. Great Theoretical Ideas In Computer Science

Victor Adamchik €S 15-251 Spring 2010
Danny Sleator
Lecture 15 Mar 02, 2010 Carnegie Mellon University

Grade School Revisited:
How To Multiply Two Numbers

[4

Time complexity of
grade school addition

N I time grade school
addition uses to add

‘H T(n) = amount of

Xk kkKhxkkkk* two n-bit numbers

T(n) is linear:
T(n) = ©(n)

Time complexity of
grade school multiplication

T(n) = The amount of
time grade school
multiplication uses to
multiply two n-bit

* numbers

T(n) is quadratic:
T(n) = ©(n3

Grade School Addition: Linear time
Grade School Multiplication: Quadratic time

0O I -+

of bits in the numbers

No matter how dramatic the difference in
the constants, the quadratic curve will
eventually dominate the linear curve

Is there a sub-linear time
method for addition?

Any addition algorithm takes (2(n)

Claim: Any algorithm for addition must
read all of the input bits

Proof: Suppose there is a mystery
algorithm A that does not examine
each bit

Give A a pair of numbers. There must
be some unexamined bit at position i in
one of the numbers

Any addition algorithm takes 2(n)

* Kk Xk k k * *x % %
:4’_1/ A did not
read this bit

*okk ok k ok ok okok ok at position i

If A is not correct on the inputs,
we found a bug

If A is correct, flip the bit at position i
A gives the same answer as before,
which is now wrong.

Grade school addition can't
be improved upon by more
than a constant factor

Grade School Addition: ©(n) time.
Furthermore, it is optimal

Grade School Multiplication: ©(n?) time

Is there a clever algorithm to multiply
two numbers in linear time?

Despite years of research, no one
knows! If you resolve this question,
Carnegie Mellon will give you a PhD!

Can we even break the quadratic time
barrier?

In other words, can we do something very
different than grade school multiplication?

Divide And Conquer

An approach to faster algorithms:
DIVIDE a problem into smaller subproblems
CONQUER them recursively

GLUE the answers together so as to
obtain the answer to the larger problem

Multiplication of 2 n-bit numbers

n bits
X =
=
n/2 bits n/2 bits

X=a2v2+b Yy=c2v2+d
X xY =ac 2"+ (ad + bc) 2v2 + bd

Multiplication of 2 n-bit numbers

x= [D
Y= L d
n/2 bits n/2 bits

X xY =ac 2"+ (ad + bc) 22 + bd

MULT(X,Y):
If |X| = |Y| = 1 then return XY
else break X into a;:b and Y into c;d

return MULT(a,c) 2" + (MULT(a,d)
+ MULT(b,c)) 2¥2 + MULT(b,d)

Multiplying (Divide & Conquer style)
1234%678 M{ 21394274
1234*2139 1234*4276 5678*2139 5678*4276
12*21 12*39 34*21 34*39

1*2 1*1 2*2 2*1
2 1 4 2

Hence: 12*21 = 2*102 + (1 + 4)10! + 2 = 252

X =Y = ac 10" + (ad + bc) 102 + bd

Same thing for numbers in decimal

n digits

x= I
v= I

n/2 digits n/2 digits

X =al1l0v2 + b Y=cl0vZ + d

X xY =ac 10" + (ad + bc) 1072 + bd

Multiplying (Divide & Conquer style)
12345678 * 21394276
1234*2139 1234*4276 5678*2139 5678*4276

1; 252 468 714 1326 9
*107 +

*104 + *10%2 + *1= 2639526

Multiplying (Divide & Conquer style)
12345678 * 21394276
1 2639526 5276584 12145242 24279128
*108 + *10 + *104

= 264126842539128

X x Y = ac 10" + (ad + bc) 102 + bd

+

X x Y = ac 10" + (ad + bc) 102 + bd

Multiplying (Divide & Conquer style)
12345678 * 21394276

= 264126842539128

X x Y = ac 10" + (ad + bc) 102 + bd

Divide, Conquer, and Glue

MULT(X.Y)

Divide, Conquer, and Glue

MULT(X,Y): if IX| =1Yl=1
then return XY,
else...

Divide, Conquer, and Glue

MULT(X,Y):

Mult(a,c)

Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

MULT(X,Y):
X=a:b Y=c:d

Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

MULT(X,Y):

Divide, Conquer, and Glue

MULT(X,Y): +(ad+bc)2v2

+ bd

Divide, Conquer, and Glue

MULT(X,Y):
X=a;b Y=c:d

Divide, Conquer, and Glue

MULT(X,Y):

Time required by MULT

T(n) = time taken by MULT on two n-
bit numbers

What is T(n)? What is its growth rate?
Big Question: Is it O(n?)?
T(n) = 4 T(n/2) + O(n)

conquering divide and

time glue

Recurrence Relation

T) =1
T(n) = 4 T(n/2) + O(n)

Simplified Recurrence Relation

T) =1
T(n) = 4 T(n/2) + n

/

conquering divide and
time glue

(n/4)¥ (n/4)¥ (n/4)¥ (n/4)

%

(n/4)¥(n/4)¥ (n/4)¥ (n/4)

(n/4)¥(n/4)¥ (n/4)¥ (n/4)

0 n

1 n2 + n2 + n2 + ni2

2

i Level i is the sum of 4' copies of n/2

1+1+1+1 41+ 14+ 1+ 1 H1H1H 1+ 1+ 1+ 1H1H 1+ 1+ 111 H 1 H 1+ 1+ 141+ 1+ 1

in = n

2n = n2 + nl2 + n2 4+ n2

4n =

2in = Leveliis the sum of 4' copies of n/2

(n)n = A+ 111 H 1+ 141+ H 14141 H 141111 H T T 11 H 1411+ 1414141
n(1+2+4+8+ . . . +n) = n(2n-1) = 2n?-n

Divide and Conquer MULT: O(n?) time
Grade School Multiplication: ©(n?) time

Bummer!

