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+
T(n) = amount of 
time grade school 

addition uses to add 
two n-bit numbers

* * * * * * * * * *
* * * * * * * * * *

* * * * * * * * * * *

Time complexity of 
grade school addition

T(n) is linear:

T(n) = Θ(n)

Time complexity of 
grade school multiplication

T(n) = The amount of 
time grade school 

multiplication uses to 
multiply two n-bit 

numbers

T(n) is quadratic:

T(n) = Θ(n2)
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n2

# of bits in the numbers

t
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Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

No matter how dramatic the difference in 
the constants, the quadratic curve will 
eventually dominate the linear curve

Is there a sub-linear time 
method for addition?

Any addition algorithm takes Ω(n) 

Claim: Any algorithm for addition must 
read all of the input bits

Proof: Suppose there is a mystery 
algorithm A that does not examine 

each bit

Give A a pair of numbers. There must 
be some unexamined bit at position i in 

one of the numbers
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* * * * * * * * *
* * * * * * * * *

* * * * * * * * * *

A did not
read this bit
at position i

Any addition algorithm takes Ω(n)

If A is not correct on the inputs, 
we found a bug

If A is correct, flip the bit at position i
A gives the same answer as before, 

which is now wrong.

Grade school addition can’t 
be improved upon by more 

than a constant factor

Grade School Addition: Θ(n) time.
Furthermore, it is optimal

Grade School Multiplication: Θ(n2) time

Is there a clever algorithm to multiply 
two numbers in linear time?

Despite years of research, no one 
knows! If you resolve this question, 
Carnegie Mellon will give you a PhD!

Can we even break the quadratic time 
barrier?

In other words, can we do something very 
different than grade school multiplication?

Divide And Conquer

An approach to faster algorithms:

DIVIDE a problem into smaller subproblems

CONQUER them recursively

GLUE the answers together so as to 
obtain the answer to the larger problem

X = 

Y = 

a b

c d

X = a 2n/2 + b

n/2 bitsn/2 bits

n bits

X × Y = ac 2n + (ad + bc) 2n/2 + bd

X

Y

Multiplication of 2 n-bit numbers

Y = c 2n/2 + d



3

Multiplication of 2 n-bit numbers

X = 

Y = 

a b

c d

n/2 bitsn/2 bits

X × Y = ac 2n + (ad + bc) 2n/2 + bd

MULT(X,Y):
If |X| = |Y| = 1 then return XY
else break X into a;b and Y into c;d
return MULT(a,c) 2n + (MULT(a,d) 

+ MULT(b,c)) 2n/2 + MULT(b,d)

Same thing for numbers in decimal

X = 

Y = 

a b

c d

X = a 10n/2 + b Y = c 10n/2 + d

n/2 digitsn/2 digits

n digits

X × Y = ac 10n + (ad + bc) 10n/2 + bd

Multiplying (Divide & Conquer style)

X = 

Y = 

X × Y = ac 10n + (ad + bc) 10n/2 + bd 

a b

c d

1234*2139

12345678 * 21394276

12*21   12*39   34*21   34*39

1*2  1*1  2*2  2*1

2 1 4 2

Hence: 12*21 =   2*102 + (1 + 4)101 +  2 = 252

1234*4276 5678*2139 5678*4276

Multiplying (Divide & Conquer style)

X = 

Y = 

X × Y = ac 10n + (ad + bc) 10n/2 + bd 

a b

c d

1234*2139  1234*4276  5678*2139  5678*4276

12345678 * 21394276

12*21   12*39   34*21   34*39252 468 714 1326
*104 +  *102 +  *102 +   *1= 2639526

Multiplying (Divide & Conquer style)

X = 

Y = 

X × Y = ac 10n + (ad + bc) 10n/2 + bd 

a b

c d

1234*2139  1234*4276  5678*2139  5678*4276

12345678 * 21394276

2639526 5276584 12145242 24279128
*108 +      *104 +        *104 +      *1

= 264126842539128

Multiplying (Divide & Conquer style)

