

Is there a sub-linear time method for addition?

Any addition algorithm takes Ω(n)

Claim: Any algorithm for addition must read all of the input bits

Proof: Suppose there is a mystery algorithm A that does not examine each bit

Give A a pair of numbers. There must be some unexamined bit at position i in one of the numbers

Any addition algorithm takes $\Omega(n)$

If A is not correct on the inputs, we found a bug

If A is correct, flip the bit at position i
A gives the same answer as before,
which is now wrong.

Grade school addition can't be improved upon by more than a constant factor

Grade School Addition: $\Theta(n)$ time. Furthermore, it is optimal

Grade School Multiplication: $\Theta(n^2)$ time

Is there a clever algorithm to multiply two numbers in linear time?

Despite years of research, no one knows! If you resolve this question, Carnegie Mellon will give you a PhD! Can we even break the quadratic time barrier?

In other words, can we do something very different than grade school multiplication?

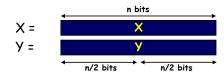
Divide And Conquer

An approach to faster algorithms:

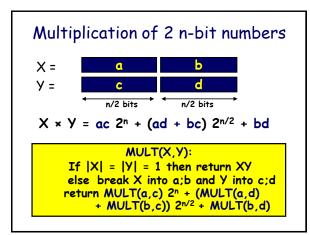
DIVIDE a problem into smaller subproblems CONQUER them recursively

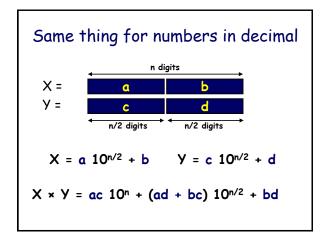
GLUE the answers together so as to obtain the answer to the larger problem

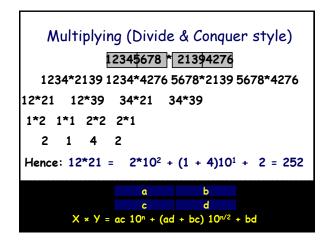
Multiplication of 2 n-bit numbers

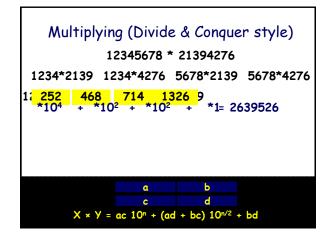


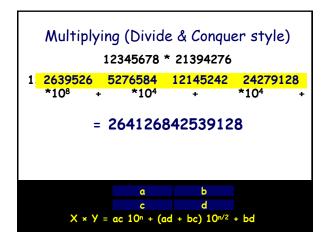
$$X = a 2^{n/2} + b$$
 $Y = c 2^{n/2} + d$
 $X \times Y = ac 2^n + (ad + bc) 2^{n/2} + bd$

