+m) = 2 (n+m) = (2n)+(2m)=Ff(n)+f(m)

Group Isomorphism

Example.
G=(R*, %), H=(R,+)

Isomorphism is provided by f(x) = log(x)

f(x * y) =
log(x * y) = log(x) + log(y) = f(x) + f(y)




Group Isomorphism

Theorem. Let G be a group with
operation x, H with ¢ and they are
isomorphic f(x * y) = f(x) ¢ f(y). Then

fleg) = ey

Proof. f(eg)= f(eg * eg) = f(eg) ¢ f(eg).
On the other hand, f(ey)=f(e;) ¢ ey
feg) ¢ ey = f(eg) ¢ f(eg) = fleg) = ey

Group Isomorphism

Theorem. Let G be a group with
operation x, H with ¢ and they are
isomorphic f(x * y) = f(x) ¢ f(y). Then

f(x1) = f(x)!, xe6
Proof.

f(x) & f(x1) = f(x = x1)=f(eg) = ey

Group Isomorphism

Inorder to prove that two groups and are
not isomorphic, one needs to demonstrate
that there is no isomorphism from onto .
Usually, in practice, this is accomplished by
finding some property that holds in one
group, but not in the other.

Examples. (Z,, +) and (Z,, +)
They have different orders.

Group Isomorphism

Exercise.
Verify that (Z,4, +) is isomorphic to
(Z*5, %)

0|1]2(3 112 3|4
0,0|1]2]|3 1711234
11112 3]|0 212413
2|12 (3|0]1 313 |1]4(2
3/3|0[1]|2 4 14 |3|2|1

Exercise.
Verify that (Z,, +) is isomorphic to
(Z*5l *)

Z,is generated by 1as in0, 1, 2, 3, (then back to O
Z*g is generate by 2asin1, 2, 4, 3, (then back to 1)

Ool1l
1lo2 f(x)= 2* mod 5
2604
33

Cyclic Groups

Definition. Let G be a group and x<6.
Then <x>={x* | k €Z} is a cyclic subgroup
generated by x.

Examples.
(Zn/"') = <1>
(2*5,*) =<2>0r<3>




Cyclic Groups

Theorem. A group of prime order is
cyclic, and furthermore any non-identity
element is a generator.

Proof. Let |G|=p (prime) and x<6.

By Lagrange's theorem, order(x) divides |G|.

Since p is prime, there are two divisors 1 and
p. Clearly it is not 1, because otherwise x=e.

Cyclic Groups
Theorem. Any finite cyclic group of
order n is isomorphic to (Z,,+).
Any infinite cyclic group is isomorphic
to (Z,+)
Proof. Let 6={x9x!x2,.. x"1}.
Mapping is given by f(xk) = k.
f(xk xm)=f (xkm)=k+m=f (xk)+f(x™) (homomorphi

One-to-one: f(xk)=0<=k=0 and ak=e.

Permutation Groups

If the setisgivenby A={1,2,3,..., n}
then let S, denote the set of all
permutations on A.

It forms a group under function composition.
An element of S, is represented by

1234
2431
We call S, the symmetric group of degree n and
call any subgroup of S, a permutation group.

Permutation Groups

Cayley's Theorem. Every group is isomorphic
to a permutation group.

Sketch of proof. Let G be a group with
operation x. For each xeG, we define

L6 —G given by A (g) = x * g for all geG.
This function A, is a permutation on 6.

Next we create a permutation group out of A,.
Now we define f: 6 —S, by f(x)= A,

Cayley's Theorem. Every group is isomorphic
to a permutation group.

We define f: 6 —S, by f(x)= A,

One-to-one. Suppose f(a)=f(b). It follows
Ao= Ay and in particular 1,(e)= Ay(e).
Thus,ae=beand thena=b.

Onto. It follows from definition of A,
Homomorphism. f(a b) = A, f(a)ef(b)= 1,2,

To prove A= A, ¢, , Wwe write
Aap(X)=(ab)x=a (bx)=24(bXx)=2q(Ap(X))=(1q # 1)(X)

* Lagrange’s Theorem
* Cosets

+ Cyclic Group

+ Permutation Group
+ Cayley's Theorem
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