X = 

Y = 

X × Y = ac 10n + (ad + bc) 10n/2 + bd 

a b

c d

12345678 * 21394276

= 264126842539128
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Divide, Conquer, and Glue

MULT(X,Y)

if |X| = |Y| = 1 
then return XY, 

else…

Divide, Conquer, and Glue

MULT(X,Y):

X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

Mult(a,c)
Mult(a,d) Mult(b,c)

Mult(b,d)

X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

Mult(a,c)

Mult(a,d) Mult(b,c)
Mult(b,d)

X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

ac

Mult(a,d) Mult(b,c)
Mult(b,d)

X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

ac

Mult(a,d)

Mult(b,c)
Mult(b,d)
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X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad

Mult(b,c)
Mult(b,d)

X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad

Mult(b,c)

Mult(b,d)

X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad bc

Mult(b,d)

X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad bc

Mult(b,d)

X=a;b   Y=c;d 

Divide, Conquer, and Glue

MULT(X,Y):

ac
ad bc bd

XY = ac2n

+(ad+bc)2n/2

+ bd

Time required by MULT

T(n) = time taken by MULT on two n-
bit numbers

What is T(n)? What is its growth rate? 

Big Question: Is it Θ(n2)?

T(n) = 4 T(n/2) + O(n)  

conquering 
time 

divide and 
glue
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Recurrence Relation

T(1) = 1

T(n) = 4 T(n/2) + O(n)

Simplified Recurrence Relation

T(1) = 1

T(n) = 4 T(n/2) + n

conquering 
time 

divide and 
glue

n=
T(n)

T(n/2) T(n/2) T(n/2) T(n/2)

n=
T(n)

T(n/2) T(n/2) T(n/2)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

T
(n/4)

n=
T(n)

T(n/2) T(n/2)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

T
(n/4)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

T
(n/4)

n

n/2         +        n/2        +         n/2          +         n/2

. . . . . . . . . . . . . . . . . . . . . . . . . . 

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

0

1

2

i Level i is the sum of 4i copies of n/2i
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n

n/2         +        n/2        +         n/2          +         n/2

Level i is the sum of  4i copies of  n/2i

. . . . . . . . . . . . . . . . . . . . . . . . . . 

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

2n =

4n =

2in =

(n)n =

1n =

n(1+2+4+8+ . . . +n) = n(2n-1) = 2n2-n

Divide and Conquer MULT: Θ(n2) time 
Grade School Multiplication: Θ(n2) time

Bummer!

MULT calls itself 4 times. Can you see a 
way to reduce the number of calls?

Gauss’ Complex Puzzle

Can you do better than $4.03?

Remember how to multiply two 
complex numbers a + bi and c + di?

(a+bi)(c+di) = [ac – bd] + [ad + bc] i

Input: a,b,c,d       
Output: ac-bd, ad+bc

If multiplying two real numbers costs $1 
and adding them costs a penny, what is 
the cheapest way to obtain the output 

from the input?

Gauss’ $3.05 Method

Input: a,b,c,d       
Output: ac-bd, ad+bc

X1 = a + b

X2 = c + d

X3 = X1 X2 = ac + ad + bc + bd

X4 = ac

X5 = bd

X6 = X4 – X5 = ac - bd

X7 = X3 – X4 – X5 = bc + ad

c

$

$

$

c

c

cc

The Gauss optimization 
saves one multiplication out 

of four. 
It requires 25% less work.

Karatsuba, Anatolii Alexeevich 
(1937-2008)  

In 1962 Karatsuba had 
formulated the first 
algorithm to break the n2

barrier! 
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Gaussified MULT
(Karatsuba 1962)

T(n) = 3 T(n/2) + n

MULT(X,Y):
If |X| = |Y| = 1 then return XY
else break X into a;b and Y into c;d

e : = MULT(a,c)
f  := MULT(b,d)

e 2n + (MULT(a+b,c+d) – e – f) 2n/2 + f
return 

n=
T(n)

T(n/2) T(n/2) T(n/2)

n=
T(n)

T(n/2) T(n/2)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

n=
T(n)

T(n/2)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

n=
T(n)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

n/2

T
(n/4)

T
(n/4)

T
(n/4)

n

n/2         +        n/2        +         n/2

. . . . . . . . . . . . . . . . . . . . . . . . . . 