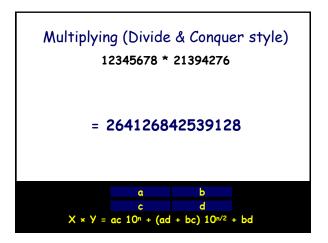


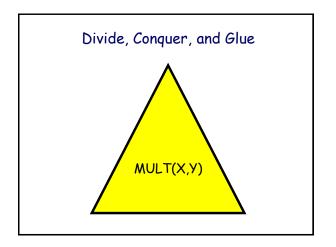


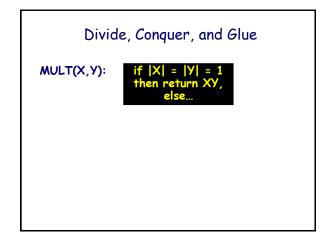


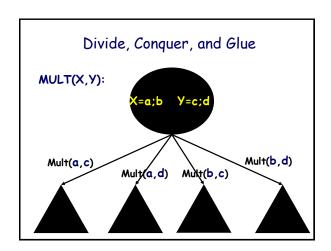


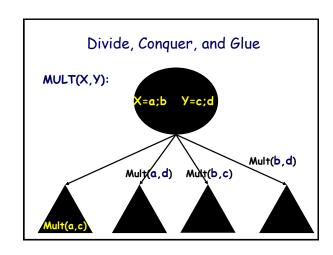


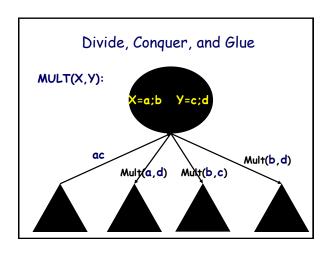


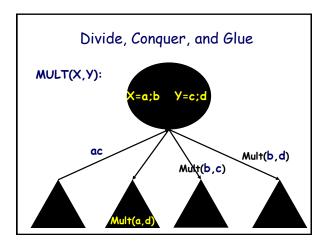


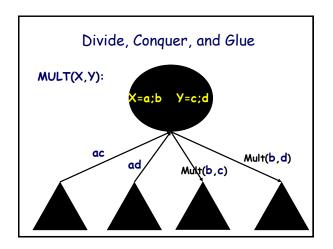


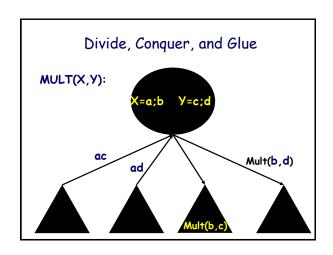


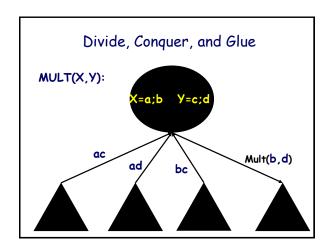


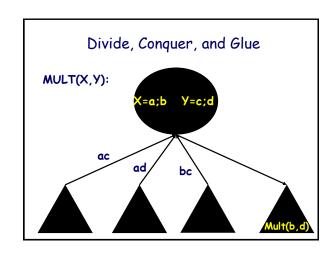


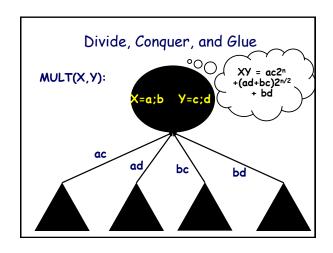


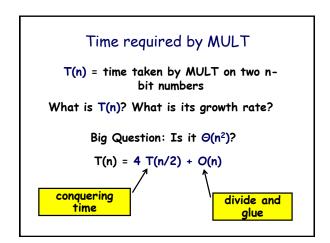








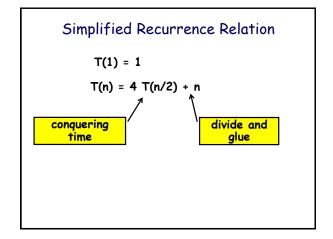


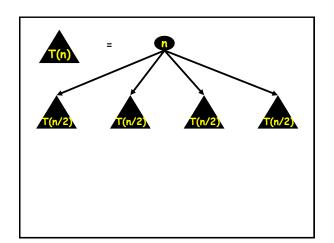


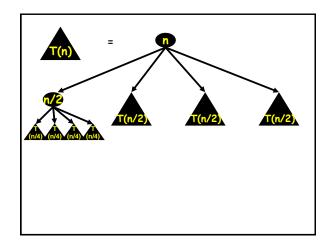
Recurrence Relation

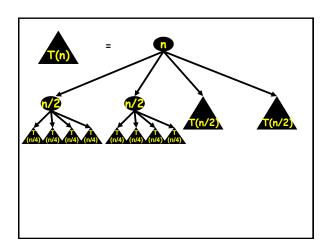
$$T(1) = 1$$

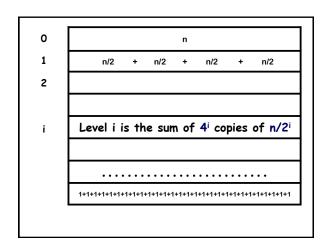
 $T(n) = 4 T(n/2) + O(n)$

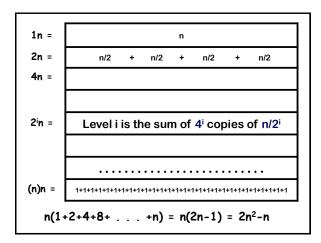












Divide and Conquer MULT: $\Theta(n^2)$ time Grade School Multiplication: $\Theta(n^2)$ time

Bummer!

MULT calls itself 4 times. Can you see a way to reduce the number of calls?

Gauss' Complex Puzzle

Remember how to multiply two complex numbers a + bi and c + di?

(a+bi)(c+di) = [ac - bd] + [ad + bc] i