MULT calls itself ~ times. Can you see a
way to reduce the number of calls?

Gauss' Complex Puzzle
Remember how to multiply two

complex numbers a + bi and ¢ + di?
(a+bi)(c+di) = [ac - bd] + [ad + bc] i
Input: a,b,c,d
Output: ac-bd, ad+bc

If multiplying two real numbers costs $1

and adding them costs a penny, what is

the cheapest way to obtain the output
from the input?

Can you do better than $4.03?

Gauss' $3.05 Method

Input: a,b,c,d
Output: ac-bd, ad+bc

c X;=a+b

c X,=c+d

$ X3=X X = ac + ad + bc + bd
$ X,=ac

$ Xs=bd

¢ Xg=X4-Xs =ac - bd

cc X;=X3-X4-X5 =bc +ad

The Gauss optimization
saves one multiplication out
of four.

It requires 25% less work.

Karatsuba, Anatolii Alexeevich
(1937-2008)

In 1962 Karatsuba had
formulated the first
algorithm to break the n?
barrier!

Gaussified MULT
(Karatsuba 1962)
MULT(X,Y):
If |X| = |Y| = 1 then return XY
else break X into a:b and Y into c:d
e : = MULT(a,c)
f := MULT(b,d)

return
e 2" + (MULT(a+b,c+d) - e - f) 22 + f

HOEERITAER]

A

G A

(n/4)¥(n/4)¥ (n/4)

0 n
1 N2 + ni2 + nl2
2

i Level i is the sum of 3' copies of n/2

IogZ(n) R R R B B e B e B B R R R R R R R S e R E R R B R S |

in = n
3/2n N2+ ni2 o+ ni2
9/4n
(3/2)n Level i is the sum of 3/ copies of n/2i
3/2)'°9 n = REa R B B b B e b B e B B B B B R R B R e R ER PR E A PR R |
n(1+3/2+(3/2)2+ . . . + (3/2)92 M= 3n1.58. - 2n

Dramatic Improvement for
Large n

T(n) = 3n0923 - 2n

= @(nlogz 3)
= @(n1.58...)

A huge savings over ©(n?) when n gets large.

3-Way Multiplication

The key idea of the algorithm is to divide a
large integer into 3 parts (rather than 2) of
size approximately n/3 and then multiply
those parts.

154517766 = 154 » 10° + 517 * 103 + 766

3-Way Multiplication

Let
X = x, 1020 + x; 10°P + x,
Y =y, 10% +y; 10r + y,

Then
X*Y=10% x,y,+10% (X,y; +X1Y,)+
10% (xayo*X1Y1+XoY2)* 10P (X1Yo*XoY1)*XoYo

T(n) = 9 T(n/3) + O(n)

T(n) = ©(n?)

3-Way Multiplication
Consider the equation in general form p > 3
T(n) = p T(n/3) + O(n)
Its solution is given by
T(n) = O(n "ay7)

Thus, this is faster if p = 5 or less

T(n) = O(n °9,5)=0(n 1-46-)

Is it possible to reduce the
number of multiplications to 5?

Here is the system of new variables:

Xo Yo =Z,

12 (x1yo*+Xoy:) =8 Zy-Z,-8 Z3+Z,

24 (x2yo*X1Y1+Xoy2)=-30 Zo+16 Z,-Z,+16 Z5-Z,
12 (xzy1+X1Y2) =-2 Zy+Z,+2 Z3-Z,

24 x,y, =6 Z,-4 Z,+Z,-4 Z;+Z,

Is it possible to reduce the
number of multiplications to 5?

We rewrite all multiplications in terms of Z,

Zy= X0 Yo

Z; = (Xg+Xx1+%5) (Yo+Y1tY2)

Z, = (%o+2 x1+4 Xx) (Yo+2 y1+4 Y,)
Z5 = (Xo-X1+%3) (Yo-Y1+Y2)

Z,= (X0-2 x1+4 x3) (Yo-2 y1+4 ¥2)

Further Generalizations

It is possible to develop a faster algorithm
by increasing the number of splits.

A 4-way splitting:

T(n) = 7 T(n/4) + O(n)

T(n) = O(n 1:403-)

Further Generalizations

Intuitively, the k-way split requires 2 k - 1
multiplications.

A k-way splitting:
T(n) = (2k-1) T(n/k) + O(n)
T(n) = O(n ‘D)

n1.58' l’ll'46, n1.40' n1.36' nl.33

Note, we will never get a linear performance

Is it always possible to find such
2k-1 multiplications?
Consider two polynomials of k-1 degree
polyn;=a,_; xk! + a,_, xX*2+. .. +a; X + a
polyn,=b,_; xk1 + b, , x*2+ . + b, x + by

Each polynomial is defined by k coefficients.

When we multiply polyn;*polyn, we get
a polynomial of 2k-2 degree

that has exactly 2k-1 coefficients.
Therefore, it's uniquely defined by 2k-1
values.

Multiplication Algorithms

Grade School n?

Karatsuba n1-58...

Fast Fourier Transform n logn loglogn

10

-

-

an

n log(n) loglog(n)

Study Bee

- Divide and Conquer
* Karatsuba Multiplication
+ Solving Recurrences

11