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

0

1

2

i

log2(n)

Level i is the sum of 3i copies of n/2i
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n

n/2         +        n/2        +         n/2

Level i is the sum of  3i copies of  n/2i

. . . . . . . . . . . . . . . . . . . . . . . . . . 

1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1

3/2n 
=

9/4n 
=

(3/2)in 
=

(3/2)log nn =

1n =

n(1+3/2+(3/2)2+ . . . + (3/2)log2 n)= 3n1.58… – 2n

Dramatic Improvement for 
Large n

T(n) = 3nlog2 3 – 2n 

= Θ(nlog2 3) 

= Θ(n1.58…)

A huge savings over Θ(n2) when n gets large. 

n 1.584

n2

The key idea of the algorithm is to divide a 
large integer into 3 parts (rather than 2) of 

size approximately n/3 and then multiply 
those parts.

3-Way Multiplication

154517766 = 154 ∗ 106 + 517 ∗ 103 + 766

Let
X = x2 102p + x1 10p + x0

Y = y2 102p + y1 10p + y0

3-Way Multiplication

Then
X*Y=104p x2y2+10

3p (x2y1+x1y2)+
102p (x2y0+x1y1+x0y2)+10

p (x1y0+x0y1)+x0y0

T(n) = 9 T(n/3) + Θ(n)

T(n) = Θ(n2)

Consider the equation in general form p > 3

3-Way Multiplication

T(n) = p T(n/3) + O(n)

Its solution is given by

T(n) = O(n log3
p)

Thus, this is faster if p = 5 or less 

T(n) = O(n log3
5)=O(n 1.46…)



10

Here is the system of new variables: 

x0 y0                       =Z0

12 (x1y0+x0y1) =8 Z1-Z2-8 Z3+Z4

24 (x2y0+x1y1+x0y2)=-30 Z0+16 Z1-Z2+16 Z3-Z4

12 (x2y1+x1y2) =-2 Z1+Z2+2 Z3-Z4

24 x2y2 =6 Z0-4 Z1+Z2-4 Z3+Z4

Is it possible to reduce the 
number of multiplications to 5?

We rewrite all multiplications in terms of Zk

Z0 = x0 y0

Z1 = (x0+x1+x2) (y0+y1+y2)
Z2 = (x0+2 x1+4 x2) (y0+2 y1+4 y2)
Z3 = (x0-x1+x2) (y0-y1+y2)
Z4 = (x0-2 x1+4 x2) (y0-2 y1+4 y2)

Is it possible to reduce the 
number of multiplications to 5?

It is possible to develop a faster algorithm 
by increasing the number of splits.

Further Generalizations

A 4-way splitting:

T(n) = 7 T(n/4) + O(n)  

T(n) = O(n 1.403…)

Intuitively, the k-way split requires 2 k - 1 
multiplications.

Further Generalizations

A k-way splitting:

T(n) = (2k-1) T(n/k) + O(n)  

T(n) = O(n logk
(2k-1) )

n1.58, n1.46, n1.40, n1.36, n1.33

Note, we will never get a linear performance

Consider two polynomials of k-1 degree

Is it always possible to find such 
2k-1 multiplications? 

polyn1=ak-1 xk-1 + ak-2 xk-2 +... + a1 x + a0

polyn2=bk-1 xk-1 + bk-2 xk-2 +... + b1 x + b0

Each polynomial is defined by k coefficients. 

When we multiply polyn1*polyn2 we get 
a polynomial of 2k-2 degree

that has exactly 2k-1 coefficients. 
Therefore, it's uniquely defined by 2k-1 

values.

Multiplication Algorithms

Grade School n2

Karatsuba n1.58…

Fast Fourier Transform n logn loglogn
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n2 n 1.584

n log(n) loglog(n)

n 1.584

Study Bee

• Divide and Conquer 

• Karatsuba Multiplication 

• Solving Recurrences