Input: a,b,c,d Output: ac-bd, ad+bc

If multiplying two real numbers costs \$1 and adding them costs a penny, what is the cheapest way to obtain the output from the input?

Can you do better than \$4.03?

Gauss' \$3.05 Method

Input: a,b,c,d
Output: ac-bd, ad+bc

 $c X_1 = a + b$

 $c X_2 = c + d$

 $X_3 = X_1 X_2 = ac + ad + bc + bd$

\$ X₄ = ac

 $X_5 = bd$

 $X_6 = X_4 - X_5 = ac - bd$

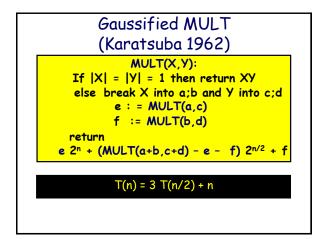
 $CC X_7 = X_3 - X_4 - X_5 = bc + ad$

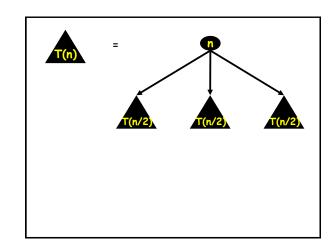
The Gauss optimization saves one multiplication out of four.

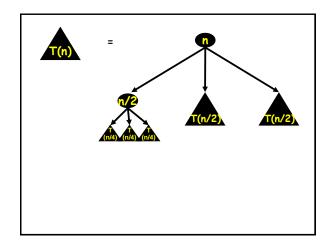
It requires 25% less work.

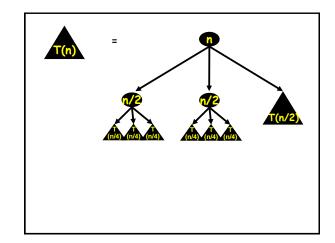
Karatsuba, Anatolii Alexeevich (1937-2008)

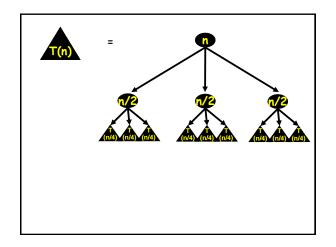
In 1962 Karatsuba had formulated the first algorithm to break the n² barrier!

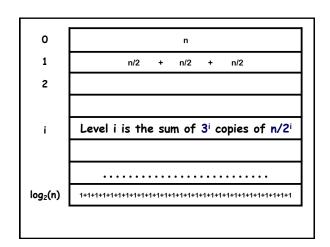


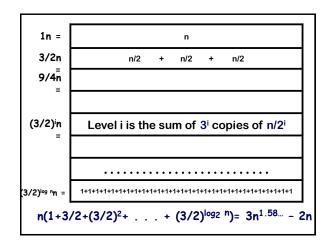










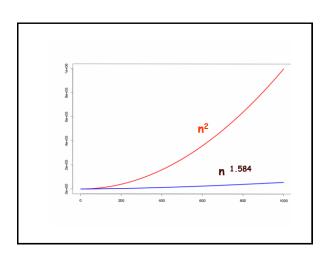


Dramatic Improvement for Large n

T(n) =
$$3n^{\log_2 3} - 2n$$

= $\Theta(n^{\log_2 3})$
= $\Theta(n^{1.58...})$

A huge savings over $\Theta(n^2)$ when n gets large.



3-Way Multiplication

The key idea of the algorithm is to divide a large integer into 3 parts (rather than 2) of size approximately n/3 and then multiply those parts.

 $154517766 = 154 * 10^6 + 517 * 10^3 + 766$

3-Way Multiplication

Let

$$X = x_2 10^{2p} + x_1 10^p + x_0$$

 $Y = y_2 10^{2p} + y_1 10^p + y_0$

Then

$$\begin{array}{l} X^*Y = 10^{4p} \; x_2 y_2 + 10^{3p} \; (x_2 y_1 + x_1 y_2) + \\ 10^{2p} \; (x_2 y_0 + x_1 y_1 + x_0 y_2) + 10^p \; (x_1 y_0 + x_0 y_1) + x_0 y_0 \end{array}$$

$$T(n) = 9 T(n/3) + \Theta(n)$$

$$T(n) = \Theta(n^2)$$

3-Way Multiplication

Consider the equation in general form p > 3

$$T(n) = p T(n/3) + O(n)$$

Its solution is given by

$$T(n) = O(n^{\log_3 p})$$

Thus, this is faster if p = 5 or less

$$T(n) = O(n^{\log_3 5}) = O(n^{1.46...})$$

Is it possible to reduce the number of multiplications to 5?

Here is the system of new variables:

Is it possible to reduce the number of multiplications to 5?

We rewrite all multiplications in terms of Z_k

$$Z_0 = x_0 y_0$$

 $Z_1 = (x_0+x_1+x_2) (y_0+y_1+y_2)$
 $Z_2 = (x_0+2 x_1+4 x_2) (y_0+2 y_1+4 y_2)$
 $Z_3 = (x_0-x_1+x_2) (y_0-y_1+y_2)$
 $Z_4 = (x_0-2 x_1+4 x_2) (y_0-2 y_1+4 y_2)$

Further Generalizations

It is possible to develop a faster algorithm by increasing the number of splits.

A 4-way splitting:

$$T(n) = 7 T(n/4) + O(n)$$

$$T(n) = O(n^{1.403...})$$

Further Generalizations

Intuitively, the k-way split requires 2 k - 1 multiplications.

A k-way splitting:

$$T(n) = (2k-1) T(n/k) + O(n)$$

$$T(n) = O(n \log_k^{(2k-1)})$$

Note, we will never get a linear performance

Is it always possible to find such 2k-1 multiplications?

Consider two polynomials of k-1 degree

$$\begin{aligned} & \text{polyn}_1 = \mathbf{a}_{k-1} \ \, \mathbf{x}^{k-1} \ \, + \ \, \mathbf{a}_{k-2} \ \, \mathbf{x}^{k-2} \ \, + \ldots \ \, + \ \, \mathbf{a}_1 \ \, \mathbf{x} \ \, + \ \, \mathbf{a}_0 \\ & \text{polyn}_2 = \mathbf{b}_{k-1} \ \, \mathbf{x}^{k-1} \ \, + \ \, \mathbf{b}_{k-2} \ \, \mathbf{x}^{k-2} \ \, + \ldots \ \, + \ \, \mathbf{b}_1 \ \, \mathbf{x} \ \, + \ \, \mathbf{b}_0 \end{aligned}$$

Each polynomial is defined by k coefficients.

When we multiply polyn₁*polyn₂ we get a polynomial of 2k-2 degree

that has exactly 2k-1 coefficients.
Therefore, it's uniquely defined by 2k-1 values.

Multiplication Algorithms

Grade School	n²
Karatsuba	n ^{1.58}
Fast Fourier Transform	n logn loglogn

